Year-round record of size-segregated aerosol composition in central Antarctica (Concordia station): Implications for the degree of fractionation of sea-salt particles
Bruno Jourdain, Susanne Preunkert, Omar Cerri, Hélène Castebrunet, Roberto Udisti, Michel Legrand

To cite this version:

HAL Id: hal-01871523
https://hal.science/hal-01871523
Submitted on 11 Sep 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Year-round record of size-segregated aerosol composition in central Antarctica (Concordia station): Implications for the degree of fractionation of sea-salt particles

Bruno Jourdain, Susanne Preunkert, Omar Cerri, Hélène Castebrunet, Roberto Udisti, and Michel Legrand

Received 9 November 2007; revised 11 January 2008; accepted 19 March 2008; published 23 July 2008.

[1] The origin of sea-salt aerosol that reaches the high Antarctic plateau and is trapped in snow and ice cores remains still unclear. In particular, the respective role of emissions from the open ocean versus those from the sea-ice surface is not yet quantified. To progress on this question, the composition of bulk and size-segregated aerosol was studied in 2006 at the Concordia station (75°S, 123°E) located on the high Antarctic plateau. A depletion of sulfate relative to sodium with respect to the seawater composition is observed on sea-salt aerosol reaching Concordia from April to September. That suggests that in winter, when the sea-salt atmospheric load reaches a maximum, emissions from the sea-ice surface significantly contribute to the sea-salt budget of inland Antarctica.

1. Introduction

[2] At the global scale, the presence of sea-salt aerosol in the marine atmosphere is mainly related to bubble bursting and wave crest disruptions. Recently, it was shown that in coastal Antarctic regions the primary source of sea-salt is not the open ocean but the sea-ice surface [Wagenbach et al., 1998; Rankin et al., 2002]. This finding rises the key question of the source of atmospheric sea-salt aerosol reaching the high Antarctic plateau (open ocean or sea ice) since numerous sea-salt records have been obtained from deep ice cores extracted there. These ice records have shown larger concentrations of sea-salt particles during past cold climates than at present. These changes were first attributed to enhanced storminess over open ocean and transport inland during cold climate in spite of the greater distance of the open ocean from Antarctica [Legrand et al., 1988; Petit et al., 1999]. Such an explanation was also invoked to explain the present-day well-marked maximum of sea-salt content of snow and aerosol observed in winter at inland Antarctic sites [Legrand and Delmas, 1984; Bodhaine et al., 1986]. However, model simulations of the sea-salt produced from the open ocean failed down to reproduce the larger sea-salt concentrations over inland Antarctica during cold climates [Reader and McFarlane, 2003]. More recently, it was proposed that the sea-ice surface, not the open ocean, which had been extended during cold climate, was the main source of sea-salt over Antarctica at that time [Wolff et al., 2003]. This assumption is now persistently used to discuss deep ice core records by using sodium as a proxy of sea-ice extent [Wolff et al., 2006; Fischer et al., 2007].

[3] The chemical composition of sea-salt aerosol varies, specially the sulfate to sodium ratio, depending on the involved emission process. The sulfate to sodium mass ratio of sea-salt aerosol emitted by the open ocean is similar to that in seawater (0.25). Newly formed sea-ice is covered by highly saline brine and frequently by fragile salty frost flowers. Below −8°C mirabilite (Na₂SO₄ ⋅ 10 H₂O) starts to precipitate leading to a depletion of sulfate relative to sodium in sea-salt aerosol emitted from sea-ice compared to sea-salt aerosol emitted from the open ocean. At coastal Antarctic sites in winter, where the sea-ice surface is the dominant source of sea-salt aerosol, Wagenbach et al. [1998] estimated that the sulfate to sodium mass ratio in sea-salt aerosol is close to 0.07 at Neumayer (70°S, 85°W) and 0.10 at Dumont d’Urville (66°S, 140°E) based on examination of bulk aerosol samples. This estimation was done by examining the relationship between the non sea-salt sulfate (nssSO₄²⁻) content calculated by using the seawater ratio of sulfate to sodium ([nssSO₄²⁻] = [SO₄²⁻] − 0.25 [Na⁺]) and sodium. A more straightforward approach to quantify the sulfate depletion of sea-salt aerosol is to examine the size-segregated composition of particles collected on an impactor. A size-segregated aerosol composition study performed at Dumont d’Urville (coastal Antarctica) has shown that sea-salt aerosol present in supermicron modes is depleted in sulfate relative to sodium (sulfate to sodium ratio of 0.13) from May to October [Jourdain and Legrand, 2002].

