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LOCAL CONTROLLABILITY OF REACTION-DIFFUSION SYSTEMS

AROUND NONNEGATIVE STATIONARY STATES

Kévin Le Balc’h*

Abstract. We consider a n × n nonlinear reaction-diffusion system posed on a smooth bounded
domain Ω of RN . This system models reversible chemical reactions. We act on the system through m
controls (1 ≤ m < n), localized in some arbitrary nonempty open subset ω of the domain Ω. We prove
the local exact controllability to nonnegative (constant) stationary states in any time T > 0. A speci-
ficity of this control system is the existence of some invariant quantities in the nonlinear dynamics that
prevents controllability from happening in the whole space L∞(Ω)n. The proof relies on several ingre-
dients. First, an adequate affine change of variables transforms the system into a cascade system with
second order coupling terms. Secondly, we establish a new null-controllability result for the linearized
system thanks to a spectral inequality for finite sums of eigenfunctions of the Neumann Laplacian
operator, due to David Jerison, Gilles Lebeau and Luc Robbiano and precise observability inequalities
for a family of finite dimensional systems. Thirdly, the source term method, introduced by Yuning Liu,
Takéo Takahashi and Marius Tucsnak, is revisited in a L∞-context. Finally, an appropriate inverse
mapping theorem in suitable spaces enables to go back to the nonlinear reaction-diffusion system.
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1. Introduction

1.1. Free system

Let n ≥ 2 be an integer. We consider the following reversible chemical reaction:

α1A1 + · · ·+ αnAn 
 β1A1 + · · ·+ βnAn, (1.1)

where A1, . . . , An denote n chemical species and (α1, . . . , αn), (β1, . . . , βn) ∈ (N)n are such that for every
1 ≤ i ≤ n, αi 6= βi. Chemically, according to the forward reaction ⇀ of (1.1), when αi molecules of Ai disappear
(1 ≤ i ≤ n), they are called the “reactants”, then βi molecules of Ai appear (1 ≤ i ≤ n). The backward
reaction ↼ of (1.1) is governed by the same law: when βi molecules of Ai disappear (1 ≤ i ≤ n), here they are
the reactants, then αi molecules of Ai appear (1 ≤ i ≤ n).

For 1 ≤ i ≤ n, let ui(t, .) : Ω → R be the concentration of the chemical component Ai at time t. The
law of mass action states that the rate of a chemical reaction is directly proportional to the product of the
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2 K. LE BALC’H

concentrations of the reactants. Using this law together with the Fick’s law for the diffusion of the components,
we obtain that ui satisfies the following reaction rate equation (see e.g. [30], Sect. 1.2):

∂tui − di∆ui︸ ︷︷ ︸
diffusion

+ αi

n∏
k=1

uαkk︸ ︷︷ ︸
loss of forward reacting molecules

+ βi

n∏
k=1

uβkk︸ ︷︷ ︸
loss of backward reacting molecules

= βi

n∏
k=1

uαkk︸ ︷︷ ︸
gain of forward reacting molecules

+ αi

n∏
k=1

uβkk︸ ︷︷ ︸
gain of backward reacting molecules

,

that is to say,

∂tui − di∆ui = (βi − αi)

(
n∏
k=1

uαkk −
n∏
k=1

uβkk

)
, (1.2)

where di ∈ (0,+∞) is the diffusion coefficient of the chemical species Ai.
For a given matrix M , we introduce the notation M tr for the transpose of the matrix M .
From (1.2), by setting

U := (u1, . . . , un)tr,

we deduce that U satisfies the following reaction-diffusion system:
∂tU −D∆U = F (U) in (0, T )× Ω,
∂U
∂ν = 0 on (0, T )× ∂Ω,
U(0, .) = u0 in Ω,

(1.3)

where

D := diag(d1, . . . , dn), (1.4)

F (U) := (fi(u1, . . . , un))tr
1≤i≤n, (1.5)

with

∀1 ≤ i ≤ n, fi(u1, . . . , un) := (βi − αi)

(
n∏
k=1

uαkk −
n∏
k=1

uβkk

)
, (1.6)

and T ∈ (0,+∞), Ω is a bounded, connected, open subset of RN (with N ≥ 1) of class C2, ν is the outer unit
normal vector to ∂Ω.

In general, global existence of classical solutions (in the sense of [31], Def. 1.5) or weak solutions (in the sense
of [31], Def. 5.12 replacing ≥ by =) for (1.3) with F , defined as in (1.5), (1.6), is an open problem.

– For particular semilinearities with a so-called triangular structure (see [31], Sect. 3.3), classical solutions
exist in the time interval (0,+∞ and are unique. For example, take n = 2, α1 ≥ 1, β2 = 1, α2 = β1 = 0
and apply [31], Thm. 3.1).
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– For at most quadratic nonlinearities, global existence of weak solutions holds (see [31], Thm. 5.12). For
instance, take n = 4, α1 = α3 = β2 = β4 = 1, α2 = α4 = β1 = β3 = 0. For any spatial dimension N ≥ 1,
the recent works [6] and [33] (inspired by the previous works [21] and [22]) prove that the solutions are
bounded for bounded initial data, which ensure global existence of classical solutions.

– Without a priori L1-bound on the nonlinearities, a challenging problem is to understand whether global
solutions exist. For example, take n = 2, α1 = β2 = 2, β1 = α2 = 3 (see [31], Prob. 1).

Let us also mention that global existence of renormalized solutions holds in all cases for (1.3) (see [15]).

1.2. Control system and open question

We assume that one can act on the system through controls localized on a nonempty open subset ω of Ω.
From a chemical viewpoint, it means that one can add or remove chemical species at a specific location of the
domain Ω. More precisely, let

J ⊂ {1, . . . , n} and m := #J ≤ n be the number of controls. (1.7)

Up to a renumbering (ui)1≤i≤n, we can assume that J = {1, . . . ,m} where J is defined in (1.7). Hence, we
define

HJ := (h1, . . . , hm, 0, . . . , 0)tr. (1.8)

We consider the control system:
∂tU −D∆U = F (U) +HJ1ω in (0, T )× Ω,
∂U
∂ν = 0 on (0, T )× ∂Ω,
U(0, .) = U0 in Ω.

(NL-U)

Here, at t ∈ [0, T ], U(t, .) : Ω→ Rn is the state to be controlled, HJ(t, .) : Ω→ Rm is the control input supported
in ω.

Let

U∗ := (u∗1, . . . , u
∗
n)tr, (1.9)

be a nonnegative stationary state of (1.3) i.e.

∀1 ≤ i ≤ n, u∗i ∈ [0,+∞) and

n∏
k=1

u∗k
αk =

n∏
k=1

u∗k
βk . (1.10)

Note that the nonnegative stationary solutions of (1.3) do not depend on the space variable (see Prop. A.6 in
Appendix A.2). Thus, it is not restrictive to assume that U∗ ∈ [0,+∞)n.

The question we ask is the following one: For a given initial condition U0, does there exist HJ such that the
solution U of (NL-U) satisfies

∀i ∈ {1, . . . , n}, ui(T, .) = u∗i ?

Under appropriate assumptions (see Assumptions 1.4 and 1.6), we prove the controllability of (NL-U), in an
appropriate subspace of L∞(Ω)n, locally around U∗, with controls in L∞((0, T )× Ω)m (see Thm. 1.7).

By an adequate affine transformation, the proof relies on the study of the null-controllability of an equivalent
cascade system with second order coupling terms (see Sect. 2.1).
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We have chosen to postpone the simple or classical proofs in Appendix A. Therefore, the main contributions
are highlighted in the body of the article.

1.3. Nonlinear well-posedness result

For τ > 0, we introduce

Qτ := (0, τ)× Ω.

We define the function space

WT := L2(0, T ;H1(Ω)) ∩H1(0, T ; (H1(Ω))′),

that satisfies the continuous embedding

WT ↪→ C([0, T ];L2(Ω)). (1.11)

We introduce the notion of solution associated to the nonlinear system (NL-U) (see Sect. 1.2).

Definition 1.1. Let D be defined in (1.4). For every U0 ∈ L∞(Ω)n, HJ ∈ L∞(QT )m, we say that U ∈
(
WT ∩

L∞(QT )
)n

is a solution of (NL-U) if for every V ∈ L2(0, T ;H1(Ω)n),

∫ T

0

(∂tU, V )(H1(Ω)n)′,H1(Ω)n) +

∫
QT

D∇U.∇V =

∫
QT

(
F (U) +HJ1ω

)
.V, (1.12)

with F defined in (1.5) and

U(0, .) = U0 in L∞(Ω)n. (1.13)

Remark 1.2. Given U0 ∈ L∞(Ω)n, HJ ∈ L∞(QT )m, if a solution U of (NL-U) exists in the sense of
Definition 1.1, then it is unique because F is locally Lipschitz on Rn (see the proof of [23] Def.–Prop. 2.4).

