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In Bayesian statistics, if the distribution of the data is unknown, then each plausible distribution of the data is indexed by a parameter value, and the prior distribution of the parameter is specified. To the extent that more complicated data distributions tend to require more coincidences for their construction than simpler data distributions, default prior distributions should be transformed to assign additional prior probability or probability density to the parameter values that refer to simpler data distributions.

The proposed transformation of the prior distribution relies on the entropy of each data distribution as the relevant measure of complexity. The transformation is derived from a few first principles and extended to stochastic processes.

Introduction

The typical Bayesian data analysis involves specifying one or more default prior distributions, often called "objective priors" [START_REF] Ghosh | An Introduction to Bayesian Analysis: Theory and Methods[END_REF][START_REF] Press | Subjective and Objective Bayesian Statistics: Principles, Models, and Applications[END_REF]. They are objective in the sense that they are automatically determined by the application of some algorithm as opposed to representing the beliefs of one or more people. The simplest case is the uniform prior distribution on a finite set of parameter values. In hypothesis testing, the assignment of equal prior probability to the null hypothesis and the alternative hypothesis is the most common default. In Bayesian model selection and Bayesian model averaging, the most common default is to assign each model equal prior probability. When the parameter value is continuous, more sophisticated procedures replace the assignment of equal probabilities [START_REF] Kass | The selection of prior distributions by formal rules[END_REF].

The following toy models explain why default prior distributions may need to be modified to reflect the simplicity or complexity of each data distribution specified by a parameter value.

Example 1. The observable outcomes from a black box are independent and identically distributed (IID) integers between 1 and 20. Before observations are made, it is known that n outcomes x = (x 1 , x 2 , . . . , x n ) will be generated by rolls of a fair die with a number on each face from 1 up to the number of sides of the die. The die is shaped like one of the five Platonic solids, which implies that the die has 4, 6, 8, 12, or 20 sides. The die was constructed inside the box by an unknown mechanism that constructs shapes at random until it happens upon one that closely resembles a Platonic solid. To make Bayesian inferences about θ, the number of sides of the die, we need the posterior probability that it has θ sides:

P (θ|x) ∝ P (θ) n x=1 f θ (x i ) , (1) 
where P (θ) is the prior probability that it has θ sides, and f θ (x i ) is the probability that x i would be observed if it has θ sides. From the given information, each data distribution f θ is a uniform distribution on {1, . . . , θ}, so that f θ (i) = 1/θ for i = 1, . . . , θ but f θ (i) = 0 for i = θ + 1, . . . , 20. While it might be tempting to assign the uniform prior distribution such that P (θ) = 1/5 for θ = 4, 6, 8, 12, 20, that would not account for how many more coincidences it would take for the mechanism to generate a die with a higher number of sides than a lower number of sides (cf. [START_REF] White | Why favour simplicity?[END_REF]. Incorporating that information means assigning more probability to simpler dice and less probability to more complex dice: P (4) > P (6) > P (8) > P (12) > P (20) .

Which prior distribution satisfying that constraint should be used?

A less Platonic example emphasizes the need to consider the simplicity of data distributions when assigning a prior.

Example 2. Inside a black box, an unknown mechanism randomly constructed one or more balls of different colors and placed them in an urn. The number of balls in the urn is the number that could be constructed within a short time window. If none were constructed within that time period, the process started over and continued until at least one ball was placed into the urn. The mechanism had access to a million colors. From the urn, n balls will be drawn independently, with equal probability, and with replacement. The observer wants to make inferences about φ, the set of the colors of the |φ| balls in the urn. That set differs from the configuration θ, the |φ|-tuple of the colors of the balls in the order in which they were placed into the urn, in that φ is an unordered set and θ is an ordered set or vector of the same number of colors. Since θ is a permutation of the members of φ, the posterior probability that the set of colors of the balls in the urn is φ is the sum of each posterior probability that the configuration is θ over all permutations of the members of φ. The latter posterior probability is given by equation (1) with P (θ) as the configuration is θ and with f θ (x i ) as the probability that the ith ball drawn from the urn will be of color x i , conditional on θ as the configuration. It may have been reasonable to assign a uniform prior distribution over Θ, the configuration space, were it not for the information about how the urns were populated, information indicating the higher number of coincidences needed to populate an urn with more balls as opposed to fewer. That information, without being enough to determine the prior distribution, requires configurations with fewer balls to have higher prior probabilities than those with more balls:

P (θ 1 ) > P (θ 2 ) for all θ 1 , θ 2 ∈ Θ such that |θ 1 | < |θ 2 |,
where |θ| is the dimension of θ. Subject to that constraint, what should the prior be?