[4] Such a source dependant chemical composition of sea-salt aerosol can be used to apportion the two sources of sea-salt aerosol. This was done at South Pole by Harder et
al. [2000] who found that in one bulk aerosol sample collected in September and having a high sodium content the estimated sulfate to sodium ratio was close to 0.12. Examination of bulk aerosol filters collected at the high Antarctic plateau station of Dome Fuji (77°S, 40°E) suggested a larger sea-salt fractionation (sulfate to sodium ratio of 0.07, Hara et al. [2004]). Finally the bulk aerosol study carried out at Kohnen station (75°S, 0°E) by Weller and Wagenbach [2007] did not allow to decide to what extent sea-salt aerosol at central Antarctica has been fractionated. From these studies based on examination of bulk aerosol composition, it can be concluded that the present-day source apportionment of sea-salt over inland Antarctica remains unclear.

Composition of bulk and size-segregated aerosol was studied over the course of winter 2006 at the Concordia station. In contrast to the situation at coastal sites where primary sea-salt and biogenic sulfate are present in very different size modes (mainly from 1 to 10 μm for sea-salt, 0.3 μm for biogenic sulfate, Jourdain and Legrand [2002]), it is expected that inland Antarctic the two sulfate fractions lie in more similar size modes. We therefore deployed a 12 stage impactor for which the segregation between the size modes at 0.3 and 1 μm would be still accurate enough.

2. Methods

Year-round aerosol samplings were conducted in 2006 at the Concordia Station (central Antarctica, 75°06’S, 123°20’E, 3220 m above sea level) located 1100 km away from the nearest coast. Bulk aerosol samples were collected on Gelman Zefluor (47 mm diameter, 0.5 μm pore size) filters by sucking air at a flow rate of 1.3 m³ STP (25°C, 1013 hPa) h⁻¹. Filder holders were positioned outside at 2.5 m above the snow surface. They were prepared prior sampling under laminar flow hood and sent to the sampling site in polyethylene bags. After sampling, filters were stored frozen in 20 mL polycarbonate vials sealed in polyethylene bags until extraction with ultrapure water/methanol solution and analysis in Grenoble. 40 samples were collected in 2006 between 17 January and 27 December on a weekly basis (mean sampled air volume of 215 m³ STP). 19 blank filters were performed along this period. Mean blank values in the extracted samples and corresponding atmospheric detection limits (taken as three times the blank standard deviation) are summarized in Table 1. Blank values become significant for sodium only and a blank correction was applied for this species.

A study of the size-segregated aerosol composition was carried out on 9 samples collected at Concordia between March and September 2006 by using a small deposit area impactor equipped with a 20 μm cut-off inlet and positioned outside. The used sampling protocol is similar to that described by Maenhaut et al. [1996]. Polycarbonate films were used as particle impaction substrates (poreless film from Nuclepore Inc., thickness 10 μm). They were coated with Apiezon L-vacuum grease (dissolved in toluene) to reduce the bounce-off of particles. The sampling interval was 2 weeks. The cut-off sizes of the impactor for Concordia were obtained by moving the cut-off sizes for 1013 hPa and 23°C [Maenhaut et al., 1996] to Concordia mean conditions (640 hPa, −60°C) using Stokes law [Hinds, 1998] (Table 2). Loaded polycarbonate plates were kept frozen and extracted in Grenoble in 6 mL of ultrapure water. Blank values are reported in Table 1.

