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Abstract

Fast varying active transmitter sets are a key feature of wireless communication networks with very short length
transmissions arising in communications for the Internet of Things. As a consequence, the interference is dynamic,
leading to non-Gaussian statistics. At the same time, the very high density of devices is motivating non-orthogonal
multiple access (NOMA) techniques, such as sparse code multiple access (SCMA). In this paper, we study the statistics
of the dynamic interference from devices using SCMA. In particular, we show that the interference is α-stable with
non-trivial dependence structure for large-scale networks modeled via Poisson point processes. Moreover, the
interference on each frequency band is shown to be sub-Gaussian α-stable in the special case of disjoint SCMA
codebooks. We investigate the impact of the α-stable interference on achievable rates and on the optimal density of
devices. Our analysis suggests that ultra dense networks are desirable even with α-stable interference.
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1 Introduction
Mordern wireless communication networks are increas-
ingly heterogeneous. This heterogeneity stems from non-
uniform placement of access points and variations in
transmit power constraints and a characteristic of net-
work employing small cells and ad hoc networks. Another
form of heterogeneity is due to differences in the services
that networks provide. For instance, there are key differ-
ences in quantity and type of data, as well as transmission
protocols between networks supporting standard cellu-
lar or WLAN communication and machine-to-machine
(M2M) communications, which are increasingly ubiqui-
tous with the rapid development of the Internet of Things
(IoT) [1].
In standard cellular services, data transmissions typi-

cally vary between 1 KB and 2 MB per transmission for
text and image transfers and up to 3 GB for video trans-
mission [2]. On the other hand, in M2M communications,
data transmission is of the order of 1 MB per month [3].
Transmissions in M2M are therefore very short in time.
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As a consequence, the active set of transmitting devices at
each time can change rapidly. A natural question is how
devices should operate in this setting. In particular, what
are the statistical properties of the resulting interference
(is it even Gaussian?), and what interference mitigation
strategies are appropriate?
In the uplink—where a large number of devices connect

to one or more access points—one interference mitigation
strategy is to ensure that device transmissions are nearly
orthogonal. That is, transmisssions overlap on different
frequencies, different times, different spatial dimensions,
or different power levels. This approach falls under the
class of non-orthogonal multiple access (NOMA) trans-
mission strategies [4].
One promising NOMA strategy is sparse code multiple

access (SCMA) for OFDM systems [5]. In this strategy,
users can transmit on a sparse subset of all frequency
bands, analogous to CDMA where in contrast, the cod-
ing is performed over time slots. We remark that SCMA
falls in the class of code-based NOMA as opposed to the
pure power NOMA strategy, which exploits differences in
received power levels to discriminate between users via
successive interference cancellation [6].
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In this paper, we assess the impact of rapidly chang-
ing active transmitter sets—or dynamic interference—
in large-scale wireless networks with SCMA, such as
in M2M. We consider a worst-case scenario where the
network is interference-limited, uncoordinated, and the
locations of interferers are governed by a homogeneous
Poisson point process. This setup is relevant for networks
supporting the Internet of Things and in large-scale sen-
sor networks, where transmitting devices are very simple
and have limited ability to coordinate. In particular, lim-
ited coordination arises in the grant free scenarios recently
considered in the context of NOMA [6], where devices
randomly access time-frequency resources. Inmany cases,
such random access is necessary due to the use of low-
power, low-cost devices. A coordinated channel has high
power usage due to the need for control signals. This is
not realistic with ultra-low power devices.
The study of interference in wireless networks has a

long history. An early significant contribution was due to
Middleton [7, 8] where it was established that the elec-
tromagnetic interference probability density function is
represented via an infinite series, leading to the Middle-
ton class A and class B models. Reduced to two terms to
simplify derivations, the resulting distribution is called the
Bernoulli-Gaussian model [9, 10]. Around the year 2000,
work on Ultra Wide Band (UWB) communications also
gave rise to many empirical modeling approaches. These
works are relevant because the topologies are similar and
impulsive radio transmissions gave rise to dynamic inter-
ference. The empirical models are often based on prag-
matic choices, which provide a good fit with simulated
data and analytical solutions for the maximum likelihood
detector [11–13].
Dynamic interference in wireless networks without

SCMA was introduced in [14, 15] by considering fast-
varying (symbol-by-symbol) active transmitter sets, with
locations governed by a homogeneous Poisson point pro-
cess. In particular, it was shown that the interfering signal
power in each time-slot follows the α-stable law, which is
widely used to model impulsive noise signals [16]. Further
analysis of these models via stochastic geometry [17, 18]
has established that the α-stable interference model is a
good approximation of the true interference distribution
when the radius of the network is large and there are no
guard zones [19–21].
The class of α-stable random variables are well-known

to model impulsive signals; however, unlike Gaussian
models, α-stable models are challenging to study due to
the absence of a closed-form probability density function
[22]. Although an expression without a closed-form for
the error probability in the presence of α-stable interfer-
ence was derived in [14], little is known about achievable
rates and the optimal density of devices in this scenario
and in particular for networks using SCMA.