Occam's razor is the principle that simpler explanations are more credible than more complex explanations in the absence of evidence favoring more complex explanations. In a Bayesian framework with the number of free parameters in a model as the measure of complexity, that greater credibility may show up as a higher posterior probability (cf. [START_REF] Rosenkrantz | Simplicity[END_REF] or, via the simplicity postulate (Jeffreys, 1948, pp. 100-101, 113, 222), as a higher prior probability [START_REF] Jefferys | Ockham's Razor and Bayesian Analysis[END_REF]. Multiple methodology researchers reached similar conclusions for other forms of complexity. Among others, [START_REF] Poston | Reason and Explanation: A Defense of Explanatory Coherentism[END_REF] argues that complexity should constrain the prior distribution, with simpler explanations being at least as probable as more complex explanations. Explanations requiring more coincidences, while not impossible, tend to be less probable than those requiring fewer coincidences [START_REF] Myrvold | On the evidential import of unification[END_REF][START_REF] Blanchard | Bayesianism and explanatory unification: A compatibilist account[END_REF].

A entropy has a number of complexity-suitable properties that uniquely characterize it (e.g., [START_REF] Rényi | On the foundations of information theory[END_REF].

Accordingly, the conditions of Section 2 result in the constraint that parameter values corresponding to data distributions with lower Shannon entropy have higher prior probabilities than those of higher Shannon entropy. Although those conditions are not universally applicable, they provide the foundation for the more general methods of later sections.

Merely arranging parameter values in order of prior probability is not enough for Bayesian data analysis, as an ordering in itself does not determine a prior distribution. Starting with the ordering, Section 3 derives a method for transforming a preliminary prior distribution such as the uniform distributions of Examples 1 and 2 into a prior distribution informed by Occam's razor. The derivation is based on desirable properties of such a transformation.

That prior distribution, however, is only determined up to a parameter that controls the extent to which it differs from the preliminary prior. In applications requiring flexibility, the ability to set the parameter on a case-by-case basis may be desirable. In other applications, a default value would be desirable for economy or neutrality. Section 4 derives such a value from an idealized model of constructing a data distribution, with more complex distributions being less probable because they require more coincidences to construct.

To relate the methods of those sections to the sample size, Section 5 extends the results to stochastic processes such as the IID processes of Examples 1 and 2. Practical applications to improper prior distributions, hypothesis testing, and frequentist inference involving continuous parameters and continuous data are summarized in Section 6, which closes with a discussion of which priors require simplicity adjustments.

2 Priors constrained by the simplicity of data distributions

The preliminary concepts of this section provide a foundation for generating prior distributions that satisfy a generalization of the simplicity conditions suggested by Examples 1 and 2. The subsequent sections build on this foundation.

The entropy of a probability mass function (PMF) g on finite set X of possible observations is

S (g) = - x∈X g (x) ln g (x) , (2) 
understood such that 0 ln 0 = 0. All data distributions are on the same sample space X . That means the data distributions of Example 1, while uniform if restricted, are not uniform on X = {1, . . . , 20}, with the exception of f 20 , the distribution of outcomes of the 20-sided die. To streamline development involving distributions of this type, we need a term for them.

Definition 1. A PMF g on X is called partially uniform if it meets these conditions:

1. It is uniform on X (g), a non-empty subset of X . That is, there is a g max > 0 such that g (x) = g max for all x ∈ X (g).