1.4. Invariant quantities of the nonlinear dynamics

In this section, we show that in the system (NL-U) (see Sect. 1.2), when the number of controls is small, some
quantities are invariant. They impose some restrictions on the initial condition, for the controllability results.

Proposition 1.3. We assume that m ≤ n−2. Let U0 ∈ L∞(Ω)n, HJ ∈ L∞(QT )m. Assume that U is a solution
of (NL-U) such that U(T, .) = U∗ with U∗ defined in (1.9). Then, we have for every k 6= l ∈ {m + 1, . . . , n},
t ∈ [0, T ], ∫

Ω

uk(t, x)− u∗k
βk − αk

dx =

∫
Ω

ul(t, x)− u∗l
βl − αl

dx, (1.14)

(
dk = dl

)
⇒
(
uk(t, .)− u∗k
βk − αk

=
ul(t, .)− u∗l
βl − αl

)
. (1.15)
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In particular, for every k 6= l ∈ {m+ 1, . . . , n},∫
Ω

uk,0(x)− u∗k
βk − αk

dx =

∫
Ω

ul,0(x)− u∗l
βl − αl

dx, (1.16)

(
dk = dl

)
⇒
(
uk,0 − u∗k
βk − αk

=
ul,0 − u∗l
βl − αl

)
. (1.17)

The proof of Proposition 1.3 is done in Appendix A.3. We prove (1.14) by integrating with respect to the
space variable an appropriate linear combination of equations of (NL-U) and by using the Neumann boundary
conditions. We prove (1.15) by the backward uniqueness of the heat equation applied to an appropriate linear
combination of equations of (NL-U).

An equation (1.15) implies that we can reduce the number of components of (ui)1≤i≤n of (NL-U) when
some diffusion coefficients di are equal for m + 1 ≤ i ≤ n. Thus, (NL-U) becomes more simple under this last
assumption. That is why, we make the following hypothesis in order to treat the most difficult case.

Assumption 1.4. For m ≤ n− 2, we suppose that for every k 6= l ∈ {m+ 1, . . . , n}, dk 6= dl.

Remark 1.5. It will be interesting to note that the mass condition (1.16) is obviously equivalent to

∀k ≥ m+ 2,

∫
Ω

uk,0(x)− u∗k
βk − αk

dx =

∫
Ω

um+1,0(x)− u∗m+1

βm+1 − αm+1
dx. (1.18)

1.5. Main result

We will work under the following assumption that will ensure the controllability of the linearized system of
(NL-U) (see Sect. 2.2).

Assumption 1.6. For m ≤ n− 1, we assume that

∂mfm+1

(
u∗1, . . . , u

∗
n

)
6= 0, (1.19)

where fm+1 is defined in (1.6).

Theorem 1.7. Under Assumptions 1.4 and 1.6, the system (NL-U) is locally controllable around U∗, i.e., there
exists r > 0 such that for every U0 ∈ L∞(Ω)n satisfying the mass condition (1.16) and ‖U0 − U∗‖L∞(Ω) ≤ r,

there exists HJ ∈ L∞(QT )m such that the solution U of (NL-U) satisfies U(T, .) = U∗.

Remark 1.8. The uniqueness of the solution U ∈ L∞(QT )n is a consequence of Remark 1.2. The existence of
the solution U ∈ L∞(QT )n is a consequence of a good choice of the control HJ ∈ L∞(QT )m and more precisely
of an inverse mapping argument (see Sect. 6).

Remark 1.9. Up to renumbering the first m equations of (NL-U), we can see that Theorem 1.7 is still valid
by replacing the assumption (1.19) by

∃j ∈ {1, . . . ,m}, ∂jfm+1

(
u∗1, . . . , u

∗
n

)
6= 0. (1.20)

Remark 1.10. When αm, βm ≥ 1, a sufficient condition to ensure (1.19) is

∀1 ≤ k ≤ n, u∗k 6= 0. (1.21)
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Indeed, by using (1.6), (1.10) and αj 6= βj , if (1.21) holds true then

∂mfm+1

(
u∗1, . . . , u

∗
n

)
=
αm − βm

u∗m

n∏
k=1

u∗k
αk 6= 0.

Note that (1.21) is not equivalent to (1.19) as shown by the examples in Application 1.11 (see below).

Application 1.11. For n = 4, α1 = α3 = β2 = β4 = 1 and α2 = α4 = β1 = β3 = 0, we have

fi(u1, u2, u3, u4) = (−1)i(u1u3 − u2u4).

In this case, we check that (1.20) is

for J = {1, 2, 3},
(
∃j ∈ {1, 2, 3}, ∂jf4(u∗1, . . . , u

∗
4) 6= 0

)
⇔
(

(u∗1, u
∗
3, u
∗
4) 6= (0, 0, 0)

)
,

for J = {1, 2},
(
∃j ∈ {1, 2}, ∂jf3(u∗1, . . . , u

∗
4) 6= 0

)
⇔
(

(u∗3, u
∗
4) 6= (0, 0)

)
,

for J = {1},
(
∂1f2(u∗1, . . . , u

∗
4) 6= 0

)
⇔
(
u∗3 6= 0

)
.

Thus, Theorem 1.7 recovers the result of ([24], Thm. 3.2) except for the case J = {1, 2, 3} and (u∗1, u
∗
3, u
∗
4) =

(0, 0, 0) that the proof of the present article does not treat (see Example 7.1 for more details about the strategy
of [24]).

We will only prove Theorem 1.7 under the assumption m ≤ n− 2. The other cases are an easy adaptation.

1.6. Bibliographical comments

In this section, we recall some known results about the null-controllability of linear and semilinear parabolic
systems with Neumann boundary conditions to put in perspective the statement and the proof strategy of
Theorem 1.7.

1.6.1. Linear results

Let k, l ∈ N∗. We denote byMk(R) (respectivelyMk,l(R)) the algebra of matrices with k lines and k columns
(respectively the algebra of matrices with k lines and l columns) with entries in R. For M ∈Mk(R), Sp(M) is
the set of complex eigenvalues of M : Sp(M) := {λ ∈ C ; ∃X ∈ Ck \ {0}, MX = λX}.

Since the pioneer works of Gilles Lebeau, Luc Robbiano in 1995 (see [20, 26] and the survey [25]) and Andrei
Fursikov, Oleg Imanuvilov in 1996 (see [13, 16]) about the null-controllability of the heat equation, the control
of coupled parabolic systems has been a challenging issue in the last twenty years. For instance, in [1], the
authors identify necessary and sufficient conditions for the null-controllability of linear parabolic systems of the
following form 

∂tZ − Γ∆Z = AZ +BH1ω in (0, T )× Ω,
∂Z
∂ν = 0 on (0, T )× ∂Ω,
Z(0, .) = Z0 in Ω,

(1.22)

where Γ a diagonalizable matrix of Mk(R) with Sp(Γ) ⊂ (0,+∞), A ∈ Mk(R), B ∈ Mk,l(R). In general, the
rank of B is less that k, so that the controllability of the full system (1.22) depends strongly on the coupling
present in the system.
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Inspired by the works [17, 18, 27], a byproduct of this article is a new null-controllability result, for cascade
cross-diffusion systems of arbitrary size (see Sect. 3, Thm. 3.1).

For a recent survey on the null-controllability of linear parabolic systems, see [2] and references therein.

1.6.2. Semilinear results

For semilinear parabolic systems
∂tZ − Γ∆Z = G(Z) +BH1ω in (0, T )× Ω,
∂Z
∂ν = 0 on (0, T )× ∂Ω,
Z(0, .) = Z0 in Ω,

(1.23)

with G ∈ C∞(Rk;Rk) such that G(0) = 0, the usual strategy consists in deducing a local null-controllability
result for (1.23) from a (global) null-controllability result for the linearized system around (Z,H) = (0, 0). This
linear system takes the form (1.22) with the matrix A defined as follows: ai,j = ∂jgi(0) (1 ≤ i, j ≤ k). In this
paper, we use the powerful source term method, introduced by Yuning Liu, Takéo Takahashi and Marius Tucsnak
in [28]. One of the main advantage of the method is to deduce the local null-controllability for (1.23) from the
null-controllability of only one linear system (1.22).

In this article, we adapt the source term method in a L∞-context in the following way.

– The source term method in L2 enables to prove a strong observability inequality (see Cor. 4.4). This
estimate looks like a global Carleman estimate (see for example [13], Lem. 1.3), whereas the method to
get it is very different.

– By using the Penalized Hilbert Uniqueness Method, introduced by Viorel Barbu in [3], we construct
L∞-controls (see Thm. 5.1).

– We use once more the source term method in L∞ (see Prop. 5.3).
– We conclude by an appropriate inverse mapping theorem (see Sect. 6).

For other results using the source term method, see for instance [5, 14, 29].