1.1 Methods and overview of contributions
In this paper, we study the statistics of dynamic inter-
ference in large-scale networks exploiting SCMA. Unlike
existing work on SCMA, we consider the presence
of dynamic interference. Accounting for the impact of
dynamic interference is critical as the resulting high
amplitude interference is known to have an important
impact on key network performance indicators (e.g., bit
error rate and capacity [23]). As Gaussian interference
models underestimate the probability of such high ampli-
tude interference, the resulting design can be highly sub-
optimal.
A key focus, unlike existing work on dynamic interfer-

ence, is not only on the statistics of interference but also
on the dependence between the signals on different bands.
Ourmain result is to establish that when devices randomly
and independently select frequency bands to transmit
on—i.e., the non-zero elements of the SCMA codebook—
the resulting interference is an α-stable random vector.
However, the interference on each band is not in gen-
eral independent. To study this dependence structure, we
focus on a particular class of SCMA codebooks where
devices transmit on a restricted set of bands. For this
class of SCMA codebooks detailed in the sequel, we show
that the resulting dynamic interference has sub-Gaussian
α-stable dependence structure.
We then study achievable rates in the presence of

isotropic α-stable noise, which is a special case of sub-
Gaussian α-stable noise for which rate bounds are not
currently known. Based on the achievable rate, we study
consequences for network design and in particular the
impact of device density on the area spectral efficiency.
This provides new insights into the design of networks
in the presence of dynamic interference by characterizing
the optimal device density. Moreover, the characteriza-
tion of the achievable rate provides a basis for network
optimization, e.g., power control. Finally, we discuss the
general problem of characterizing the dependence struc-
ture induced by general SCMA codebooks. In particular,
we propose an approach based on copulas and investigate
consequences for signal detection.
The paper is organized as follows. In Section 2, the

setup is formalized for large-scale SCMA-based wireless
networks with dynamic interference. In Section 3, the
statistics of the dynamic interference are characterized
and shown to follow the law of an α-stable random vector.
In Section 4, we study achievable rates in α-stable noise
and the impact on device density. In Section 5, we discuss
our results and in Section 8, we conclude.

2 Problem formalization
Consider an uplink single-cell network in which the simul-
taneous transmissions from a large number of devices
are received by a single access point at the origin. The
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device transmissions are over a subset of orthogonal bands
B = {1, 2, . . . ,K}.
At each time slot t, each device independently transmits

with probability p � 1. The subset of transmitting devices
is governed by a Poisson point process �t with intensity
λ. Since p � 1, the distance from devices in �t , denoted
by rj, and devices in �t′ corresponding to another time
t �= t′, denoted by rj′ , to the access point are modeled as
independent random variables. That is, for a device j in�t
and a device j′ in �t′ we have Pr

(
rj ≤ R|rj′

) = Pr(rj ≤ R).
In a given time slot, each device j seeks to trans-

mit a message Wj uniformly drawn from the set
Wj = {1, 2, . . . ,M} over n channel uses. M is the num-
ber of different messages that the device can transmit. We
denote bym the number of bands that each device can use
to transmit their data. Each device is also equipped with
an encoder Ej : Wj → C

K×n, which maps each message
to n SCMA codewords in C

K , allowing for vector code-
words1. One SCMA codeword is composed ofm non-zero
elements selected from the set of all subsets Bm, which
consists of all subsets of {1, 2, . . . ,K} with sizem.
We are interested in two classes of SCMA codebooks.

In the first class, any set in Bm can be selected by a
device, where the non-zero elements of each codeword
are assumed to be independently chosen for each device.
This first case is referred to as the general random SCMA
codebook.
In the second class of SCMA codebooks, only disjoint

elements of Bm can be selected. In this case, there are⌊
K
m

⌋
codewords. If two devices choose different code-

books (i.e., different elements of Bm), then there is no
interference. On the other hand, if two devices choose the
same element of Bm, then they will interfere on all bands
with a non-zero signal. This second case is referred to as
the disjoint random SCMA codebook. These codebooks
are detailed further in Section 3.
Accounting for the contributions of all transmitting

devices at time t, the received signal at the access point on
band k in the interference limited regime is given by:

yk(t) =
∑

j∈�t

hj,k(t)rj(t)−η/2xj,k(t),

t = 1, 2, . . . , n (1)

where hj,k ∼ CN (0, 1) is the Rayleigh fading coefficient
of the j-th device on band k, rj(t) is the distance from
the device j to the access point, and η > 2 is the path-
loss exponent. We remark that Rayleigh fading models
are appropriate for IoT applications indoor or in dense
environments such as those that arise in city centers [24].
Although we do not treat other fading models further in
this paper, we remark that if the input signal xj,k(t) is
isotropic and has finite power, then our results also apply
to Rician or Nakagami fading.

We can now formalize the key question that we address
in the remainder of this paper:

What are the statistics of the interference in SCMA
networks with fast-varying active transmitter sets? In
particular, what is the distribution of the
K-dimensional random vector Z(t), t = 1, 2, . . . with
elements

Zk(t) =
∑

j∈�t

hj,k(t)rj(t)−η/2xj,k(t) (2)

corresponding to the interference from the devices
on band k at time t?

3 Interference characterization
In this section, we investigate the effect of rapidly chang-
ing active transmitter sets on the interference statistics,
that is, we characterize the distribution of dynamic inter-
ference. A key feature of dynamic interference is its impul-
sive nature, which we formally establish by showing that
the interference on each band follows the α-stable distri-
bution under the assumptions in Section 2. We also study
the dependence structure of the random vector arising
from the interference on each band.

3.1 Preliminaries
Before characterizing the interference statistics, we review
definitions and important properties of α-stable random
variables and vectors. The α-stable random variables are
a key class of random variables with heavy-tailed proba-
bility density functions, which have been widely used to
model impulsive signals [16, 22]. The probability density
function of an α-stable random variable is parameterized
by four parameters: the exponent 0 ≤ α ≤ 2; the scale
parameter γ ∈ R+; the skew parameter β ∈ [−1, 1]; and
the shift parameter δ ∈ R. As such, a common notation
for an α-stable random variable X is X ∼ Sα(γ ,β , δ). In
the case β = δ = 0, X is said to be a symmetric α-stable
random variable.
In general, α-stable random variables do not have

closed-form probability density functions. Instead, they
are usually represented by their characteristic function,
given by ([22], Eq. 1.1.6)

E
[
eiθX

]

=

⎧
⎪⎪⎨

⎪⎪⎩

exp
{−γ α|θ |α (1 − iβ(signθ) tan πα

2
)+ iδθ

}
,

α �= 1
exp

{−γ |θ | (1 + iβ 2
π
(signθ) log |θ |)+ iδθ

}
,

α = 1
(3)

In addition to the characteristic function, symmetric
α-stable random variables admit a series represen-
tation. This is known as the LePage series and is
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detailed in the following theorem (a proof is available in
([22], Theorem 1.4.2), which will play a key role in our
analysis of dynamic interference.