2. There is no more than one y ∈ X such that 0 < g (y) < g max .

3. It otherwise has a value of 0. That is, g (x) = 0 for all x = y in X but not in X (g) if y exists; otherwise,

g (x) = 0 for all x ∈ X \X (g).
For a continuous functional I defined as follows, the intricacy of a partially uniform g is I (g). If y does not exist, then I (g) = |X (g)|, the cardinality of g's support. If y exists, then I (g) = I |X (g)| (g (y)), where

I |X (g)| is a strictly monotonic increasing, continuous function on ]0, 1[ such that lim q→0 I |X (g)| (q) = |X (g)| and lim q→1 I |X (g)| (q) = |X (g)| + 1. For example, if X = {1, 2, 3, 4, 5, 6} and 
g (x) =                2/5 if x = 1, 2 1/5 if x = 3 0 if x = 4, 5, 6
, then g is partially uniform and is of intricacy

I (g) = I |{1,2}| (1/5) = I 2 (1/5
), which is a non-integer between 2 and 3. Thus, the intricacy of a partially uniform PMF generalizes the cardinality of its support to a continuum of non-integer values.

A Bayesian model is a pair (θ → f θ , P ), where θ → f θ , abbreviated as f • , is a function on Θ such that, for every θ ∈ Θ, f θ is a (data) PMF on X and P is a (prior) PMF P on Θ. Let M (X , Θ) denote the set of all Bayesian models with X as the sample space and Θ as the parameter space.

What it means for a prior distribution to be constrained by the simplicity of the sampling distributions uses entropy as a generally applicable measure of complexity and intricacy as a measure of complexity that only applies to partially uniform distributions.

Definition 2. The set M S ⊂ M (X , Θ) of Bayesian models with simplicity-constrained PDFs if these conditions are satisfied:

1. There is a function p such that, for every (f • , P ) ∈ M S ,

P = p (S f• ) , (3) 
where S f• , the entropy spectrum of f • , is the function on Θ defined to satisfy S f• (θ) = S (f θ ) for all θ ∈ Θ. The function p is called the prior generator for M S .

2. For every Bayesian model (f

• , P ) ∈ M (X , Θ) such that f θ is partially uniform for every θ ∈ Θ, P (θ 1 ) ≥ P (θ 2 ) ⇐⇒ I (f θ1 ) ≤ I (f θ2 ) (4) for all θ 1 , θ 2 ∈ Θ and (f • , P ) ∈ M S .
While equation (3) says the prior distribution is a function of the entropy spectrum, equation ( 4) says parameter values labeling less intricate partially uniform distributions have higher prior probabilities. The rationale is that, in the absence of other information, uniform distributions on larger domains tend to require more coincidences and thus to be less probable than those on smaller domains, as seen in Examples 1 and 2.

The result is that simpler data PDFs tend to have higher prior probabilities.

Lemma 1. If M S ⊂ M (X , Θ
) is a set of Bayesian models with simplicity-constrained PDFs, then the prior generator for M S is constrained such that each (f

• , P ) ∈ M S satisfies P (θ 1 ) ≥ P (θ 2 ) ⇐⇒ S (f θ1 ) ≤ S (f θ2 ) (5) for all θ 1 , θ 2 ∈ Θ.
Proof. If a PMF g is partially uniform, then

S (g) =        -x∈X (g) 1 |X (g)| ln 1 |X (g)| if ∀x ∈ X g (x) ∈ 0, 1 |X (g)| -|X (g)| g max ln g max -g (y) ln g (y) if ∃y ∈ X 0 < g (y) < g max =        ln |X (g)| if ∀x ∈ X g (x) ∈ 0, 1 |X (g)| ln (g max ) |X (g)|g max 1 g(y) g(y) if ∃y ∈ X 0 < g (y) < g max . ( 6 
)
Consider a Bayesian model (f

• , P ) ∈ M S such that f θ is partially uniform and ∀x ∈ X f θ (x) ∈ {0, 1/ |X (f θ )|}
for every θ ∈ Θ. Since in that case I (f θ ) = |X (f θ )| for every θ ∈ Θ, equations ( 4) and ( 6) imply that equation ( 5) holds for all θ 1 , θ 2 ∈ Θ.

Now consider instead a Bayesian model (f

• , P ) ∈ M S such that f θ is partially uniform and ∀x ∈ X f θ (x) ∈ {0, 1/ |X (f θ )|} for every θ ∈ Θ except θ (y) for some y ∈ X such that 0 < f θ(y) (y) < f max θ(y)
, where f max θ(y) = max x∈X f θ(y) (x). Equations ( 4) and ( 6) would be satisfied if I (f θ ) = exp (S (f θ )) for every θ ∈ Θ. In fact, since such a Bayesian model is in M S by part 2 of Definition 2 for every real value of f θ(y) (y) strictly between 0 and 1, the functions I and S must be isomorphic on the domain of I by its monotonicity and continuity properties. Thus, equation (3) constrains the prior generator p such that its PMF assignments satisfy equation ( 5) holds for all θ 1 , θ 2 ∈ Θ.