2. An adequate change of variables and linearization

2.1. Change of variables – cross diffusion system

The goal of this section is to transform the controlled system (NL-U) (see Sect. 1.2) satisfied by U into
another system of cascade type for which we better understand the controllability properties. Roughly speaking,
for 1 ≤ i ≤ m, the component ui is easy to control thanks to the localized control term hi1ω. Thus, the challenge
is to understand how the reaction term fi(U) (see (1.6)) acts on the component ui for m+ 1 ≤ i ≤ n.

We multiply the (m+ 1)th equation (respectively the (m+ 2)th equation) of (NL-U) by

((βm+1 − αm+1)(dm+1 − dm+2))−1 (respectively ((βm+2 − αm+2)(dm+2 − dm+1))−1),

and we sum:

∂tvm+2 − dm+2∆vm+2 =
∆um+1

βm+1 − αm+1
,

where

vm+2 =
um+1

(βm+1 − αm+1)(dm+1 − dm+2)
+

um+2

(βm+2 − αm+2)(dm+2 − dm+1)
.
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Roughly speaking, this linear combination enables to “kill” the reaction-term and to create a coupling term of
second order.

By iterating this strategy, we construct a linear transformation V = PU such that um+1 acts on vm+2,
vm+2 acts on vm+3, . . . , vn−1 acts on vn through cross diffusion terms. Moreover, we transform the problem of
controllability for U to U∗ into a null-controllability problem for

Z := P (U − U∗),

where P is the invertible triangular matrix defined by:

P :=

(
Im (0)
(0) ∗

)
, (2.1)

with

∀k, l ≥ m+ 1, Pkl :=



(βl − αl)
∏

m+1≤r≤k
r 6=l

(dl − dr)


−1

if k ≥ l,

0 if k < l,

(2.2)

with the convention
∏
∅

= 1.

We introduce the notations:

G(Z) := (g1(Z), . . . , gm+1(Z), 0 . . . , 0)tr, (2.3)

with

gi(Z) := fi(P
−1Z + U∗) (1 ≤ i ≤ m), gm+1(Z) :=

fi(P
−1Z + U∗)

βm+1 − αm+1
, (2.4)

and

DJ :=

(
diag(d1, . . . , dm) (0)

(0) D]

)
, D] :=



dm+1 0 . . . . . . 0

1 dm+2
. . .

. . .
...

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
0 . . . 0 1 dn


. (2.5)

Proposition 2.1. Let U0 ∈ L∞(Ω)n, HJ ∈ L∞(QT )m. Then, U is a solution of (NL-U) if and only if Z
satisfies 

∂tZ −DJ∆Z = G(Z) +HJ1ω in (0, T )× Ω,
∂Z
∂ν = 0 on (0, T )× ∂Ω,
Z(0, .) = Z0 in Ω.

(NL-Z)

The proof of Proposition 2.1 is done in Appendix A.4.1.
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Remark 2.2. The concept of solution for (NL-Z) is an easy adaptation of the notion of solution for (NL-U)
given in Definition 1.1.

Let p ∈ [1,+∞]. We introduce the following subspace of Lp(Ω)n:

Lpinv :=

{
Z0 ∈ Lp(Ω)n ; ∀m+ 2 ≤ i ≤ n,

∫
Ω

zi,0(x)dx = 0

}
. (2.6)

Theorem 1.7 is equivalent to the following local null-controllability theorem for (NL-Z).

Theorem 2.3. Under Assumptions 1.4 and 1.6, the system (NL-Z) is locally null-controllable, i.e., there exists
r > 0 such that for every Z0 ∈ L∞inv verifying ‖Z0‖L∞(Ω)n ≤ r, there exists HJ ∈ L∞(QT )m such that the

solution Z of (NL-Z) satisfies Z(T, .) = 0.

The equivalence between Theorems 1.7 and 2.3 comes from Proposition 2.1 and the following equivalence

Z0 ∈ L∞inv ⇔ U0 satisfies (1.16)⇔ U0 satisfies (1.18) (Rem. 1.5). (2.7)

The proof of (2.7) is done in Appendix A.4.2.
From now, we will focus on the proof of Theorem 2.3.

2.2. Linearization

The linearized system of (NL-Z) around (0, 0) is
∂tZ −DJ∆Z = AJZ +HJ1ω in (0, T )× Ω,
∂Z
∂ν = 0 on (0, T )× ∂Ω,
Z(0, .) = Z0 in Ω,

(L-Z)

where

AJ = (aik)1≤i,k≤n, aik =

{
∂kgi(0, . . . , 0) if 1 ≤ i ≤ m+ 1,

0 if m+ 2 ≤ i ≤ n. (2.8)

By Assumption 1.6, (2.1) and (2.4), we have

am+1,m 6= 0. (2.9)

Roughly speaking, we summarize the expected controllability properties in the following diagram:

h1
controls−−−−−→ z1, h2

controls−−−−−→ z2, . . . , hm−1
controls−−−−−→ zm−1,

hm
controls−−−−−→ zm

controls−−−−−−→
am+1mzm

zm+1
controls−−−−−→
∆zm+1

zm+2
controls−−−−−→
∆zm+2

. . .
controls−−−−−→
∆zn−1

zn.

3. Linear null-controllability under constraints in L2

The main result of this section, stated in the following theorem, is the null-controllability in L2
inv for the

linear system (L-Z) (see Sect. 2.2).

Theorem 3.1. The system (L-Z) is null-controllable in L2
inv. More precisely, there exists C > 0 such that for

every T > 0 and Z0 ∈ L2
inv, there exists a control HJ ∈ L2(QT )m verifying∥∥HJ

∥∥
L2(QT )m

≤ CT ‖Z0‖L2(Ω)n ,where CT = CeC/T , (3.1)
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and such that the solution Z ∈Wn
T of (L-Z) satisfies Z(T, .) = 0.

The goal of the next two subsections is to prove Theorem 3.1. The proof is based on the Lebeau-Robbiano’s
method, introduced for the first time to prove the null-controllability of the heat equation (see [26]). First, it
consists in establishing a null-controllability result in finite dimensional subspaces of L2

inv with a precise estimate
of the cost of the control (see Prop. 3.2). This first step is based on two main results: the spectral inequality
for eigenfunctions of the Neumann–Laplace operator (see Lem. 3.4) and precise observability estimates of linear
finite dimensional systems associated to the adjoint system of (L-Z) (see Lem. 3.5). Secondly, we conclude by
a time-splitting procedure: the control HJ is built as a sequence of active controls and passive controls. The
passive mode allows to take advantage of the natural parabolic exponential decay of the L2 norm of the solution.
This decay enables to compensate the cost of the control which steers the low frequencies to 0 (see Sect. 3.2).

We must be careful with the dependence on the constants appearing in the estimates with respect to T (when
T is small). That is why, from now and until the end of the article, we assume that

T ∈ (0, 1). (3.2)

Unless otherwise specified, we denote by C various positive constants varying from line to line.

3.1. A null-controllability result for the low frequencies

The unbounded operator on L2(Ω): (−∆, H2
Ne(Ω)), where H2

Ne(Ω) is defined in (A.4) (see Appendix A.1.2)
is self-adjoint and has compact resolvent. Thus, we introduce the orthonormal basis (ek)k≥0 of L2(Ω) of
eigenfunctions associated to the increasing sequence of eigenvalues (λk)k≥0 of the Laplacian operator, i.e.,
we have −∆ek = λkek and (ek, el)L2(Ω) = δk,l. For λ > 0, we define the finite dimensional space Eλ ={ ∑
λk≤λ

ckek ; ck ∈ Rn
}
⊂ L2(Ω)n and the orthogonal projection ΠEλ onto Eλ in L2(Ω)n.

The goal of this section is to prove the following null-controllability result in a finite dimensional subspace
of L2

inv.

Proposition 3.2. There exist C > 0, p1 ∈ N such that for every τ ∈ (0, T ), λ > 0, Z0 ∈ Eλ ∩L2
inv, there exists

a control function HJ ∈ L2(Qτ ) verifying

∥∥HJ
∥∥2

L2(Qτ )m
≤ C

τp1
eC
√
λ ‖Z0‖2L2(Ω)n , (3.3)

such that the solution Z of 
∂tZ −DJ∆Z = AJZ +HJ1ω in (0, τ)× Ω,
∂Z
∂ν = 0 on (0, τ)× ∂Ω,
Z(0, .) = Z0 ∈ Eλ in Ω,

(3.4)

satisfies Z(τ, .) = 0.

From Proposition 3.2, for every τ, λ > 0 and Z0 ∈ Eλ ∩ L2
inv, we introduce the notation:

Hλ(Z0, 0, τ) := HJ , (3.5)

such that the solution Z of (3.4) satisfies Z(τ, .) = 0 and HJ is the minimal-norm element of L2(Qτ )m satisfy-
ing the estimate (3.3). In other words, HJ is the projection of 0 in the nonempty closed convex set of controls
satisfying (3.3) and driving the solution Z of (3.4) in time τ–0.
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By the Hilbert Uniqueness Method (see [8], Thm. 2.44), in order to prove Proposition 3.2, we need to prove
an observability inequality for the solution of the adjoint system of (3.4).