Theorem 1 Let 0 < α < 2, (�i, i = 1, 2, . . .) be a
Poisson process of rate 1 and W1,W2, . . . be a sequence of
independent and identically distributed symmetric2 ran-
dom variables. Then, the sum

∑∞
i=1 �

−1/α
i Wi converges

almost surely to a random variable X whose distribution is
Sα

((
C−1

α E
[
(|W1|α)1/α

])
, 0, 0

)
, where

Cα =
{ 1−α

�(2−α) cos(πα/2) , if α �= 1
2/π , if α = 1.

(4)

It is possible to extend the notion of an α-stable random
variable to the multivariate setting. A sufficient condition
for a random vector X to be a symmetric α-stable random
vector is that the marginal distributions of the elements
of X are symmetric α-stable3. In general, d-dimensional
symmetric α-stable random vectors are represented via
their characteristic function, given by [22]

E

[
eiθ ·X] = exp

⎛

⎝−
∫

Sd−1

∣
∣
∣
∣
∣
∣

d∑

k=1
θksk

∣
∣
∣
∣
∣
∣

α

�(ds)

⎞

⎠ , (5)

where � is the unique symmetric measure on the d-
dimensional unit sphere S

d−1. A particular class of α-
stable random vectors are an instance of the sub-Gaussian
α-stable random vectors4, defined as follows.

Definition 1 Any vector X distributed as X = (
A1/2G1,

. . . ,A1/2Gd
)
, where

A ∼ Sα/2
(
(cosπα/4)2/α , 1, 0

)
, (6)

and G = [G1, . . . ,Gd]T ∼ N
(
0, σ 2I

)
is called a sub-

Gaussian α-stable random vector in R
d with underlying

Gaussian vector G.

Sub-Gaussian random vectors are typically charac-
terized by either the scale-mixture representation in
Definition 1 or via their characteristic function ([22],
Proposition 2.5.5) as detailed in the following proposition.

Proposition 1 Let X be a symmetric α-stable random
vector inRd. Then, the following statements are equivalent:

1. X is sub-Gaussian α-stable with an underlying
Gaussian vector having i.i.d.N

(
0, σ 2) components.

2. The characteristic function of X is of the form

E

[
eiθ ·X] = exp

(−2−α/2σα‖θ‖α
)
. (7)

Sub-Gaussian α-stable random vectors are preserved
under orthogonal transformations. The following proposi-
tion provides further characterizations of sub-Gaussian α-
stable random vectors via their relationship to orthogonal
transformations5.

Proposition 2 Let O(d) be the set of real orthogonal
matrices and U ∈ O(d). Then, Z d= UZ holds for all
U ∈ O(d) if and only if Z is a sub-Gaussian α-stable
random vector with an underlying Gaussian vector having
i.i.d.N

(
0, σ 2) components.

Proof See Section 6.

Sub-Gaussian α-stable random vectors also play an
important role in studying complex α-stable random vari-
ables, that is, a random variable with α-stable distributed
real and imaginary components. In particular, the gener-
alization of sub-Gaussian α-stable random variables to the
complex case is known as the class of isotropic α-stable
random variables, defined as follows.

Definition 2 Let Z1,Z2 be two symmetric α-stable ran-
dom variables. The complex α-stable random variable
Z = Z1 + iZ2 is isotropic if it satisfies the condition:

C1 : eiφZ (d)= Z for any φ ∈ [0, 2π).

The random vector Z is said to be induced by the
isotropic α-stable random variable Z. Due to the fact
that baseband signals are typically complex, isotropic α-
stable random variables will play an important role in the
interference characterization.
The following proposition ([22], Corollary 2.6.4) high-

lights the link between isotropic α-stable random vari-
ables and sub-Gaussian α-stable random vectors.

Proposition 3 Let 0 < α < 2. A complex α-stable ran-
dom variable Z = Z1 + iZ2 is isotropic if and only if there
are two independent and identically distributed zero-mean
Gaussian random variables G1,G2 with variance σ 2 and a
random variable A ∼ Sα/2

(
(cos(πα/4))2/α , 1, 0

)
indepen-

dent of (G1,G2)T such that (Z1,Z2)T = A1/2(G1,G2)T .
That is, (Z1,Z2)T is a sub-Gaussian α-stable random
vector.

We remark that isotropic complex α-stable random
variables are closely related to sub-Gaussian random
vectors as can be observed from a comparison with
Definition 1. Moreover, unlike the isotropic (or circularly
symmetric) Gaussian case (α = 2), isotropic α-stable
random variables with α < 2 do not have independent
real and imaginary components. This dependence arises
from the characterization in Proposition 3 through the
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dependence of the α-stable random variable A in both the
real and imaginary components.

3.2 Interference for general random SCMA codebooks
We now study the statistics of the interference from
devices under the general SCMA codebook setup detailed
in Section 2.We first consider the distribution of the inter-
ference on each band. In particular, we characterize the
distribution of:

Zk(t) =
∑

j∈�t

hj,k(t)rj(t)−η/2xj,k(t), k = 1, . . . ,K . (8)

Consider the scenario of a general SCMA codebook,
where each device selects them bands that it transmits on
from a distribution Pm on Bm, independently of the other
devices. For example, suppose that device j selects bands
uniformly from Bm then the probability that it transmits

on band k at time t is q =
K−1
m−1
Km

. As such, the devices
that transmit on band k also form a homogeneous Pois-
son point process with rate λq. In this case, the following
theorem holds.