Since every possible entropy spectrum S f• is achieved by some Bayesian model (f • , P ) such that f θ is partially uniform for every θ ∈ Θ, and since every such model is in M S (Definition 2, part 2), it follows that p is completely determined by I in such a way that equation ( 5) holds for all θ 1 , θ 2 ∈ Θ. That same p is the prior generator not only for those Bayesian models but for all Bayesian models in M S by part 1 of Definition 2. It follows that equation (5) holds just as generally.

3 Adjusting a prior for the simplicity of data distributions

The method of this section transforms a prior distribution that does not account for the simplicity of the data distributions into a prior that does. That prior satisfies the constraints of Section 2 in the special case that the pre-transformation prior is uniform.

Definition 3. Let • ♯ denote a function that transforms a PMF to another PMF on the same parameter space and that necessarily satisfies the following conditions for a prior generator p. That function is called a sharpener. Given any PMF P, its sharpened counterpart is P ♯ , that is, • ♯ evaluated at P . Conditions:

1. Simplicity constraint. The sharpened counterpart P ♯ of a uniform PMF P is a simplicity-constrained PDF generated by p. 3. Independence preservation. Consider the finite parameter sets Θ and Φ. Suppose that, for all θ ∈ Θ and φ ∈ Φ, X ∼ f θ and Y ∼ g φ are independent random variables of joint PMF h θ,φ with values in X and Y, where f θ and g φ are PMFs on X and Y, respectively. If P ♯ is the sharpened counterpart of a PMF (θ, φ) → P (θ, φ) = P 1 (θ) P 2 (φ) that is the joint PMF of independent parameters θ and φ that have prior PMFs P 1 and P 2 and their sharpened counterparts P ♯ 1 and P ♯ 2 , respectively, then

P ♯ (θ, φ) = P ♯ 1 (θ) P ♯ 2 (φ) for all θ ∈ Θ and φ ∈ Φ.
The simplicity constraint builds the definition on Section 2. The coherence condition means considering simplicity commutes with conditioning on the observed data so that it does not matter which happens first.

Independence preservation means that if two quantities have nothing to do with each other, then that should be reflected in their priors adjusted for simplicity.

Theorem 1. Let (f • , P ) denote a Bayesian model. If P ♯ is the sharpened counterpart of P on a parameter set Θ, then there is a κ > 0 such that

P ♯ (θ) = P (θ) e -κ S (f θ ) θ ′ ∈Θ P (θ ′ ) e -κ S (f θ ′ ) (7)
for all θ ∈ Θ.

Proof. Let f θ , g φ , h θ,φ , P 1 , P 2 , and P denote PMFs that satisfy the independence assumptions of Condition 3, and assume P 1 and P 2 are uniform. Since P , P 1 , and P 2 are uniform, the simplicity constraint (Condition 1) requires that P , P ♯ 1 , and P ♯ 2 are simplicity-constrained PDFs generated by the same prior generator p.

By equation ( 3), P ♯ 1 = p (S f• ), P ♯ 2 = p (S g• ), and P ♯ = p S h•,• . According to Lemma 5, they satisfy equation 5 for the same prior generator p. Thus, there is a strictly monotonic decreasing function q such that P ♯ 1 (θ) ∝ q (S (f θ )), P ♯ 2 (φ) ∝ q (S (g φ )), and P ♯ (θ, φ) ∝ q (S (h θ,φ )) for all θ ∈ Θ and φ ∈ Φ. According to the independence preservation condition, P ♯ (θ, φ) = P ♯ 1 (θ) P ♯ 2 (φ) for all θ ∈ Θ and φ ∈ Φ. Thus, there is a real number c such that ln q (S (h θ,φ )) = ln q (S (f θ )) + ln q (S (g φ )) + c, which, with the property that S (h θ,φ ) = S (f θ ) + S (g φ ) for independent random variables, implies that there are real numbers a and b such that ln q (•) = a × • + b, where a < 0 since q is strictly monotonic decreasing, and b may differ between f θ , g φ , and h θ,φ .