Proposition 3.3. There exist C > 0, p1 ∈ N such that for every τ ∈ (0, T ), λ > 0 and ϕτ ∈ Eλ ∩ L2
inv, the

solution ϕ of 
−∂tϕ−Dtr

J ∆ϕ = Atr
J ϕ in (0, τ)× Ω,

∂ϕ
∂ν = 0 on (0, τ)× ∂Ω,
ϕ(τ, .) = ϕτ in Ω,

(3.6)

satisfies

‖ϕ(0, .)‖2L2(Ω)n ≤
C

τp1
eC
√
λ

m∑
i=1

∫ τ

0

∫
ω

|ϕi(t, x)|2 dxdt. (3.7)

Proof. The proof is inspired by ([27], Sect. 3).
Let τ, λ > 0 and ϕτ ∈ Eλ ∩ L2

inv. We have:

ϕτ (x) =
∑
λk≤λ

ϕτkek(x),

with ϕτk ∈ Fk where F0 := Rm+1 × {0}n−m−1 because ϕτ ∈ L2
inv and Fk := Rn for k ≥ 1.

Then, the solution ϕ of (3.6) is

∀(t, x) ∈ (0, τ)× Ω, ϕ(t, x) =
∑
λk≤λ

ϕk(t)ek(x), (3.8)

where ϕk is the unique solution of the ordinary differential system{
−ϕ′k + λkD

tr
J ϕk = Atr

J ϕk, in (0, τ),
ϕk(τ) = ϕτk.

(3.9)

We recall the spectral inequality for eigenfunctions of the Neumann–Laplace operator.

Lemma 3.4. ([20], Thm. 14.6)
There exists C > 0 such that for every sequence (ak)k≥0 ⊂ CN and for every λ > 0, we have:

∑
λk≤λ

|ak|2 =

∫
Ω

∣∣∣∣∣∣
∑
λk≤λ

akek(x)

∣∣∣∣∣∣
2

dx ≤ CeC
√
λ

∫
ω

∣∣∣∣∣∣
∑
λk≤λ

akek(x)

∣∣∣∣∣∣
2

dx. (3.10)

By using (3.10) for ak = ϕk,i(t) with 1 ≤ i ≤ m and by summing on 1 ≤ i ≤ m, we obtain that there exists
C > 0 such that

∑
λk≤λ

m∑
i=1

|ϕk,i(t)|2 ≤ CeC
√
λ

m∑
i=1

∫
ω

∣∣∣∣∣∣
∑
λk≤λ

ϕk,i(t)ek(x)

∣∣∣∣∣∣
2

dx. (3.11)
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By integrating with respect to the time variable between 0 and τ the inequality (3.11), we obtain

∫ τ

0

∑
λk≤λ

m∑
i=1

|ϕk,i(t)|2dt ≤ CeC
√
λ

m∑
i=1

∫ τ

0

∫
ω

∣∣∣∣∣∣
∑
λk≤λ

ϕk,i(t)ek(x)

∣∣∣∣∣∣
2

dxdt. (3.12)

Moreover, we have the following lemma whose proof is postponed in Appendix A.5 (see also [32]).

Lemma 3.5. There exist C > 0, (p1, p2) ∈ N2 such that for every τ ∈ (0, 1), k ∈ N, ϕτk ∈ Fk, the solution ϕk
of (3.9) satisfies

‖ϕk(0)‖2 ≤ C
(

1 +
1

τp1
+ λp2k

) m∑
i=1

∫ τ

0

|ϕk,i(t)|2dt. (3.13)

By using (3.12), (3.13), we deduce that

∑
λk≤λ

‖ϕk(0)‖2 ≤
∑
λk≤λ

C

τp1
(1 + λp2k )

m∑
i=1

∫ τ

0

|ϕk,i(t)|2dt (3.14)

≤ C

τp1
eC
√
λ

m∑
i=1

∫ τ

0

∫
ω

∣∣∣∣∣∣
∑
λk≤λ

ϕk,i(t)ek(x)

∣∣∣∣∣∣
2

dxdt.

By using (3.8), we deduce (3.7) from (3.14).

3.2. The Lebeau-Robbiano’s method

The goal of this section is to prove Theorem 3.1.

Proof. The proof is inspired by ([25], Sect. 6.2) (see also [26], Fin de la preuve du Thm. 1). The constants C,C ′

will increase from line to line.
We split the interval [0, T ] = ∪k∈N[ak, ak+1] with a0 = 0, ak+1 = ak + 2Tk and Tk = κT/2k for k ∈ N and

the constant κ is chosen such that 2
+∞∑
k=0

Tk = T . We also define µk = M22k for M > 0 sufficiently large which

will be defined later and for k ∈ N. Then, we define the control HJ in the following way:

– if t ∈ (ak, ak + Tk), HJ = Hµk(ΠEµk
Z(ak, .), ak, Tk) (see the notation (3.5)) and Z(t, .) = S(t −

ak)Z(ak, .) +
∫ t
ak
S(t− s)HJ(s, .)ds,

– if t ∈ (ak + Tk, ak+1), HJ = 0 and Z(t, .) = S(t− ak − Tk)Z(ak + Tk, .),

where S(t) denotes the semigroup of the parabolic system: S(t) = et(DJ∆+AJ ). In particular, by (A.2) and
(1.11), ‖S(t)‖L(L2(Ω)n) ≤ C.

By (3.3), the choice of HJ during the interval time [ak, ak + Tk] implies

‖Z(ak + Tk, .)‖2L2(Ω)n ≤ (C + C(κ2−kT )−p1eC
√
M2k) ‖Z(ak, .)‖2L2(Ω)n (3.15)

≤ C

T p1
eC
√
M2k ‖Z(ak, .)‖2L2(Ω)n .

During the passive period of the control, t ∈ [ak + Tk, ak+1], the solution exponentially decreases:

‖Z(ak+1, .)‖2L2(Ω)n ≤ C
′e−C

′M22kTk ‖Z(ak + Tk, .)‖2L2(Ω)n . (3.16)
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Thus, by using 22kTk = κ2kT , (3.15) and (3.16), we have

‖Z(ak+1, .)‖2L2(Ω)n ≤
C

T p1
eC
√
M2k−C′M2kT ‖Z(ak, .)‖2L2(Ω)n ,

and consequently,

‖Z(ak+1, .)‖2L2(Ω)n ≤
(
C

T p1

)k+1

e
∑k
j=0(C

√
M2j−C′MT2j) ‖Z0‖2L2(Ω)n (3.17)

≤ eC/T+(C
√
M−C′MT )2k+1

‖Z0‖2L2(Ω)n .

By taking M such that C
√
M − C ′MT < 0, for instance M ≥ 2(C/C ′T )2, we conclude by (3.17) that we have

limk→+∞ ‖Z(ak, .)‖ = 0, i.e., Z(T, .) = 0 because t 7→ Z(t, .) ∈ C([0, T ];L2(Ω)n) because HJ ∈ L2(QT )m (see
Prop. A.2 and (1.11)) as we will show now.

We have
∥∥HJ

∥∥2

L2(QT )m
=
∑+∞
k=0

∥∥HJ
∥∥2

L2((ak,ak+Tk)×Ω)m
. Then, by using the estimate (3.3) of the control on

each time interval (ak, ak + Tk) and the estimate (3.17), we get:

∥∥HJ
∥∥2

L2(QT )m
≤

CT−p10 eC
√
M +

∑
k≥1

CT−p1k eC
√
M2keC/T+(C

√
M−C′MT )2k

 ‖Z0‖2L2(Ω)n (3.18)

≤

CT−p1eC√M +
∑
k≥1

C(2kT−1)p1eC/T e(2C
√
M−C′MT )2k

 ‖Z0‖2L2(Ω)n .

By taking M such that 2C
√
M −C ′MT < 0, for instance M = 8(C/C ′T )2 ⇒ C

√
M −C ′MT/2 = −C ′′/T with

C ′′ > 0, we deduce from (3.18) that HJ ∈ L2(QT )m and

∥∥HJ
∥∥2

L2(QT )m
≤ CeC/T

∫ +∞

0

( σ
T

)p1
e−C

′′ σ
T dσ ‖Z0‖2L2(Ω)n ≤ Ce

C/T ‖Z0‖2L2(Ω)n ,

which concludes the proof of Theorem 3.1.

4. The source term method in L2

We use the source term method, introduced by Yuning Liu, Takéo Takahashi and Marius Tucsnak in ([28],
Prop. 2.3) to deduce a local null-controllability result for a nonlinear system from the null-controllability result
for only one linear system (and an estimate of the cost of the control) (see also [5]).