3. Seasonal Cycle of Sea-Salt at Concordia

The seasonal change of Na⁺ concentrations observed in 2006 at Concordia is reported in Figure 1 for the continuous bulk filter samplings. As discussed by Legrand and Delmas [1988] and Röthlisberger et al. [2002], Na⁺ present in aerosol over the high Antarctic plateau is, for

<table>
<thead>
<tr>
<th>Stage No.</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dp (μm)</td>
<td>1013 hPa, 23°C</td>
<td>8.55</td>
<td>4.46</td>
<td>2.69</td>
<td>1.68</td>
<td>1.07</td>
<td>0.81</td>
<td>0.58</td>
<td>0.36</td>
<td>0.22</td>
<td>0.14</td>
<td>0.085</td>
</tr>
<tr>
<td>Dp (μm)</td>
<td>640 hPa, −60°C</td>
<td>7.45</td>
<td>3.50</td>
<td>2.29</td>
<td>1.40</td>
<td>0.87</td>
<td>0.64</td>
<td>0.46</td>
<td>0.26</td>
<td>0.15</td>
<td>0.089</td>
<td>0.047</td>
</tr>
</tbody>
</table>

The flow rate at Concordia converted to 1013 hPa and 25°C is 0.58 m³ STP h⁻¹.
present climatic conditions, mainly related to sea-salt aerosol, while the contribution of leachable sodium relative to continental dust aerosol remains insignificant (≈2%). Very low levels of Na⁺ are observed in summer, 2.4 ± 2.3 ng m⁻³ from January to March. At that season sea-salt accounts only for less than 10% of the total mass of inorganic aerosol which is dominated by sulfate (not shown). The Na⁺ concentrations increase in winter (9.1 ± 9.1 ng m⁻³ between July and November) reaching a maximum (35 ng m⁻³) in September. Because of the concomitant decrease of sulfate (not shown), sea-salt represents the dominant (≈80%) of the total inorganic aerosol load in winter. As seen in Figure 1, the Na⁺ peak in September coincides with a large decrease of the atmospheric pressure at Concordia, likely related to a large low pressure system advecting air from the ocean surrounding Antarctica. Although less continuous, impactor samplings reveal a similar temporal change with higher levels after May than before and a maximum in September.

The seasonal change of sea-salt observed at Concordia, characterized by a winter maximum is consistent with previous studies conducted at inland Antarctic sites (Table 3). The winter sea-salt level in the Concordia atmosphere in 2006 is however lower than at other inland sites (40 ng m⁻³ at Kohnen in 2003–2005 [Weller and Wagenbach, 2007], 60 ng m⁻³ in 1997 at Dome Fuji [Hara et al., 1998]). Measurements made at Concordia in 2005 (not shown) indicate a mean winter value of 15 ng m⁻³. No definitive conclusion can be drawn from these intersite differences since the different studies do not cover the same years and Tuncel et al. [1989] has shown that the mean winter level of sodium at the South Pole can vary from year to year by up to a factor of three (from 20 to 60 ng m⁻³). If confirmed by multiple year round studies, the relative low sea-salt winter level at Concordia would suggest less frequent advections of marine air at Concordia which faces the Indian Ocean than at the two other sites which face the Atlantic Ocean. An alternative possibility for the low Na⁺ winter concentrations at Concordia could also be the winter sea-ice cover in the Atlantic Ocean sector which is larger than the one in the Indian sector.