It follows that, even when the independence assumptions are not satisfied, ln P (θ|X = x) ♯ = a S (f θ ) up to a constant term for every uniform posterior PMF P (•|X = x) according to the simplicity constraint.

Letting κ = -|a|,

P (θ|X = x) ♯ ∝ e -κ S (f θ ) .
As a posterior distribution, P (θ|X = x) ∝ P (θ) f θ (x) for all θ ∈ Θ by Bayes's theorem. Since P (

•|X = x)
is uniform, P (θ) ∝ 1/f θ (x). Coherence (Condition 2) then gives

P ♯ (θ) f θ (x) ∝ P ♯ (θ|X = x) = P (θ|X = x) ♯ ∝ e -κ S (f θ ) ,
where the first proportionality results from another application of Bayes's theorem. Thus,

P ♯ (θ) ∝ e -κ S (f θ ) /f θ (x) ∝ P (θ) e -κ S (f θ ) ,
which ensures that the more generally applicable sharpener • ♯ has the form of equation ( 7).

The value of κ is called the sharpness of the sharpener, which may now be written as • ♯κ to distinguish it from other sharpeners. The application to real data may suggest a way to specify that value in some cases.

In other cases, a default value is needed.

4 How much should the prior be adjusted for simplicity by default?

The method of Section 3 cannot be applied without somehow specifying a value of κ, the degree to which priors are adjusted for the simplicity of the data distributions. This section argues for a default setting of κ = 1.

Definition 4. Let • ♯κ ⋆ denote a sharpener of sharpness κ ⋆ > 0 with the following constraint. For any

Bayesian model (f ⋆ • , P ⋆ ) such that f ⋆ θ is partially uniform, ∀x ∈ X f ⋆ θ (x) ∈ {0, 1/ |X (f ⋆ θ )
|} for every θ ∈ Θ, and there is an x ⋆ ∈ X such that x ⋆ ∈ X (f ⋆ θ ) for every θ ∈ Θ and such that the sharpened counterpart P ⋆♯κ ⋆ of P ⋆ is the conditional PMF given by

P ⋆♯κ ⋆ (θ) = Prob ϑ∼P ⋆ ,X∼f ϑ (ϑ = θ|X = x ⋆ ) (8)
for all θ ∈ Θ . Then, given any Bayesian model (f • , P), the sharpened counterpart P ♯κ ⋆ of P is ideal, whether or not P meets the conditions for P ⋆ .

Thus, the universal ideal κ ⋆ may be found by conditioning on successfully generating the correct realization, with the unsharpened PDF as the distribution of opportunities to attempt a correct realization. In

Example 1, that means successfully constructing a die of a certain number of sides, whereas in Example 2, it means successfully constructing an urn with the specified configuration of colors.

Theorem 2. For any Bayesian model (f • , P ) , the ideal sharpened counterpart P ♯κ ⋆ of P satisfies

P ♯κ ⋆ (θ) = P ♯1 (θ) = P (θ) e -S (f θ ) θ ′ ∈Θ P (θ ′ ) e -S (f θ ′ ) (9)
for all θ ∈ Θ .

Proof. By equation ( 8) and the conditions on f ⋆ • ,

P ⋆♯κ ⋆ (θ) ∝ Prob ϑ∼P ⋆ (ϑ = θ) Prob ϑ∼P ⋆ (X = x ⋆ |ϑ = θ) = P ⋆ (θ) f ⋆ θ (x) = P ⋆ (θ) / |X (f ⋆ θ )| = P ⋆ (θ) e -ln|X (f ⋆ θ )| = P ⋆ (θ) e -S (f ⋆ θ ) .
That only agrees with equation ( 7) if κ ⋆ = 1. Thus, P ♯κ ⋆ = P ♯1 for any Bayesian model (f • , P ), and the right-hand-side of equation ( 9) results from the relevant special case of equation ( 7).

Similar results may be derived from fewer assumptions using the concept of Rényi entropy (Appendix A).

An alternative derivation of equation ( 9) appears in [START_REF] Bickel | Computable priors sharpened into Occam's razors, working paper[END_REF]. Instead of conditioning on the event that a data distribution is constructed correctly, it conditions on the event that a randomly typed computer program yields output representing the data distribution.