By Theorem 3.1, we have an estimate for the control cost in L2, then we fix M > 0 such that CT ≤MeM/T .
Let q ∈ (1,

√
2) and p > q2/(2− q2). We define the weights

ρ0(t) := M−p exp

(
− Mp

(q − 1)(T − t)

)
, (4.1)

ρS(t) = M−1−p exp

(
− (1 + p)q2M

(q − 1)(T − t)

)
. (4.2)



14 K. LE BALC’H

Remark 4.1. The assumption p > q2/(2− q2)⇔ 2p > (1 + p)q2 implies

ρ2
0/ρS ∈ C([0, T ]), (4.3)

which will be useful for the estimate of the polynomial nonlinearity (see Sect. 6).

Let r ∈ {2,+∞}. For S ∈ Lr((0, T );Lrinv), HJ ∈ Lr((0, T );Lr(Ω)m), Z0 ∈ Lrinv, we introduce the following
system: 

∂tZ −DJ∆Z = AJZ + S +HJ1ω in (0, T )× Ω,
∂Z
∂ν = 0 on (0, T )× ∂Ω,
Z(0, .) = Z0 in Ω.

(L+S-Z)

Then, we define associated spaces for the source term, the state and the control

Sr :=

{
S ∈ Lr((0, T );Lrinv) ;

S

ρS
∈ Lr((0, T );Lrinv)

}
, (4.4)

Zr :=

{
Z ∈ Lr((0, T );Lrinv) ;

Z

ρ0
∈ Lr((0, T );Lrinv)

}
, (4.5)

Hr :=

{
HJ ∈ Lr((0, T );Lr(Ω)m) ;

HJ

ρ0
∈ Lr((0, T );Lr(Ω)m)

}
. (4.6)

Remark 4.2. From the behaviors near t = T of ρS and ρ0, we deduce that each element of Sr, Zr, Hr vanishes
at t = T .

From the abstract result: ([28], Prop. 2.3), we deduce the null-controllability for (L+S-Z) in L2
inv.

Proposition 4.3. For every S ∈ S2 and Z0 ∈ L2
inv, there exists HJ ∈ H2, such that the solution Z of (L+S-Z)

satisfies Z ∈ Z2. Furthermore, there exists C > 0, not depending on S and Z0, such that

‖Z/ρ0‖C([0,T ];L2(Ω)n) +
∥∥HJ

∥∥
H2
≤ CT

(
‖Z0‖L2(Ω)n + ‖S‖S2

)
, (4.7)

where CT = CeC/T . In particular, since ρ0 is a continuous function satisfying ρ0(T ) = 0, the above relation
(4.7) yields Z(T, .) = 0.

For the sake of completeness, the proof of Proposition 4.3 is in Appendix A.6 (see Prop. A.11 applied with
r = 2).

Now, we will deduce an observability estimate for the adjoint system:
−∂tϕ−Dtr

J ∆ϕ = Atr
J ϕ in (0, T )× Ω,

∂ϕ
∂ν = 0 on (0, T )× ∂Ω,
ϕ(T, .) = ϕT in Ω.

(4.8)

We have the following result which is an adaptation of ([28], Cor. 2.6) or ([19], Thm. 4.1) (see Appendix A.7
for a complete proof).

Corollary 4.4. There exists C > 0 such that for every ϕT ∈ L2
inv, the solution of (4.8) satisfies:

‖ϕ(0, .)‖2L2(Ω)n +

∫ T

0

∫
Ω

|ρS(t)ϕ(t, x)|2 ≤ CT

(
m∑
i=1

∫ T

0

∫
ω

|ρ0(t)ϕi(t, x)|2
)
, (4.9)

where CT = CeC/T .
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In the next section, we take advantage of the strong observability estimate (4.9) to get more regularity in
Lp-sense for the control HJ .

5. Construction of L∞-controls and the source term
method in L∞

5.1. The Penalized Hilbert Uniqueness Method to build L∞-controls

The goal of this section is to prove a null-controllability result in L∞ with an estimate of the cost of the
control.

Theorem 5.1. There exists C > 0 such that for every T > 0, Z0 ∈ L2
inv, there exists a control HJ ∈ L∞(QT )m

verifying ∥∥HJ
∥∥
L∞(QT )m

≤ CT ‖Z0‖L2(Ω)n , where CT = CeC/T . (5.1)

and such that the solution Z of (L-Z) (see Sect. 2.2) satisfies Z(T, .) = 0.

From now and until the end of the section, we will denote by CT various positive constants which can change
from line to line and such that CT ≤ CeC/T .

In the next four parts, we perform the usual Penalized Hilbert Uniqueness Method, introduced for the first
time by Viorel Barbu in [3]. The idea is the following one: it is a well-known fact that the optimal control
HJ ∈ L2((0, T )×Ω)m, i.e., the minimal-norm element in L2, which steers the solution Z of (L-Z) to 0 in time
T can be expressed as a function of a solution of the adjoint system (4.8) (see [8], Sect. 1.4 for more details in
the context of linear finite dimensional controlled systems). By using the strong observability inequality (4.9),
we will use this link by considering a penalized problem in H2 ⊂ L2((0, T )× Ω)m: the behavior at time t = T
of the weight ρ0 will be the key point to produce more regular controls in Lp-sense.

5.1.1. The beginning of the Penalized Hilbert Uniqueness Method

Let us fix Z0 ∈ L2
inv.

We define Pε : H2 → R+, by, for every HJ ∈ H2,

Pε(H
J) :=

1

2

∫ ∫
(0,T )×ω

ρ−2
0 (t)|HJ(t, x)|2dxdt+

1

2ε
‖Z(T, .)‖2L2(Ω)n , (5.2)

where Z is the solution to the Cauchy problem (L-Z) (see Sect. 2.2) associated to the control HJ .
The functional Pε is a C1, coercive, strictly convex functional on the Hilbert space H2, then Pε has a unique

minimum HJ,ε ∈ H2. Let Zε be the solution to the Cauchy problem (L-Z) with control HJ,ε and initial data Z0.
The Euler-Lagrange equation gives

∀HJ ∈ H2,

∫ ∫
(0,T )×ω

ρ−2
0 HJ,ε.HJdxdt+

1

ε

∫
Ω

Zε(T, x).Z(T, x)dx = 0, (5.3)

where Z is the solution to the Cauchy problem (L-Z) associated to the control HJ and initial data Z0 = 0.
We introduce ϕε the solution to the adjoint problem (4.8) with final condition ϕε(T, .) = − 1

εZ
ε(T, .). A

duality argument between Z and ϕε gives

− 1

ε

∫
Ω

Z(T, x).Zε(T, x)dx =

∫
Ω

Z(T, x).ϕε(T, x)dx =

∫ ∫
(0,T )×ω

HJ .ϕε. (5.4)
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Then, we deduce from (5.3) and (5.4) that

∀HJ ∈ H2,

∫ ∫
(0,T )×ω

ρ−2
0 HJ,ε.HJ =

∫ ∫
(0,T )×ω

ϕε.HJ .

Consequently, we have

∀i ∈ {1, . . . ,m}, hεi = ρ2
0ϕ

ε
i1ω. (5.5)

Another duality argument applied between Zε and ϕε together with (5.5) gives

−1

ε

∫
Ω

|Zε(T, x)|2dx =

∫
Ω

Zε(T, x).ϕε(T, x)dx

=

∫
Ω

Z0(x).ϕε(0, x)dx+

∫ ∫
(0,T )×ω

HJ,ε.ϕε,

which yields

− 1

ε
‖Zε(T, .)‖2L2(Ω)n =

∫
Ω

Z0(x).ϕε(0, x)dx+

m∑
i=1

∫ ∫
(0,T )×ω

|ρ0ϕ
ε
i |2. (5.6)

By Young’s inequality and the observability estimate (4.9) applied to ϕε, for δ > 0, we have:∣∣∣∣∫
Ω

Z0(x).ϕε(0, x)dx

∣∣∣∣ (5.7)

≤ δ ‖ϕε(0, .)‖2L2(Ω)n + Cδ ‖Z0‖2L2(Ω)n

≤ δCT

(
m∑
i=1

∫ ∫
(0,T )×ω

|ρ0(t)ϕεi (t, x)|2dxdt

)
+ Cδ ‖Z0‖2L2(Ω)n .

Then, by using (5.5), (5.6), (5.7) and by taking δ sufficiently small, we get

1

ε
‖Zε(T, .)‖2L2(Ω)n +

1

2

∥∥ρ−1
0 HJ,ε

∥∥2

L2((0,T )×ω)n
≤ CT ‖Z0‖2L2(Ω)n . (5.8)

Remark 5.2. The estimate (5.8) yields Proposition 4.3 for S = 0 by letting ε→ 0. We remark that we have

only used the term ‖ϕ(0, .)‖2L2(Ω)n in the left hand side of (4.9). The second term in the left hand side of (4.9)

enables to get more regularity (in Lp-sense) for the control HJ (see Sect. 5.1.2).