4. Amplitude of the Depletion of Sulfate Relative to Sodium in Sea-Salt Particles Collected on the Impactor

[11] The size-segregated composition of aerosol sampled at Concordia is reported in Figure 2 for March and September. The mass size distribution of sea-salt depicted by sodium is dominated by a mode between 0.6 and 3 μm. The size of sea-salt aerosol at Concordia is therefore smaller than that at coastal Antarctic sites (a mode peaking between 6 and 8 μm, Jourdain and Legrand [2001], Hillamo et al. [1998]). This change of the sea-salt size distribution between coastal and inland Antarctica is expected in relation with the lost of coarse sea-salt particles during transport from the coast towards inland Antarctica. Similarly to what is observed at coastal Antarctic sites [Jourdain and Legrand, 2001; Teinilä et al., 2000], MSA is mainly present in submicrometer particles (from 0.09 to 0.5 μm, Figure 2). As seen in Figure 2, the mass size distribution of sulfate exhibits either a preponderant submicrometer mode similar to the MSA one (March 2006) or a double mode at 0.3–0.4 μm and 0.9–1.5 μm (September 2006). Therefore the separation of the two sulfate modes (biogenic and sea-salt) appears to be less straightforward at Concordia than at coastal sites in relation with the presence of fine sea-salt aerosol there.

[12] The chemical composition of particles deposited on the top stages of the impactor, where sea-salt dominates, indicates, except in March, SO₄²⁻ /Na⁺ values (denoted R)
below the seawater value of 0.25. The case of September corresponds to the time period over which the highest level of sea-salt was recorded in 2006 (Figure 1). The absence of evidence of a sea-salt fractionation in March is not really surprising since in March, the sea-ice extent is very limited and indeed no fractionation has been observed in March at the coastal station of Dumont d’Urville, 1200 km from Dome C [Jourdain and Legrand, 2002]. Note that SO\(_4^{2-}\)/Na\(^+\) ratios higher than 0.25 seen in the sea-salt mode in March (Figure 2, left) can be explained by the heterogeneous conversion of SO\(_2\) on sea-salt aerosol as discussed by Jourdain and Legrand (2002). Uncertainties of the SO\(_4^{2-}\)/Na\(^+\) ratio are mainly related to the blank variability for low load samples and to the accuracy of ion chromatography (typically 5%) for high load samples and has been calculated as following:

\[
(\Delta R/R)^2 = (\Delta [SO_4^{2-}]/[SO_4^{2-}])^2 + (\Delta [Na^+]/[Na^+])^2 \tag{1}
\]

[13] Whereas sea-salt exhibits a significant depletion of sulfate relative to seawater (R = 0.16 ± 0.01) in late winter, a weaker fractionation or an absence of fractionation is suggested for midwinter conditions (R = 0.20 ± 0.02 in late July, R = 0.24 ± 0.05 in early July).

[14] In the preceding approach, the small contribution of biogenic sulfate present on the larger fraction of aerosol (Dp > 0.46 \(\mu m\)) has been neglected. If significant enough the presence of this biogenic sulfate fraction on particles larger than 0.46 \(\mu m\) would have led to an overestimation of the preceding R values. Impactor data permit to characterize the biogenic fraction by checking MSA and sulfate on particles of less than 0.46 \(\mu m\), where the abundance of sea-salt is weak. For each impactor run the linear relationship between MSA and sulfate present on the 5 lower stages of the impactor are considered ([MSA] = 0.28 [SO\(_4^{2-}\]) – 0.014 with \(r^2 = 0.99\)) is obtained when only the larger particles (Dp > 0.46 \(\mu m\)) is considered. However, the MSA/SSO\(_4^{2-}\) ratio is constant over the entire size distribution. This assumption seems reasonable. For instance on the impactor run in March 2006, for which the sea-salt contribution is very low (5 ng m\(^{-3}\) of Na\(^+\)) and accounts for 5% of total sulfate, a very good linear relationship [MSA] = 0.31 [SO\(_4^{2-}\)] – 0.014 with \(r^2 = 0.99\) is obtained when the 12 stages of the impactor are considered. A very similar relationship is obtained when only the larger particles (Dp > 0.46 \(\mu m\)) are considered ([MSA] = 0.28 [SO\(_4^{2-}\)] – 0.005 with \(r^2 = 0.98\)). Later in winter, the sea-salt load becomes more important and we restricted our examination of the relationship between MSA and sulfate to particles below
From mid-May to late August, a good relationship can be observed ([MSA] = 0.06 [SO\(_4^{2-}\)/C\(_0\) with r\(^2\) = 0.87) for a set of 21 data from 5 impactors. In September, the MSA to SO\(_4^{2-}\)/C\(_0\) ratio ([MSA] = 0.14 [SO\(_4^{2-}\)/C\(_0\)]) with r\(^2\) = 0.99) for the 5 lower stages of the impactor (Figure 2, right) increases compared to the preceding months, likely due to inceptive biogenic emissions in the Austra Ocean. The potential impact of remaining sea salt on the 0.26–0.46 \(\mu\)m stage is found to be weak since a similar relationship is observed ([MSA] = 0.14 [SO\(_4^{2-}\)/C\(_0\)]) with r\(^2\) = 0.99) on the 4 lower stages. The preceding correlations between MSA and sulfate indicate a change of the slope of the correlation over the season. Such a temporal change has been also observed at coastal sites [Legrand and Pasteur, 1998; Jourdain and Legrand, 2002] but a discussion on its atmospheric meaning is out of the scope of this paper.