5 Adjusting a prior for the simplicity of stochastic processes

In a typical Bayesian analysis, the data constitute a sample of n observations that are conditionally independent given each value of θ, the parameter. The data can be viewed in terms of making n observations of an IID stochastic process labeled by an unknown value of θ. More generally, the data consist of a time series of n observations of a stationary stochastic process labeled by an unknown value of θ. In either case, Bayesian coherence does not allow either the unsharpened prior distribution of θ or the sharpened prior distribution of θ to depend on n. Under that restriction, this section applies the sharpened prior distributions of Sections 3 and 4 to stochastic processes in order to facilitate Bayesian data analysis.

General stochastic processes

A discrete-time Bayesian model is a pair ((X •,1 , X •,2 , . . . ) , P ) such that P is a PMF on Θ and (X θ,1 , X θ,2 , . . . ) is a stationary discrete-time stochastic process on X for each θ ∈ Θ. To distinguish it from the Bayesian model (f • , P ) defined in Section 2, the latter is called a basic Bayesian model. As defined in information theory, the entropy rate of a stochastic process

(X 1 , X 2 , . . . ) is s ((X 1 , X 2 , . . . )) = lim t→∞ S (X t |X 1 , . . . , X t -1 ) = lim t→∞ E X1,...,Xt -1 S (g t (•|X 1 , . . . , X t -1 ))
,

where g t (•|X 1 , . . . , X t -1 ) is the conditional PMF of X t given (X 1 , . . . , X t -1 ), S (g t (•|X 1 , . . . , X t -1 )) is
its entropy as a function of the random (X 1 , . . . , X t -1 ), and E X1,...,Xt -1 gives the expectation value over

X 1 , . . . , X t -1 . Definition 5. Let ((X •,1 , X •,2 , . . . ) , P ) denote a discrete-time Bayesian model and (f • , P ) a basic Bayesian model such that s ((X θ,1 , X θ,2 , . . . )) = S (f θ ) for every θ ∈ Θ.
Let, with respect to (f • , P ), P ♯κ f• denote the sharpened counterpart of P for some κ > 0 and P ♯κ ⋆ f• denote the ideal sharpened counterpart of P . The same PMFs P ♯κ f• and P ♯κ ⋆ f• are also the κ-sharpened counterpart of P and the ideal sharpened counterpart of P with respect to ((X •,1 , X •,2 , . . . ) , P ).

With that definition, the expressions for the sharpened priors over stochastic processes follow from Theorems 1 and 2.

Corollary 1. Consider a discrete-time Bayesian model ((X •,1 , X •,2 , . . . ) , P ). Let P ♯κ (X•,1,X•,2,... ) denote the sharpened counterpart of P for some κ > 0 and P ♯κ ⋆ (X•,1,X•,2,... ) denote the ideal sharpened counterpart of P . Then

P ♯κ (X•,1,X•,2,... ) (θ) = P (θ) e -κ s((X θ,1 ,X θ,2 ,... )) θ ′ ∈Θ P (θ ′ ) e -κ s((X θ ′ ,1 ,X θ ′ ,2 ,... )) (10) 
with κ = 1 when P ♯κ (X•,1,X•,2,... ) = P ♯κ ⋆ (X•,1,X•,2,... ) .

Proof. Let (f • , P ) denote any basic Bayesian model such that s ((X θ,1 , X θ,2 , . . . )) = S (f θ ) for every θ ∈ Θ.

By Definition 5, P ♯κ (X•,1,X•,2,... ) = P ♯κ f• , allowing the substitution of s ((X θ,1 , X θ,2 , . . . )) for every occurrence of S (f θ ) in equations ( 7) and (9).

IID processes

In the usual case, X i ∼ g θ,1 , IID conditional on θ, for all i = 1, 2, . . . , where g θ,1 is a PMF on X for each θ ∈ Θ. Then s ((X θ,1 , X θ,2 , . . . )) = S (g θ,1 ), and equation ( 10) is identical to equation ( 9) with f θ = g θ,1 .

That is the case of the following examples from Section 1.