Theorem 2 Suppose that

E

[(
Re
(
hj,k(t)rj(t)−η/2xj,k(t)

))η/4]
< ∞. (9)

Further, suppose that each device selects m bands from a
given distribution Pm on Bm, independently of the other
devices. Then, Zk(t) converges almost surely to an isotropic
4
η
-stable random variable.

Proof Using the mapping theorem for PPPs [25], it
follows that {r2l }l is a one-dimensional Poisson point
process with intensity λπ ([21], Theorem 1). Since the
codebooks for each device are independent, the hypothe-
sis of the theorem implies that the LePage representation
in Theorem 1 holds. It then follows that the interference
has real and imaginary parts that are almost surely
symmetric 4

η
-stable random variables. Since we consider

Rayleigh fading, hl,nxl,n is isotropic and condition C1 for
isotropic α-stable random variables is also satisfied, as
required.

A consequence of Theorem 2 is that the interference
random vector Z(t) is an α-stable random vector when
devices use general SCMA codebooks. This is in sharp
contrast to standard models for non-dynamic interfer-
ence, which are typically Gaussian.
Although Z(t) is an α-stable random vector, the depen-

dence structure remains unspecified. We note that unlike
Gaussian interference models, the dependence structure
is not characterized through the covariance matrix. In
fact, the covariance of α-stable random variables is either
infinite or undefined, depending on the value of 0 <

α < 2. Next, we study the dependence structure for the
special case of disjoint random SCMA codebooks, where
each device transmits on one of a family of disjoint sets
consisting ofm bands.

3.3 Interference for disjoint random SCMA codebooks
We now consider the case where devices transmit using
disjoint random SCMA codebooks. Given K bands it is
possible to obtain �K/m� disjoint subsets. Devices are
said to use disjoint random SCMA codebooks if they are
restricted to transmitting on one of these �K/m� disjoint
subsets of B, and the set ofm bands is selected uniformly.
In this section, we characterize the statistics of the inter-
ference vector arising from the use of disjoint random
SCMA codebooks.
To begin, consider the case where devices use SCMA

codewords that have non-zero values on disjoint sets of
bands. By the independent thinning theorem for Poisson
point processes [25], the interference on bands in different
disjoint subsets in Bm are independent. Therefore, the key
challenge is to establish the dependence of interference on
bands within the same disjoint subset in Bm.
Consider a given disjoint subset in Bm and denote the

interference on these m bands as Zm(t). In this case, the
received signal vector at the access point on the m bands
under consideration can then be written as:

ym(t) = r−η/2
1 h1,m ◦ x1,m(t) + Zm(t), (10)

where ◦ is the Hadamard element-wise product and

Zm(t) =
∑

j∈�t

rj(t)−η/2hj,m(t) ◦ xj,m(t) (11)

The statistics of the interference random vector Zm are
given in the following theorem. The proof is provided in
Section 3.5.

Theorem3 The interferenceZm induced by disjoint ran-
dom SCMA codebooks follows the sub-Gaussian α-stable
distribution with an underlying Gaussian vector having
i.i.d.N

(
0, σ 2

Z
)
components, α = 4/η and parameter

σZ =
(

πλqDC−1
4
η

E

[∣∣Re(h1,1x1,1)
∣∣
4
η

])η/4
, (12)

where qD = 1
�K/m� and C 4

η
as defined in Theorem 1.

3.4 Numerical results
To illustrate the dependence structure resulting from sub-
Gaussian α-stable interference. Interference samples are
generated from a network of devices distributed uniformly
on a disc of radius R = 500m and number of access points
drawn from a Poisson distribution with parameter πR2λ
with λ = 0.1. These samples approximate a realization of
a Poisson point process with rate λ [25].
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Figure 1 plots samples obtained from the real and imag-
inary parts of interference on a single band. Observe
that the samples are distributed isotropically as expected
from Theorem 2. Figure 2 plots the real parts of inter-
ference samples from two bands b1, b2 in a disjoint
SCMA codebook with b1, b2 in the same disjoint sub-
set. Observe that the samples exhibit the same depen-
dence structure as in Fig. 1, which is consistent with
Theorem 3.
Figure 3 plots the real parts of interference samples from

two bands b1, b2 in a general SCMA codebook with b1
selected with probability 1/2 and b2 selected with prob-
ability 1/3 if b1 is selected and probability 2/3 if b1 is
not selected. This scenario can occur in codebooks con-
structed to reduce decoding complexity. Observe that
the dependence structure differs from Fig. 2, which
demonstrates that SCMA codebooks can have depen-
dence structures that do not arise from sub-Gaussian
random α-stable random vectors. In Section 5, we dis-
cuss methods to model this dependence in a tractable
manner.