On the basis of the preceding discussions, the SO\(_4^{2-}\)/Na\(^+\) ratio attributed to sea salt (R\(_0\)) was estimated as following:

\[
R_0 = \left(\frac{[SO_4^{2-}] - [MSA]}{[\text{MSA}/SO_4^{2-} \text{ [Dp < 0.46 \(\mu\)m]}]} \right) / [\text{Na}^+] \quad (2)
\]

The \(R_0\) values (and corresponding estimated uncertainties) are reported for the impactor run in September (Figure 3). The obtained \(R_0\) values are almost twice lower than the initially obtained R value. For the total aerosol mass above 0.46 \(\mu\)m, the new calculated ratio is 0.073 ± 0.024 instead of 0.157 ± 0.013 without taking into account the biogenic contribution (see above). The same calculation applied to some other winter impactor runs gives 0.12 ± 0.084 (instead of 0.243 ± 0.049) in early July and 0.095 ± 0.057 (instead of 0.199 ± 0.022) in late July. In other runs, calculated uncertainties are too large to highlight the discussion. Even underlying an certain uncertainty this calculations show that the initial obtained R values represent an upper limit and may thus underestimate the sea salt fractionation by up to a factor of two.

5. Comparison With Previous Estimates of the Sulfate Depletion Relative to Sodium in Sea-Salt Particles Collected at Other Inland Sites

At coastal sites, the fractionation of atmospheric sea-salt aerosol can be derived by examining the chemistry of bulk aerosol filters. Following Wagenbach et al. [1998], this was done by examining the linear relationship between nonsea-salt sulfate content calculated using the seawater sulfate to sodium ratio ([nssSO\(_4^{2-}\)] = [SO\(_4^{2-}\)] – 0.25 [Na\(^+\)]) and the sodium content. Adding the obtained negative value of the slope of this correlation to the seawater mass ratio of 0.25 gives an estimate of the sulfate to sodium ratio in sea-salt particles. This approach done by Jourdain and Legrand...
Figure 3. Mass size distribution of Na$^+$, SO$_4^{2-}$, and MSA of the aerosol sampled at Concordia 9 to 23 September. Also plotted is the SO$_4^{2-}$/Na$^+$ ratio calculated for the larger particles. For SO$_4^{2-}$ levels and the SO$_4^{2-}$/Na$^+$ ratio, the grey curves refer respectively to the biogenic fraction of sulfate estimated from MSA (see section 4), and to the ratio R' (see text) corrected from this biogenic fraction.
[2002] at the coastal site of Dumont d’Urville showed a similar value than that derives from impactor data. This consistency between the two approaches is due to the fact that at coastal site in winter, even if present, biogenic sulfate is far less abundant than the sulfate present on sea-salt particles.