Example 3. Example 1, continued. Since g θ,1 (x i ) = 1/θ for i = 1, . . . , θ but g θ,1 (x i ) = 0 for i = θ+1, . . . , 20, the entropy is S (g θ,1 ) = ln θ, and s ((X θ,1 , X θ,2 , . . . )) = ln θ follows since the process is IID. Then the preliminary prior P (θ) = 1/5 for θ = 4, 6, 8, 12, 20 gives ,6,8,12,20 (1/5) (e ln θ ′ ) ,6,8,12,20 1/θ ′κ (11) according to equation ( 10). Thus, the ideal sharpened prior probability (κ = 1) of a die is inversely proportional to how many sides it has.

P ♯κ (X•,1,X•,2,... ) (θ) = (1/5) e ln θ -κ θ ′ =4
-κ = 1/θ κ θ ′ =4
Example 4. Example 2, continued. With the uniform distribution on the configuration space Θ as the preliminary prior, reasoning analogous to that of Example 3 yields the analog of equation ( 11),

P ♯κ (X•,1,X•,2,... ) (θ) = (1/ |Θ|) e ln|θ| -κ θ ′ ∈Θ (1/ |Θ|) e ln|θ ′ | -κ = 1/ |θ| κ θ ′ ∈Θ 1/ |θ ′ | κ ,
with θ as the configuration of colors. Substituting κ = 1 shows that the ideal sharpened prior probability of a configuration is inversely proportional to how many colors it has.

The prior distributions resulting in the κ = 1 case of both examples are reciprocal distributions, which are important in studies of Benford's law [START_REF] Hill | A statistical derivation of the significant-digit law[END_REF][START_REF] Pietronero | Explaining the uneven distribution of numbers in nature: the laws of benford and zipf[END_REF]Kossovsky, 2014, p. 238).

Discussion

Applications involving probability densities

For clarity, previous sections used discrete parameters and discrete data to determine how to adjust prior distributions of parameters to reflect the simplicity of each data distribution or stochastic process indexed by a parameter value. By taking appropriate limits [START_REF] Bickel | Computable priors sharpened into Occam's razors, working paper[END_REF], the results may be extended to more general parameter and sample spaces.

In the case of a continuous-valued parameter θ of prior density π (θ) and a continuous-valued stationary discrete-time stochastic process (X θ,1 , X θ,2 , . . . ) such that g θ,t (•|X θ,1 , . . . , X θ,t -1 ) is the conditional probability density function (PDF) of X θ,t given (X θ,1 , . . . , X θ,t -1 ), equation ( 10) becomes the κ-sharpened prior probability density

π ♯κ (X•,1,X•,2,... ) (θ) = π (θ) e -κ s((X θ,1 ,X θ,2 ,... )) π (θ ′ ) e -κ s((X θ ′ ,1 ,X θ ′ ,2 ,... )) dθ ′ , (12) 
where s ((X θ,1 , X θ,2 , . . .

)) = lim t→∞ E X1,...,Xt -1 (S (g θ,t (•|X θ,1 , . . . , X θ,t -1 )) |θ) with S (g θ,t (•|X θ,1 , . . . , X θ,t -1 )) = -g θ,t (x|X θ,1 , . . . , X θ,t -1 ) ln g θ,t (x|X θ,1 , . . . , X θ,t -1 ) dx.
(In this case, the PDFs are defined, as usual, with respect to the Lebesgue measure.)

For a sample of n IID observations from a PDF g θ,1 conditional on θ, the s ((X θ,1 , X θ,2 , . . . )) in equation ( 12) reduces to the differential entropy of g θ,1 . In other words, s ((X θ,1 , X θ,2 , . . . )) = S (g θ,1 ) = -g θ,1 (x) ln g θ,1 (x) dx.

That substitution and κ = 1 lead to the following representative applications to statistical data analysis.

For normal data distributions, simplicity adjustments applied to a right-invariant prior that is also a probability matching prior led to a shift in prior probability toward the normal distributions with lower variances [START_REF] Bickel | Computable priors sharpened into Occam's razors, working paper[END_REF](Bickel, , 2018a)). Simplicity adjustments of unspecified prior probabilities that a null hypothesis is true, when coupled with an argument of [START_REF] Benjamin | Redefine statistical significance[END_REF], leads to 0.001 or 0.01 rather than 0.005 or 0.05 as the default p-value threshold of statistical significance [START_REF] Bickel | Sharpen statistical significance: Evidence thresholds and Bayes factors sharpened into Occam's razors, working paper[END_REF]. Also in the absence of an unsharpened prior, maximum likelihood estimates and likelihood asymptotic methods may also be adjusted for simplicity (Bickel, 2018a).