5.1.2. Bootstrap method

In the next two parts, we will use the key identity between the control HJ,ε and the solution of the adjoint
system ϕε, i.e., (5.5) in order to deduce Lp-regularity for HJ,ε from Lp-regularity for ϕε. This kind of regularity
will come from the application of successive Lp-parabolic regularity theorems stated in Proposition A.4 to a
modification of ϕε called ψε,r (see a precise definition in (5.13) below) which is bounded from below by ρ2

0ϕ.
The beginning of this bootstrap argument is the strong observability inequality (4.9). Finally, we will pass to

the limit (ε→ 0) in 1
ε ‖Z

ε(T, .)‖2L2(Ω)n ≤ CT ‖Z0‖2L2(Ω)n coming from (5.8) and
∥∥HJ,ε

∥∥
L∞(QT )

≤ CT ‖Z0‖L2(Ω)n

coming from (5.22) (see below).
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By using Remark 4.1, we introduce the positive real number

γ := 2p− (1 + p)q2 > 0. (5.9)

Let us define a sequence of increasing positive real numbers (γr)r∈N such that lim
r→+∞

γr = γ, where γ is defined

in (5.9).
We introduce for every r ∈ N,

ρS,r(t) := M−1−p exp

(
−
(
(1 + p)q2 + γr

)
M

(q − 1)(T − t)

)
. (5.10)

Then, we have from (4.1), for every r ∈ N,

ρ2
0 ≤ CT ρS,r. (5.11)

We remark that we have for every r ∈ N,

|ρ′S,r+1(t)| ≤ CT,rρS,r(t). (5.12)

We define for every r ∈ N,

ψε,r(t, x) := ρS,r(t)ϕ
ε(t, x). (5.13)

From (4.8), (5.10) and (5.13), we have for every r ∈ N∗,
−∂tψε,r −Dtr

J ∆ψε,r = Atr
J ψ

ε,r − ρ′S,r(t)ϕε in (0, T )× Ω,
∂ψε,r

∂ν = 0 on (0, T )× ∂Ω,
ψε,r(T, .) = 0 in Ω.

(5.14)

By using (5.12), we remark that

| − ρ′S,r(t)ϕε| ≤ CT |ψε,r−1|. (5.15)

Let (pr)r∈N be the following sequence defined by induction

p0 = 2, (5.16)

pr+1 :=


(N+2)pr
N+2−2pr

if pr <
N+2

2 ,

2pr if pr = N+2
2 ,

+∞ if pr >
N+2

2 .

(5.17)

There exists l ∈ N∗ such that

∀r ≥ l, pr = +∞. (5.18)

We show, by induction, that for every 0 ≤ r ≤ l, we have

ψε,r ∈ Lpr (QT )n and ‖ψε,r‖Lpr (QT )n ≤ CT ‖Z0‖L2(Ω)n . (5.19)
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The case r = 0 can be deduced from the fact that γ0 > 0 and the observability estimate (4.9) (p0 = 2 by
(5.16)).

Let r ∈ N∗. We assume that

ψε,r−1 ∈ Lpr−1(QT )n and
∥∥ψε,r−1

∥∥
Lpr−1 (QT )n

≤ CT ‖Z0‖L2(Ω)n . (5.20)

Then, from (5.14), (5.15), (5.20) and from the maximal regularity theorem: Proposition A.4 applied with pr−1 ∈
(1,+∞), we get

ψε,r ∈ Xn
pr−1

and ‖ψε,r‖Xrpr−1

≤ CT ‖Z0‖L2(Ω)n . (5.21)

Moreover, by the Sobolev embedding: Proposition A.5 and (5.17), we have

ψε,r ∈ Lpr (QT )n and ‖ψε,r‖Lpr (QT )n ≤ CT ‖Z0‖L2(Ω)n .

This concludes the induction.

5.1.3. The end of the Penalized Hilbert Uniqueness Method

Now, by applying consecutively (5.18) (pl = +∞), (5.5), (5.11) and (5.19), we have for every i ∈ {1, . . . ,m},

‖hεi‖L∞(QT ) ≤ CT ‖Z0‖L2(Ω)n . (5.22)

Therefore, from (5.22), (HJ,ε)ε is uniformly bounded in L∞(QT )m, then up to a subsequence, we can assume
that there exists HJ ∈ L∞(QT )m such that

HJ,ε ⇀
ε→0

∗ HJ in L∞(QT )m, (5.23)

∥∥HJ
∥∥
L∞(QT )m

≤ CT ‖Z0‖L2(Ω)n . (5.24)

From (5.22), Proposition A.2 applied to (L-Z) satisfied by Zε, we obtain

‖Zε‖Wn
T
≤ CT ‖Z0‖L2(Ω)n . (5.25)

So, from (5.25), up to a subsequence, we can suppose that there exists Z ∈Wn
T such that

Zε ⇀
ε→0

Z in L2(0, T ;H1(Ω)n), ∂tZ
ε ⇀
ε→0

∂tZ in L2(0, T ; (H1(Ω))′n), (5.26)

and from (1.11),

Zε(0, .) ⇀
ε→0

Z(0, .) in L2(Ω)n, Zε(T, .) ⇀
ε→0

Z(T, .) in L2(Ω)n. (5.27)

Then, as we have Zε(0, .) = Z0, Zε(T, .)→ 0 from (5.8) and by uniqueness of the limit, we deduce that

Z(0, .) = Z0, and Z(T, .) = 0. (5.28)

By letting ε → 0, we have from (5.26), (5.23) and (5.28) that Z is a solution to (L-Z) satisfying Z(T, .) = 0
which conludes the proof of Theorem 5.1 by using (5.24).
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5.2. The come back to the source term method in L∞

The goal of this section is to apply the source term method in L∞ thanks to the null-controllability result in
L∞: Theorem 5.1.

To simplify the notations, we assume that the control cost in L∞ of Theorem 5.1 satisfies: CT ≤ MeM/T

where M is already defined at the beginning of Section 4.
From Proposition A.11 with r = +∞ proved in Appendix A.6, we deduce the following null-controllability

result for (L+S-Z) (see Sect. 4) in L∞.

Proposition 5.3. For every S ∈ S∞ and Z0 ∈ L∞inv, there exists HJ ∈ H∞, such that the solution Z of (L+S-Z)
satisfies Z ∈ Z∞. Furthermore, there exists C > 0, not depending on S and Z0, such that

‖Z/ρ0‖L∞([0,T ];L∞(Ω)n) +
∥∥HJ

∥∥
H∞
≤ C

(
‖Z0‖L∞(Ω)n + ‖S‖S∞

)
. (5.29)

In particular, since ρ0 is a continuous function satisfying ρ0(T ) = 0, the above relation (5.29) yields Z(T, .) = 0.

6. The inverse mapping theorem in appropriate spaces

The goal of this section is to prove Theorem 2.3. The proof is based on Proposition 5.3 and an inverse
mapping theorem in suitable spaces. It uses similar arguments to those employed, for instance, in [16].

Proof. Let us introduce the following space (see the Defs. (4.4), (4.5) and (4.6)):

E := {(Z,HJ) ∈ Z∞ ×H∞; ∂tZ −DJ∆Z −AJZ −HJ1ω ∈ S∞}. (6.1)

We endow E with the following norm: for every (Z,HJ) ∈ E,∥∥∥(Z,HJ)
∥∥∥
E

= ‖Z(0, .)‖L∞ + ‖Z‖Z∞ +
∥∥∥HJ

∥∥∥
H∞

+
∥∥∥∂tZ −DJ∆Z −AJZ −HJ1ω

∥∥∥
S∞

. (6.2)

Then, (E, ‖.‖E) is a Banach space.
For every Z ∈ Z∞, we introduce the following polynomial nonlinearity of degree more than 2:

Q(Z) := G(Z)−AJZ, (6.3)

where G is defined in (2.3). By denoting γ := max

(
n∑
i=1

αi,
n∑
i=1

βi

)
, we remark that for every Z ∈ Z∞, Q(Z) =

γ∑
i=2

Qi(Z) where for every 2 ≤ i ≤ γ, Qi(Z) is a polynomial term with respect to Z = (z1, . . . , zn) of degree i.

By using (4.3), we deduce that Q(Z) ∈ S∞ and for every 2 ≤ i ≤ γ,

‖Qi(Z)‖S∞ =

∥∥∥∥Qi(Z)

ρS

∥∥∥∥
L∞(QT )n

=

∥∥∥∥ρi−2
0

ρ2
0

ρS

Qi(Z)

ρi0

∥∥∥∥
L∞(QT )n

≤ C ‖Z‖iZ∞ . (6.4)

We introduce the following mapping:

A : E −→ F := S∞ × L∞inv

(Z,H) 7−→ (∂tZ −DJ∆Z −AJZ −HJ1ω −Q(Z), Z(0, .)).
(6.5)

By using (6.1), the fact that for (Z,HJ) ∈ E and Q(Z) ∈ S∞ by (6.4), we see that A is well-defined. Moreover,
A ∈ C1(E;F ). Indeed, all the terms in (6.5) are linear and continuous (thus C∞) thanks to (6.2) except the
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term Q(Z). And, for (Z,HJ) ∈ E, Q(Z) is a polynomial function with respect to Z which is C∞ thanks to
(6.4).