3.5 Proof of Theorem 3
We first establish that the elements of Zm are complex
α-stable random variables. Without loss of generality,
consider the first element of Zm, denoted by Z1, given by:

Z1 =
∑

j∈�t

r−η/2
j hj,1xj,1. (13)

Giving each element of � an index in N, we write

Z1 =
∞∑

j=1
r−η/2
j hj,1xj,1. (14)

Let zj = hj,1xj,1 and denote the real an imaginary parts
as zj,r and zj,i, respectively. We then have

Z1 =
∞∑

j=1
r−η/2
j (zj,r + izj,i). (15)

Now, recall that the distances {rj}∞j=1 are from points
in a homogeneous PPP to the origin. Using the map-
ping theorem, it follows that

{
r2j
}∞
j=1

with intensity qDλπ .
It then follows from the LePage series representation in
Theorem 1 that Z1 converges almost surely to Zr + iZi,
where Zr and Zi are symmetric 4/η-stable random vari-
ables. Morever, eiθZ1

d= Z1 since for each j, eiθhj,1xj,1
d=

hj,1xj,1 by the fact that the Rayleigh fading coefficient is
isotropic. Therefore, by Proposition 3, it follows that an
equivalent representation of Z1 is a two-dimensional real
sub-Gaussian α-stable random vector.
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Fig. 1 Scatter plot of samples from the real and imaginary parts of interference on a single band. Samples generated from a network of devices
distributed uniformly on a disc of radius R = 500 m and number of access points drawn from a Poisson distribution with parameter πR2λ with
λ = 0.1
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Fig. 2 Scatter plot of samples from the real parts of interference drawn from two distinct bands, b1, b2. Samples generated from a network of
devices using a disjoint SCMA codebook. Bands b1, b2 lie in the same disjoint subset. The distribution of devices is the same as Fig. 1
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Fig. 3 Scatter plot of samples from the real parts of interference drawn from two distinct bands, b1, b2. Samples generated from a network of
devices using a codebook with b1 selected with probability 1/2 and b2 selected with probability 1/3 if b1 is selected and 2/3 if b1 is not selected.
The distribution of devices is the same as Fig. 1
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By applying the same argument to each element of Zm,
it follows that it is a complex 4/η-stable random vector.
We now need to show that stacking the real valued rep-
resentation of each element of Zm yields a sub-Gaussian
α-stable random vector. Let Z′ be the vector obtained by
stacking the real and imaginary parts of Zm.
To proceed, we will apply Proposition 2. In particular,

letU ∈ O(2m) (recall thatO(2m) is the set of real orthog-
onal matrices of dimensions 2m × 2m). Further, let Z′

j,l
represent the real or imaginary part of the interference on
a band k due to device j, which is given by

Z′
j,l = r−η/2

j
(
Re(hj,k)Re(xj,k) − Im(hj,k)Im(xj,k)

)
(16)

in the case that Z′
j,l corresponds to a real part.

A similar expression can be also obtained for the
case of an imaginary part. For both cases, Z′

j,l =
r−η/2
j

(
fj,kRe

(
xj,k
)+ gj,kIm

(
xj,k
))
, where fj,k and gj,k are

Gaussian with variance 1/2 due to the fact that hj,k is a
Rayleigh fading coefficient. As such, the vector of inter-
ference from device j can be written as Z′

j = r−η/2
j (f ·

Re(xj) + g · Im(xj)). Since U is orthogonal it then follows
that Uf d= f and Ug d= g, which implies that UZ′ d= Z′.
Since the choice ofU ∈ O(2m) is arbitrary, the result then
follows by applying Proposition 2.

4 Achievable rates with dynamic interference
At present, the capacity of dynamic interference chan-
nels has not been established even for single frequency
systems. To this end, in this section, we study achiev-
able rates for dynamic interference channels. Although
our focus is on single frequency systems, it is also appli-
cable to SCMA-based systems when each band is treated
separately.
As shown in Theorem 2, the interference on each band

is isotropic α-stable distributed. To study achievable rates
in this interference, we introduce the additive isotropic α-
stable noise (AIαSN) channel. In particular, the output of
the AIαSN channel is given by

y = r−η/2
d hdXd + Z. (17)

where rd is the distance from a device to its serving access
point located at the origin, hd ∼ CN (0, 1) is the Rayleigh
fading coefficient and Xd is the baseband emission for the
device under consideration, and Z is the isotropic α-stable
distributed interference. Unlike the capacity of the power
constrained Gaussian noise channel, tractable expressions
are not known for the power constrained AIαSN chan-
nel. For this reason, it is desirable to consider alternative
constraints.
One choice of constraints is the combination of

amplitude and fractional moment constraints. In
particular, the input signal Xd in (17) is required to satisfy

E
[|Re(Xd)|ζ

] ≤ c
E
[|Im(Xd)|ζ

] ≤ c
|Re(Xd)| ≤ A
|Im(Xd)| ≤ A, (18)

where 0 < ζ < α. Note that the presence of the ampli-
tude constraint ensures that the input has finite moments,
including power.
To characterize the capacity of the AIαSN channel in

(17) subject to the constraints in (18), we proceed in
two steps. First, we relax the amplitude constraints and
consider the optimization problem given by

maximize
μ∈P I(Xd; y)

subject to E
[|Re(Xd)|ζ

] ≤ c,
E
[|Im(Xd)|ζ

] ≤ c,

(19)

where P is the set of probability measures on C and 0 <

ζ < α. The unique (see [26]) solution to (19) is lower
bounded in the following theorem.

Theorem 4 For fixed rd and hd, the capacity of the addi-
tive isotropic 4

η
-stable noise channel in (17) subject to the

fractional moment constraints in (19) is lower bounded by:

CL = η

4
log

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 +

(√
2|r−

η
2

d hd|2
(

c
C(ζ , 4

η
)

) 1
ζ

) 4
η

σ
4
η

N

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (20)

where �(·) is the Gamma function and

C
(

ζ ,
4
η

)
=

2ζ+1�
(

ζ+1
2

)
�(−ηζ/4)

4
η

√
π�(−ζ/2)

. (21)

Proof We consider the case that Xd is an isotropic α-
stable random variable satisfying the constraints in (19).
By Theorem 5 in [26], the mutual information of the chan-
nel Y = Xd +Z is derived using the stability property; i.e.,
Y is an isotropic α-stable random variable since Xd and Z
are. The mutual information is then given by

I(Xd;Y ) = η

4
log

⎛

⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎝

1 +

⎛

⎝
√
2
(

c
C
(
ζ , 4

η

)

)1/ζ
⎞

⎠

4
η

σ
4
η

N

⎞

⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎠

(22)

The result then follows by observing that r−
η
2

d hdXd is
also an isotropic 4

η
-stable random variable with parameter
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|r−
η
2

d hd|σN using the fact that Xd is isotropic and
([22], Property 1.2.3).