6.2 Which priors should be adjusted for simplicity?

The idea of Examples 1-2 and Section 4 that priors are adjusted according to the coincidences involved in constructing the system studied has implications for whether and how to adjust priors for the simplicity of data distributions. First, simplicity may be warranted not only for default priors but also for other priors that do not account for the coincidences involved in the construction of the system studied. Another implication is that prior distributions that represent known physical variability do not require adjustments for simplicity (cf. [START_REF] Bickel | Sharpen statistical significance: Evidence thresholds and Bayes factors sharpened into Occam's razors, working paper[END_REF], for their probabilities are limiting relative frequencies that do not depend on the construction of systems.

A third implication is that each f θ used to adjust a prior for simplicity must reflect the variability intrinsic to the system studied as opposed to technical variability or measurement error. Otherwise, the sharpened prior, like some default priors, would depend on the details of the experiment or observational study, in violation of the likelihood principle. That charge of violating the likelihood principle is often made against default priors that depend on the sampling model (e.g., Ghosh et al., 2006, §5.2;Kadane, 2011, §12.8).

if α = 1 and is the Shannon entropy given by equation ( 2) if α = 1. Thus, if g is uniform, then

S α (g) = -ln |X | |X | 1 |X | α-1 1 α-1 = ln |X |
for all α = 1. With that property, substituting S α for S 1 throughout the paper would yield analogous results any other Rényi entropy.

In Section 4, the Shannon entropy was derived as a component of the ideal sharpened prior given assumptions including one about the coincidences involved in constructing a data distribution. A Rényi entropy and a limiting case of Rényi entropy can be derived from fewer assumptions, as follows.

S 2 (g), the quadratic entropy, also called the "collision entropy" [START_REF] Teixeira | Conditional Rényi entropies[END_REF], is related to the prior distribution obtained if the difficulty of constructing a data distribution is modeled in terms of the coincidence that two independent realizations collide with each other. Definition 6. Given any Bayesian model (f • , P ), the collision prior PMF corresponding to P is P coll (θ) = Prob ϑ∼P ,X,X ′ ∼f ϑ (ϑ = θ|X = X ′ ) , as a function of θ, where X and X ′ are IID.

Theorem 3. The collision prior PMF corresponding to P satisfies P coll (θ) = P (θ) e -S 2 (f θ ) θ ′ ∈Θ P (θ ′ ) e -S 2 (f θ ′ ) for all θ ∈ Θ .

Proof. By Bayes's theorem with X ′ as data,

P coll (θ) ∝ Prob ϑ∼P (ϑ = θ) Prob ϑ∼P ,X,X ′ ∼f ϑ (X = X ′ |ϑ = θ) = P (θ) x∈X f θ (x) f θ (x) = P (θ) e -S 2 (f θ ) ,
where the substitution of e -S 2 (f θ ) for x∈X f θ (x) f θ (x) is sanctioned by equation ( 13) with α = 2.

A limiting case of Rényi entropy that is important in cryptography is the min-entropy [START_REF] Teixeira | Conditional Rényi entropies[END_REF], 

S

2.

  Coherence. The sharpened counterpart P (•|X = x) ♯ of a posterior PMF P (•|x) based on a prior PMF P is P ♯ (•|X = x), the posterior distribution based on P ♯ , the sharpened counterpart of P , where x is an observed sample.

  special case of that type of constraint on prior distributions is seen in Examples 1 and 2. In both examples, each data distribution f θ is uniform on some sample space X θ of a number of possible outcomes equal to |X θ | = θ in Example 1 and |X θ | = |θ| in Example 2. Also in both examples, the prior probability P (θ) decreases as a function of |X θ | since it reflects the number of coincidences that f θ would require.

	Although |X θ | increases with the complexity of a uniform distribution, another measure of complexity is
	needed for other data distributions.
	Entropy is a measure of complexity that generalizes the reasoning of Examples 1 and 2, for the entropy of
	a uniform distribution f θ is log |X θ |. While all Rényi entropies share that property (Appendix A), Shannon's
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A Rényi entropy as a measure of complexity

For any α > 0, the α-Rényi entropy of a probability mass function (PMF) g on finite set X of possible observations is