The lower sea-salt load observed at inland sites compared to coastal sites render the evaluation of the degree of the sulfate depletion relative to sodium by direct examination of the bulk aerosol filter composition less accurate. Conclusions of previous studies conducted at inland sites appear to be strongly site dependant (see Table 3). For instance, at Dome Fuji, Hara et al. [2004] estimated the sulfate to sodium ratio of sea-salt aerosol at 0.07. However, this value is mainly driven by two samples containing very high levels of sodium ($\gtrsim 800$ ng m$^{-3}$). Discarding these two extreme values, the slope of the correlation between sulfate (calculated using the seawater sulfate to sodium ratio) and sodium is close to -0.11 leading to a sulfate to sodium ratio in sea-salt of 0.14.

On the contrary, Weller and Wagenbach [2007] were unable to conclude on the degree of sea-salt fractionation at Kohnen since there are too low sea-salt and too high biogenic contents. In order to minimize the effect of biogenic sulfate Harder et al. [2000] compare a sample containing a high sodium level (80 ng m$^{-3}$) at the South Pole with the two samples bracketing it in time and found a sulfate to sodium ratio in sea-salt of 0.14. Examination of bulk aerosol filters collected at Concordia reveals no negative values of the nss-SO$_4^{2-}$ calculated using the seawater sulfate to sodium ratio of 0.25. For most of winter samples, this is due to a too low sea-salt content, and in September due to the recovery of biogenic sulfate.

6. Degree of Fractionation of Sea-Salt Over the Course of Winter at Concordia

The examination of the size-segregated aerosol composition discussed in section 4 suggests that sea-salt particles reaching Concordia were only during September strongly fractionated. Over July the sulfate depletion relative to sodium appears to be weaker on the average. In order to examine to what extend these data are consistent with the origin of sea-salt, 5-d backward trajectories were performed using Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) Model (R. R. Draxler and G. D. Rolph, NOAA Air Resources Laboratory, Silver Spring, Maryland, 2003, available at http://www.arl.noaa.gov/ready/hysplit4.html) twice a day (at 0 and 12 UTC) for two periods: 15 to 30 July and 9 to 23 September corresponding respectively to the late July and September impactor runs. Three atmospheric levels were considered above Concordia as starting point to compute the back trajectories: 3250, 3500, and 4000 m above sea level (respectively 20, 270, and 770 m above Concordia ground). An isentropic vertical motion calculation method was applied to GDAS meteorological data.

In July most of the backward trajectories show air masses having travelled above continental Antarctica within 5 d. Only 3 d at the end of the sampling period indicate advections from marine areas. Some of the air masses spent up to 2 d above margin Antarctic Ocean but at 1000 to 3000
m above sea level. Other trajectories, on 27 July, indicate that air masses came from the boundary layer of lower latitudes from open ocean areas (Figure 4, left).

[22] In September, the situation is more contrasted: while at beginning and end of the sampling period, air masses spent 5 d above continental areas before arriving at Concordia, between 12 and 17 September, most air masses came from coastal regions. 5-d backward trajectories indicate a travel above the oceanic regions from a few hours to several days at a height between sea level and 1000 m, predominantly near the coast on the sea-ice covered zone (Figure 4, right).