Remark 1 Note that the achievable rate derived in
Theorem 4 bears similarities to the capacity of additive
white Gaussian noise channels, but is not the same. A
key difference is the absence of the noise variance, which
is in fact infinite for α-stable noise models. Instead, the
parameter σN characterizes the statistics of the noise.

The achievable rates from Theorem 4 are obtained by
using input signals that are isotropic α-stable random
variables, which do not satisfy the amplitude constraints
in (18). The second step in characterizing the capacity of
the AIαSN channel subject to (18) is therefore to consider
a truncated isotropic α-stable input. This guarantees the
amplitude constraints are satisfied and, as we will show,
yields a mutual information in the AIαSN channel that is
well approximated by Theorem 4 for a sufficiently large
truncation level T.
The truncated isotropic α-stable random variables are

defined as follows. Let X be an isotropic α-stable ran-
dom variable, with real part Xr and imaginary part Xi. The
truncation of X, denoted by XT , is given by

XT =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X,
if |Xr| ≤ T , |Xi| ≤ T

sign(Xr)T + iXi,
if |Xr| > T , |Xi| ≤ T

Xr + isign(Xi)T ,
if |Xr| ≤ T , |Xi| > T

sign(Xr)T + isign(Xi)T ,
if |Xr| > T , |Xi| > T .

(23)

Using the truncated isotropic α-stable input, an achiev-
able rate of the amplitude and fractional moment con-
strained AIαSN channel is obtained by evaluating the
mutual information I(y;XT ), where y is the output of
the channel in (17). In fact, using a similar argument
to that for the power constrained Gaussian noise chan-
nel [27], it is straightforward to show that all rates R <

I(y;XT ) are achievable by using a codebook consisting
of 2nR codewords Wn(1), . . . ,Wn (2nR

)
with Wi(w), i =

1, 2, . . . , n, w = 1, 2, . . . , 2nR independent truncated
isotropic α-stable random variables.
Unfortunately, truncated isotropic α-stable inputs do

not lead to a closed-form mutual information for the
channel in (17). In fact, only scaling laws for the
capacity have been recently derived for real-valued
inputs [28, 29]. In order to characterize the achiev-
able rates in the presence of dynamic interference,
we therefore approximate I(XT ; y) by the lower bound
in Theorem 4.
To verify that this approximation is indeed accurate, we

numerically compute the mutual information I(XT ; y) and
compare it with the result in Theorem 4 in Figs. 4 and
5 for α = 1.7 and α = 1.3, respectively. Observe that
for a sufficiently large truncation level, the approximation
based on Theorem 4 is in good agreement with I(XT ; y).
Moreover, the achievable rate is significantly larger than
the case of a Gaussian input. This suggests that Gaussian
signaling is not necessarily desirable in the presence of
dynamic interference with the constraints in (18).
In light of the validity of the achievable rate approxima-

tion based on Theorem 4, we now turn to characterizing
the effect of device density in large-scale networks with
dynamic interference.
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Fig. 4 Achievable rates for an AIαSN channel with α = 1.7, σN = 0.1 and a constraint E[ |X|]≤ 1. The curves correspond to a Gaussian input, an
isotropic α-stable input and a truncated isotropic α-stable input (defined in (23))
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4.1 Area spectral efficiency analysis
In this section, we investigate the effect of device density λ

on network performance. In particular, we study the area
spectral efficiency, which is defined as the expected total
rate per square meter. We focus on the setting where each
device is associated to its own access point and the other
devices introduce interference.
The area spectral efficiency captures the tradeoff

between the distance between each device and its base
station as well as the increasing interference as the device
density increases. Formally, let A1 ⊂ A2 ⊂ · · · be a
sequence of discs such that Area(An) → ∞ as n → ∞.
The area spectral efficiency is then given by

ζ = lim
n→∞

1
Area(An)

E

⎡

⎣
∑

i∈�(An)

Ri(An)

⎤

⎦ , (24)

where �(An) is the PPP � restricted to the disc An and
Ri(An) corresponds to the achievable rate with a truncated
isotropic α-stable input and devices in �(An).
The area spectral efficiency for this model is given in the

following theorem.

Theorem 5 The area spectral efficiency with device
locations governed by a homogeneous PPP � with rate λ

and truncated isotropic α-stable inputs is given by

ζ = λErd ,hd [Ri] , (25)

where Ri is the achievable rate of the AIαSN channel with
a truncated isotropic α-stable input and devices in �.

Proof See Section 7.

As observed in Section 4, Ri = I(yi;XT ) does not
have a closed-form expression which makes character-
izing the area spectral efficiency ζ challenging. To pro-
ceed, we exploit the approximation of I(yi;XT ) based on
Theorem 4. In particular, we obtain the following approx-
imation for the area spectral efficiency:

ζ ≈ λη

4

× Erd ,hd

⎡

⎢
⎢
⎢
⎢
⎢⎢
⎣

log

⎛

⎜
⎜
⎜
⎜
⎜⎜
⎝

1 +

(
√
2|rdhd|2

(
c

C(r, 4
η
)

) 1
r
) 4

η

πλC−1
η
4
E

[
|Re(hkxk)|

4
η

]