Moreover, the differential of A at the point (0, 0) in the direction (Z,HJ) is

DA(0, 0).(Z,HJ) = (∂tZ −DJ∆Z −AJZ −HJ1ω, Z(0, .)), (6.6)

which is onto by using Proposition 5.3. Then, by using the inverse mapping theorem (see [9], Thm. 2), we deduce
that there exists r > 0, such that for every (S,Z0) ∈ F satisfying ‖(S,Z0)‖F ≤ r, there exists (Z,HJ) ∈ E such
that A(Z,HJ) = (S,Z0). By taking S = 0 and Z0 ∈ L∞inv such that ‖Z0‖L∞(Ω)n ≤ r, we get the existence of

(Z,HJ) ∈ Z∞ ×H∞ such that


∂tZ −DJ∆Z = AJZ +Q(Z)︸ ︷︷ ︸

G(Z) by (6.3)

+HJ1ω in (0, T )× Ω,

∂Z
∂ν = 0 on (0, T )× ∂Ω,
(Z(0, .), Z(T, .)) = (Z0, 0) in Ω.

This concludes the proof of Theorem 2.3.

7. Comments

7.1. More general semilinearities

In this paper, we have only considered particular semilinearities of the form (1.6). But the main result of the
article, i.e., Theorem 1.7 holds true with more general polynomial semilinearities satisfying

∃R ∈ R[X1, . . . , Xn], ∀1 ≤ i ≤ n, ∃ai ∈ R∗, fi = aiR,

where R[X1, . . . , Xn] denotes the space of multivariate polynomials with coefficients in R. In this case, (u∗i )1≤i≤n
is a constant nonnegative stationary state if

(u∗i )1≤i≤n ∈ [0,+∞)n and R(u∗1, . . . , u
∗
n) = 0.

7.2. Degenerate cases

In this part, we assume that Assumption 1.6 is not satisfied. Then, the usual strategy is to perform the
return method, introduced by Jean-Michel Coron in [7] (see also [8], Chap. 6). This method consists in finding a

reference trajectory (U,HJ) verifying U(0, .) = U(T, .) = U∗ of (NL-U) (see Sect. 1.2) such that the linearized

system of (NL-U) around (U,HJ) is null-controllable (see [10] for the first application of this method in the
context of the null-controllability of reaction-diffusion systems).

Example 7.1. We come back to Application 1.11 with J = {1−3}. In this case, (1.20) is not satisfied if

and only if (u∗1, u
∗
3, u
∗
4) = (0, 0, 0). More precisely, the linearized system around

(
(0, u∗2, 0, 0), (0, 0, 0)

)
is not

null-controllable because the fourth equation is decoupled from the others:

∂tu4 − d4∆u4 = −u∗2u4.

By using the return method, the author proves the local null-controllability around (0, u∗2, 0, 0) of (NL-U) (see
[24], Sect. 4.1.1.2).



LOCAL CONTROLLABILITY OF REACTION-DIFFUSION SYSTEMS AROUND NONNEGATIVE STATIONARY STATES 21

Appendix A.

A.1 Toolbox for linear parabolic systems

A.1.1 Well-posedness results

Definition A.1. Let k ∈ N∗, D ∈ Mk(R) a diagonalizable matrix such that Sp(D) ⊂ (0,+∞), A ∈ Mk(R),
U0 ∈ L2(Ω)k, S ∈ L2(QT )k. A function U ∈W k

T is a solution to
∂tU −D∆U = AU + S in (0, T )× Ω,
∂U
∂ν = 0 on (0, T )× ∂Ω,
U(0, .) = U0 in Ω,

(A.1)

if for every V ∈ L2(0, T ;H1(Ω)k,∫ T

0

(∂tU, V )(H1(Ω)k)′,H1(Ω)k) +

∫
QT

D∇U.∇V =

∫
QT

(AU + S).V,

and

U(0, .) = U0 in L2(Ω)k.

The following well-posedness result in L2 holds for linear parabolic equations.

Proposition A.2. With the same notations as in Definition A.1, the Cauchy problem (A.1) admits a unique
solution U ∈W k

T . Moreover, there exists C > 0 independent of U0 and S such that

‖U‖Wk
T
≤ C

(
‖U0‖L2(Ω)k + ‖S‖L2(QT )k

)
. (A.2)

We also have the following L∞-estimate for (A.1).

Proposition A.3. With the same notations as in Definition A.1, the unique solution U of (A.1) satisfies

‖U‖L∞(QT )k ≤ C
(
‖U0‖L∞(Ω)k + ‖S‖L∞(QT )k

)
. (A.3)

with a constant C > 0 independent of U0 and S.

The proofs of Propositions A.2 and A.3 can be found in ([24], Prop. 2.3).

A.1.2 Maximal regularity theorems and Sobolev embeddings

In this part, we recall a maximal regularity theorem in Lp (1 < p < +∞) for parabolic systems and an
embedding result for Sobolev spaces.

We introduce the following spaces: for every r ∈ [1,+∞],

W 2,r
Ne (Ω) :=

{
u ∈W 2,r(Ω) ;

∂u

∂ν
= 0

}
, (A.4)

Xr := Lr(0, T ;W 2,r
Ne (Ω)) ∩W 1,r(0, T ;Lr(Ω)).

We have the following maximal regularity theorem.
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Proposition A.4. ([11], Thm. 2.1)
Let 1 < r < +∞, k ∈ N∗, D ∈Mk(R) such that Sp(D) ⊂ (0,+∞), A ∈Mk(R) and S ∈ Lr(QT )k. The solution
U of (A.1) satisfies

‖U‖Xkr ≤ C ‖S‖Lr(QT )k ,

with C independent of S.

We have the following embedding result for Sobolev spaces.

Proposition A.5. ([34], Thm. 1.4.1)
Let r ∈ [1,+∞[, we have

Xr ↪→

 L
(N+2)r
N+2−2r (QT ) if r < N+2

2 ,
L2r(QT ) if r = N+2

2 ,
L∞(QT ) if r > N+2

2 .

A.2 Stationary states

We only have considered nonnegative stationary constant solutions of (1.3). It is not restrictive because of
the following proposition.

Proposition A.6. Let (ui)1≤i≤n ∈ C2(Ω)n be a nonnegative solution of

∀1 ≤ i ≤ n,
{
−di∆ui = fi(U) in Ω,
∂ui
∂ν = 0 on ∂Ω,

(A.5)

where fi(U) (1 ≤ i ≤ n) is defined in (1.6). Then, for every 1 ≤ i ≤ n, ui is constant.

The proof relies on an entropy inequality:
∑n
i=1 log(ui)fi(U) ≤ 0.

Proof. Let ε > 0 be a small parameter. For every 1 ≤ i ≤ n, we introduce

ui,ε = ui + ε, wi,ε = ui,ε(log ui,ε − 1) + 1 ≥ 0.

We have

∀1 ≤ i ≤ n, ∇wi,ε = log(ui,ε)∇ui,ε, ∆wi,ε = log(ui,ε)∆ui,ε +
|∇ui,ε|2

ui,ε
. (A.6)

Then, from (A.5) and (A.6), we have

∀1 ≤ i ≤ n,

{
−di∆wi,ε + di

|∇ui,ε|2
ui,ε

= log(ui,ε)fi(U) in Ω,
∂wi,ε
∂n = 0 on ∂Ω.

(A.7)

We sum the n equations of (A.7), we integrate on Ω and we use the increasing of the function log:∫
Ω

n∑
i=1

di
|∇ui,ε|2

ui,ε
(A.8)

= −

(∫
Ω

{
log

(
n∏
i=1

uαii,ε

)
− log

(
n∏
i=1

uβii,ε

)}{
n∏
i=1

uαii −
n∏
i=1

uβii

})
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= −

(∫
Ω

{
log

(
n∏
i=1

uαii,ε

)
− log

(
n∏
i=1

uβii,ε

)}{
n∏
i=1

uαii,ε −
n∏
i=1

uβii,ε +O(ε)

})

≤
∫

Ω

∣∣∣∣∣log

(
n∏
i=1

uαii,ε

)
− log

(
n∏
i=1

uβii,ε

)∣∣∣∣∣O(ε) ≤

(
n∑
i=1

(αi + βi)

)
| log(ε)|O(ε) →

ε→0
0.

Moreover,

∀1 ≤ i ≤ n,
∫

Ω

di
|∇uεi |2

uεi
=

∫
Ω

4di|∇
√
uεi |

2. (A.9)

Consequently, from (A.8), (A.9), we get that

∀1 ≤ i ≤ n,
∫

Ω

4di|∇
√
ui|2 = 0.

Therefore, for every 1 ≤ i ≤ n, ui is constant.

Our proof of Theorem 1.7 does not treat the case of stationary states which can change of sign, contrary to
the proof of ([24], Thm. 3.2) (see [24], Sect. 6.2).