[23] The lower sodium level seen in July than in September is consistent with the persistence of marine air advected to the Concordia site in September. In addition, the strong depletion of sulfate relative to sodium observed in September agrees very well with the relative long time spent by the air just above the sea-ice cover. In July, although the sea-ice cover was similar to that in September, the contact of air masses nearby the marine boundary layer occurred both over open Ocean and to a lesser extend over the sea-ice cover. In addition, since the sea-salt fractionation process should occur on freshly formed sea-ice, we have examined the open water fraction present in the sea-ice cover available at http://www-radar.jpl.nasa.gov/rgps/grid-930408.html (not shown). From September 7th to 8th open water was present and rapidly refroze 10 and 11 September at the time that the air mass arriving at Concordia was in contact with the ice in this sector (from 90° to 120°E). A refreeze of open water also occurred further west (80°E) between 4 September and 6 September. Such rapid changes of the sea-ice were likely induced by a suite of several severe storms that reached Dumont D’Urville between 8 and 23 September (a mean wind speed of 20 m s\(^{-1}\)) from 13 to 27 September. It therefore appears that the degree of the fractionation of sea-salt in winter strongly depends on the pathway taken by the marine air masses reaching Concordia and of the state of the sea-ice.

7. Summary

[24] Composition of bulk and size-segregated aerosol was studied over the course of winter 2006 at the Concordia station located at inland Antarctica. It is shown that the direct examination of bulk aerosol does not permit to evaluate the sulfate depletion relative to sodium in sea-salt aerosol at this site. Direct examination of the chemistry of large particles collected on a 12 stage impactor reveals a significant sulfate depletion relative to sodium during winter (by more than a factor of two compared to seawater) suggesting that sea-salt emissions from the sea-ice surface contribute significantly to the atmospheric sea salt load at Concordia in winter. These data represent a lower limit of the sea-salt fractionation. An attempt was made to obtain a more accurate estimation of the relative contribution of sea-salt emissions from sea-ice versus open ocean on the high Antarctic plateau, taking into account the biogenic fraction of SO\(_4^{2-}\). Even underlying a not negligible uncertainty due to a significant overlap of the biogenic and the sea salt sulfate mode, originating from the relative fine size of sea-salt aerosol reaching inland Antarctica, this calculation reveals that the sea-salt fractionation estimated without taking into account the biogenic SO\(_4^{2-}\) is underestimated by up to a factor of 2. Using MSA to separate the part of sea-salt and biogenic sulfate, impactor data suggest a strong impact of sea-ice emissions in September and a weaker fractionation during the rest of the winter season. Backward air trajectories suggest that air masses reaching Concordia had a variable contact time with the marine boundary layer and with the sea-ice cover. Furthermore, the appearance of open water in sea-ice followed by a rapid refreeze is likely a key factor in winter. Therefore further multiple-year round size segregated aerosol studies are needed before providing a statistically reliable estimate of the respective contribution of emissions from the open ocean and sea-ice surface. This further work is absolutely mandatory to start a detailed discussion of the time integrated sea salt signal of ice cores.

[25] Acknowledgments. National financial support and field logistic supplies for winter and summer campaigns at Concordia were provided by Institut Paul Emile Victor (IPEV) within the French program 903 and Italian PNRA. This work was also partly funded by the Centre National de la Recherche Scientifique (CNRS-INSU) within the program LEFE-CHAT. We would like to thank the anonymous reviewer of the manuscript for the helpful comments. The authors gratefully acknowledge the Air Resources Laboratory (ARL) for the provision of the HYSSPLIT transport and dispersion model on READY website (http://www.arl.noaa.gov/ready.html) used in this publication and the Automatic Weather Station Project run by Charles R. Stearns at the University of Wisconsin-Madison which is funded by the National Science Foundation of the United States of America for meteorological parameters.

References

Jourdain, B., and M. Legrand (2002), Year-round records of bulk and size-segregated aerosol composition and HCl and HNO\(_3\) levels in the Dumont d’Urville (coastal Antarctica) atmosphere: Implications for sea-salt aero-

H. Castebrunet, B. Jourdain, M. Legrand, and S. Preunkert, Laboratoire de Glaciologie et Géophysique de l’Environnement, Centre National de la Recherche Scientifique, 54 Rue Molieres, BP 96 St. Martin d’Hères, 38402, France. (legrand@lgge.obs.ujf-grenoble.fr)

O. Cerri and R. Udisti, Department of Chemistry, University of Florence, Via della Lastruccia 3, I-50019 Florence, Italy.