⎞

⎟
⎟
⎟
⎟
⎟⎟
⎠

⎤

⎥
⎥
⎥
⎥
⎥⎥
⎦

(26)

which is tight when the truncation level for the input T is
sufficiently large. Further insight into the approximation
error can be obtained numerically, such as in Figs. 4 and 5.
The expression in (26) provides insight into the effect of

the device density λ. In particular, consider a function of
the form

f (λ) = λ log
(
1 + 1

λ

)
, (27)

which captures the dependence of the spatial rate density
approximation in (26) on the device density λ. Since we
are interested in studying the impact of device density, to
apply Leibniz’s rule in (26). it is sufficient to consider (27).
Evaluating the derivative yields f ′(λ) = log

(
1 + 1

λ

)− 1
1+λ

.
Since log x > 1 − 1

x for x > 1, it follows that
log

(
1 + 1

λ

)
> 1

1+λ
and hence for λ > 0, f ′(λ) > 0.
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Fig. 5 Achievable rates for an AIαSN channel with α = 1.3, σN = 0.5 and a constraint E[ |X|]≤ 1. The curves correspond to a Gaussian input, an
isotropic α-stable input and a truncated isotropic α-stable input (defined in (23))
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This implies that the area spectral efficiency ζ is an
increasing function of the density λ (illustrated in Fig. 6).
We therefore conclude that dense networks maximize the
area spectral efficiency. We remark that dense networks
are also desirable for slowly varying active interferer sets
[30]. This implies that although the optimal signaling
strategy for each link is no longer Gaussian, the basic
network structure is the same both for dynamic interfer-
ence and interference arising from a slowly varying active
interferer set.

5 Discussion
In Section 3, we established that the interference is α-
stable in networks with SCMA and fast-varying active
transmitter sets. Moreover, in the special case of dis-
joint random SCMA codebooks, the interference vector
on bands within a disjoint set is sub-Gaussian α-stable
while bands in different disjoint sets are independent. A
natural question is therefore how the dependence struc-
ture for general SCMA codebooks can be characterized.
One approach to resolving this problem is to exploit a cop-
ula representation of the dependence structure, which has
been proposed in [31].
In particular, let FZ2K be the joint distribution of the

real interference random vector Z2K obtained by stack-
ing real and imaginary parts as detailed in Section 3. We
seek a simple and general characterization of the joint
distribution. To this end, let CZ be a copula, which is a
function [ 0, 1]2K →[ 0, 1]. Since the elements of Z2k are
α-stable random variables, it follows that the cumulative
distribution function (CDF) of each element is continu-
ous, denoted by F. As a consequence, there exists a unique

copula CZ such that the joint distribution of Z2k can be
written as

FZ2K (z1,r , z1,i, . . . , zK ,r , zK ,i)

= CZ(F(z1,r), F(z1,i) . . . , F(zK ,r), F(zK ,i)) (28)

by Sklar’s theorem [32].
Note that the copula provides a representation of the

dependence structure, independent of the marginal dis-
tributions. That is, random vectors can be characterized
in terms of the marginal distributions and the copula. In
particular, the joint distribution of Z2K can be character-
ized by the univariate α-stable distributions of each zk,r
and zk,i and the copula CZ . In this case, the probability
distribution density is given by:

fZ2K (z1,r , z1,i, . . . , zK ,r , zK ,i)

= cZ
(
F1,r(z1,r), F1,i(z1,i) . . . , FK ,r(zK ,r), FK ,i(zK ,i)

)

K∏

k=1
fk,r(zk,r)fk,i(zk,i) (29)

where cZ is the density function of the copula CZ and has
such a form that cZ(u1, . . . ,un) = ∂nCZ(u1,...,un)

∂u1,...,∂un
This divides the density into two components, the cop-

ula component and the independent component consist-
ing of the marginal distributions, which provides a basis
for optimizing receiver structures and other system com-
ponents. In particular, we desire a tractable copula C for
which detection rules can be derived.
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As an example, consider the standard Archimedean
copula

CZ(u1, . . . ,un) = φ−1
( n∑

i=1
φ(ui)

)

(30)

where the generator φ :[ 0, 1]→[ 0,∞] is a continuous and
completelymonotonic function such that φ(1) = 0. In this
case, the density function is given by:

cZ(u1, . . . ,un) = ψ(n)

( n∑

i=1
φ(ui)

) n∏

i=1
φ′(ui). (31)

where ψ = φ−1 is the inverse generator.
This representation of the dependence structure for

the interference forms a basis for maximum likelihood
decoding schemes at the receiver, which are otherwise
intractable. Indeed, the log-likelihood ratio (LLR) �(Z2K )

for BPSK transmissions and additive vector symmetric
α-stable noise can be written as [33, 34]:

�(Z2K )

= log
fZ2K

(
z1,r − 1, z1,i − 1, . . . , zK ,r − 1, zK ,i − 1

)

fZ2K

(
z1,r + 1, z1,i + 1, . . . , zK ,r + 1, zK ,i + 1

)

=
K∑

k=1
log

f (zk,r − 1)f (zk,i − 1)
f (zk,r + 1)f (zk,i + 1)

+ log
cZ
(
F(z1,r − 1), . . . , F(zK ,i − 1)

)

cZ
(
F(z1,r + 1), . . . , F(zK ,i + 1)

)

= �⊥(Z2K ) + �c(Z2K ) (32)

where�⊥(Z2K ) is the independent component of the LLR
arising from the marginal distributions and �c(I2K ) is
the component of the LLR depending on the copula and
represents the dependence structure. This representation
provides a clear separation between the independent and
the dependent components, which may be useful in the
design of efficient receivers.
However, there are still some challenging issues. As

shown in (30), Archimedean copulæ assume the same
dependence structure of each pair (uk ,uj). On the
other hand, the dependence of the pair (F(zk,r), F(zk,i))
arises from the sub-Gaussian α-stable distribution by
Theorem 2 and in general will be different from the
distribution of the pairs (F(zk,r), F(zj,r)), k �= j or
(F(zk,r), F(zj,i)), k �= j. Hence, even if it allows for more
tractable expressions [33, 34], the Archimedean family
may not be an appropriate choice. It remains an open
question to select useful general copula representations
for dynamic interence with dynamic interference and
SCMA codebooks.

6 Proof of Proposition 2
The proof follows a similar argument as for isotropic
complex α-stable random variables ([22], Theorem 2.6.3).

We first show that if Z is a d-dimensional sub-Gaussian
α-stable random vector, then UZ is also sub-Gaussian α-
stable. Since Z is sub-Gaussian α-stable, then it admits
a scale mixture representation A1/2G, where G ∼
N
(
0, σ 2I

)
. Therefore, we can write UZ = A1/2UG,

which implies that UZ is sub-Gaussian α-stable if UG ∼
N
(
0, σ 2

UI
)
for some σU > 0. This holds since the covari-

ance matrix of UG is given by �U = E
[
UGGTUT ] = σ 2I

by the orthogonality of U.
We now show thatZ d= UZ for allU ∈ O(d) implies that

Z is sub-Gaussian α-stable. The characteristic function of
Z is given by:

E

[
eiθ ·Z] = exp

(
−
∫

Sd−1
|θ · s|α�(ds)

)

(a)= exp
(

−
∫

Sd−1
|Uθ · s|α�(ds)

)

= exp
(

−
∫

Sd−1
|θ · t|α�U(dt)

)
, (33)

where (a) holds since orthogonal transformations
preserve the magnitude of the inner product in R

d . It
then follows that for any Borel set B ⊂ R

d , we have
�U(B) = �(UB) by the uniqueness of the spectral
measure. Since U ∈ O(d) is arbitrary, it follows that
�U = � for all U ∈ O(d). As such, � is uniform on S

d−1,
which by ([22], Theorem 2.5.5) implies that Z is
sub-Gaussian α-stable.

7 Proof of Theorem 5
In order to compute the area spectral efficiency ζ , observe
that for a givenAn, the random variables Ri(An) are identi-
cally distributed (but not independent) since the distances
rd are independent and identically distributed, and the
locations of the devices are independently and uniformly
distributed in An conditioned on the number of devices
N(An) in An [25]. By the strong law of large numbers for
PPPs [35], N(An)

Area(An)
∼= λ a.s. as n → ∞. Let ε > 0, it then

follows that

ζ = lim
n→∞

1
Area(An)

E

⎡

⎢
⎣

Area(An)
N(An)

Area(An)∑

i=1
Ri(An)

⎤

⎥
⎦

= lim
n→∞

1
Area(An)

×
⎛

⎝E

⎡

⎣
�Area(An)λ1�∑

i=1
Ri(An)|λ1 ∈[ λ − ε, λ + ε]

⎤

⎦

×Pr(λ1 ∈[ λ − ε, λ + ε] )

+E

⎡

⎣
�Area(An)λ1�∑

i=1
Ri(An)|λ1 �∈[ λ − ε, λ + ε]

⎤

⎦

×Pr(λ1 �∈[ λ − ε, λ + ε] )) (34)
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A direct consequence of the strong law of large numbers
of PPPs is that as n → ∞, Pr(λ1 ∈[ λ − ε, λ + ε] ) → 1.
Next, for sufficiently large n select An such that

λArea(An) is an integer and ε > 0 sufficiently small such
that λArea(An) is the only integer in [ λ − ε, λ + ε]. It then
follows that

ζ = lim
n→∞

1
Area(An)

Area(An)λE[Ri(An)]

= λ lim
n→∞E[Ri(An)] . (35)

To evaluate limn→∞ E[Ri(An)], let yi,An be the received
signal at the access point served by the i-th device in
�(An). For fixed rd, hd , Ri(An) = I(yi,An ;XT ). From
the LePage series representation of the interference in
Theorem 1, it follows that the signal received by the
access point served by the i-th device in � satisfies yi

(d)=
r−

η
2

d hdXT + I, a.s. as n → ∞.
Since the conditions in ([36], Theorem 1) hold, it follows

that for fixed rd , hd we have I(yi,An ;XT ) → I(yi;XT ) as
n → ∞. As Ri(An) is positive and Ri(An) → Ri as n → ∞,
we then obtain the desired result.

8 Conclusions
An important feature of wireless communication net-
works supporting the IoT is that devices can transmit very
small amounts of data leading to dynamic interference.
In this paper, we have studied the problem of dynamic
interference when devices exploit the NOMA strategy
SCMA. In particular, we established that the interference
is characterized by a multivariate α-stable distribution.
This work also considered the impact of α-stable inter-
ference on network design. We have derived achievable
rates for a class of NOMA networks and shown that
the area spectral efficiency increases with the density
of devices.
An avenue of future research is the study of dynamic

interference in networks using SCMA codebooks that
have reduced decoding complexity. The design of such
codebooks motivates the study of a general class of vector
additive α-stable noise channels for which fundamental
limits on data rates are not known.

Endnotes
1A codeword corresponds to the signal sent by the

transmitter consisting of n symbols. On the other hand,
a SCMA codeword corresponds to one symbol of the
codeword.

2A random variable X with support on R is said to be
symmetric if for all Borel sets A ⊂ R, Pr(X ∈ A) =
Pr(−X ∈ A).

3 A formal definition of the general class of α-stable ran-
dom vectors is given in [22]; however, for the purposes

of this paper this definition is sufficient as we only con-
sider special cases and the general case is not required.
We remark that for α < 1 there are important subtleties
for general α-stable random vectors.

4 There exist also sub-Gaussian α-stable random vari-
ables that allow for more general dependence structure
[22], but they are not necessary for the purposes of this
paper.

5 Recall that an orthogonal transformation in O(d) is a
matrix U ∈ R

d×d such that UUT = UTU = I.
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