A.3 Proof of the existence of invariant quantities in the system

The goal of this section is to prove Proposition 1.3.

Proof. We introduce the notation R :=
n∏
k=1

uαkk −
n∏
k=1

uβkk .

Let i ∈ {m+ 1, . . . , n}. By using the fact that ui ∈WT and from ([12], Lem. 3), we obtain that the mapping
t 7→

∫
Ω
ui(t, x)dx is absolutely continuous and for a.e. 0 ≤ t ≤ T ,

d

dt

∫
Ω

ui(t, x)dx = (∂tui(t, .), 1)(H1(Ω))′,H1(Ω) . (A.10)

Then, by using that ((ui)1≤i≤n, (hi)1≤i≤m) is a trajectory of (NL-U) and by taking w = (0, . . . , 0, 1︸︷︷︸
i

, 0, . . . , 0)tr

in (1.12), we find that for a.e. 0 ≤ t ≤ T ,

(∂tui(t, .), w)(H1(Ω))′,H1(Ω) = di(∇ui(t, .),∇w)L2(Ω),L2(Ω) +

∫
Ω

(βi − αi)R (A.11)

=

∫
Ω

(βi − αi)R.

Then, by using (A.10) and (A.11), we get for a.e. 0 ≤ t ≤ T ,

d

dt

∫
Ω

ui(t, .)

βi − αi
=

∫
Ω

R. (A.12)

Now, let m+ 1 ≤ k 6= l ≤ n. By (A.12) for i = k and (A.12) for i = l , we deduce that for a.e. 0 ≤ t ≤ T ,

d

dt

∫
Ω

(
uk(t, .)

βk − αk
− ul(t, .)

βl − αl

)
= 0. (A.13)
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Therefore, from (A.13), we have for every t ∈ [0, T ],

1

|Ω|

∫
Ω

(
uk(t, x)

βk − αk
− ul(t, x)

βl − αl

)
dx =

u∗k
βk − αk

− u∗l
βl − αl

.

If we assume that d := dk = dl, then the equation satisfied by v := (βl − αl)uk − (βk − αk)ul is
∂tv − d∆v = 0 in (0, T )× Ω,
∂v
∂ν = 0 on (0, T )× ∂Ω,
v(T, .) = (βl − αl)u∗k − (βk − αk)u∗l in Ω.

(A.14)

The backward uniqueness of the heat equation (see for instance [4], Thm. II.1) applied to (A.14) leads to

∀t ∈ [0, T ], (βl − αl)uk(t, .)− (βk − αk)ul(t, .) = (βl − αl)u∗k − (βk − αk)u∗l .

This yields (1.15).

A.4 Proofs concerning the change of variables

A.4.1 Proof of the equivalence of the two systems

In this section, we prove Proposition 2.1. It is based on the following algebraic lemma.

Lemma A.7. Let s be an integer such that s ≥ 2. Let (a1, . . . , as) ∈ Cs be such that ai 6= aj for i 6= j. Then,
we have

s∑
i=1

s∏
j=1
j 6=i

1

ai − aj
= 0. (A.15)

Proof. Let C(X) be the field of fractional functions with coefficients in C and F ∈ C(X) be defined by

F (X) :=

s−1∑
i=1

s−1∏
j=1
j 6=i

1

ai − aj

 1

ai −X

+

s−1∏
j=1

1

X − aj
. (A.16)

The partial fractional decomposition of F is the following one:

F (X) =

s−1∑
i=1

bi
X − ai

, where bi ∈ C.

For 1 ≤ i ≤ s− 1, we compute each bi by multiplying (A.16) by (X − ai) and by evaluating X = ai:

bi = −
s−1∏
j=1
j 6=i

1

ai − aj
+

s−1∏
j=1
j 6=i

1

ai − aj
= 0.
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We deduce that F = 0. By remarking that

F (as) =

s∑
i=1

s∏
j=1
j 6=i

1

ai − aj
= 0,

we conclude the proof of (A.15)

The following result is an easy consequence of Lemma A.7.

Corollary A.8. For every m+ 2 ≤ k ≤ n, we have

k∑
l=m+1

Pkl(βl − αl) = 0. (A.17)

Proof. By (2.2), we have by taking s = k −m and ai = di+m for 1 ≤ i ≤ k −m in Lemma A.7

k∑
l=m+1

Pkl(βl − αl) =

k−m∑
i=1

Pk,i+m(βi+m − αi+m) =

k−m∑
i=1

i−m∏
j=1
j 6=i

1

di+m − dj+m
= 0.

This ends the proof of Corollary A.8.

Now, we turn to the proof of Proposition 2.1.

Proof. We introduce the following notation: R :=
n∏
k=1

uαkk −
n∏
k=1

uβkk .

We assume that (U,HJ) is a trajectory of (NL-U). The equations 1 ≤ i ≤ m + 1 of (NL-Z) are clearly
satisfied. Let m+ 2 ≤ i ≤ n. We have:

∂tzi − di∆zi = ∂t

 i∑
j=m+1

Pij(uj − u∗j )

− di∆
 i∑
j=m+1

Pij(uj − u∗j )


=

i∑
j=m+1

Pij(∂tuj − dj∆uj + (dj − di)∆uj)

=

i∑
j=m+1

Pij((βj − αj)R) + Pij (dj − di)︸ ︷︷ ︸
0 if j=i

∆uj

 (A.18)

= R

i∑
j=m+1

Pij(βj − αj)︸ ︷︷ ︸
0 by Corollary A.8

+

i−1∑
j=m+1

Pij(dj − di)︸ ︷︷ ︸
Pi−1,j by (2.2)

∆uj

= ∆zi−1.

This ends the proof of “⇒”.
We assume that (Z,HJ) satisfies (NL-Z). Then, the equations

∂tui − di∆ui = (βi − αi)R, (A.19)
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are clearly satisfied for 1 ≤ i ≤ m + 1. We prove (A.19) by strong induction on i ∈ {m + 2, . . . , n}. By using
(A.18) for i = m+ 2 and (A.19) for i = m+ 1, we obtain

m+2∑
j=m+1

Pm+2,j(∂tuj − dj∆uj) = 0

⇔ Pm+2,m+2(∂tum+2 − dm+2∆um+2) = −RPm+2,m+1(βm+1 − αm+1).

This leads to (A.19) for i = m+ 2 by using Pm+2,m+1/Pm+2,m+2 = −(βm+2 − αm+2)/(βm+1 − αm+1) by (2.2).

For i > m + 2, by induction, we have Pii(∂tui − di∆ui) +
i−1∑

j=m+1

Pij(βj − αj)R = 0 by (A.18). Then, from

Corollary A.8, we have
i−1∑

j=m+1

Pij(βj − αj) = −Pii(βi − αi). This yields (A.19) and ends the proof of “⇐”.

This concludes the proof of Proposition 2.1.

A.4.2 Proof of the equivalence concerning the mass condition

In this section, we prove the equivalence (2.7) which leads to the equivalence between Theorems 2.3 and 1.7.

Proof. Assume that Z0 ∈ L∞inv. Then, we have

∀m+ 2 ≤ i ≤ n,
∫

Ω

i∑
k=m+1

Pik(uk,0(x)− u∗k)dx = 0. (A.20)

We prove (1.18) by strong induction on k ≥ m+ 2. The case k = m+ 2 comes from (A.20) for i = m+ 2 and
Pm+2,m+1/Pm+2,m+2 = −(βm+2 − αm+2)/(βm+1 − αm+1) by (2.2). For i > m+ 2 in (A.20), by induction, we
have

∫
Ω

{
Pii(ui,0(x)− u∗i ) +

i−1∑
k=m+1

Pik
(βk − αk)(um+1,0(x)− u∗m+1)

βm+1 − αm+1

}
dx = 0.

Then, from Corollary A.8, we have
i−1∑

k=m+1

Pik(βk − αk) = −Pii(βi − αi). This yields (1.18) for k = i.

Assume (1.18) holds. From Corollary A.8, we have that for every m+ 2 ≤ i ≤ n,

∫
Ω

i∑
k=m+1

Pik(uk,0(.)− u∗k) =

∫
Ω

i∑
k=m+1

Pik
βk − αk

βm+1 − αm+1
(um+1,0(.)− u∗m+1) = 0.

This ends the proof of (2.7).

A.5 Proof of an observability estimate for linear finite dimensional systems

The goal of this section is to give a self-contained proof of Lemma 3.5. By the Hilbert Uniqueness Method
(see [8], Thm. 2.44), it suffices to show the following null-controllability result for finite dimensional systems.
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Proposition A.9. There exist C > 0, p1, p2 ∈ N such that for every τ ∈ (0, 1), λ ≥ λ1 with λ1 the first positive
eigenvalue of (−∆, H2

Ne(Ω)), y0 ∈ Rn, there exists a control h ∈ L2(0, τ ;Rm) verifying

‖h‖2L2(0,T ;Rm) ≤ C
(

1 +
1

τp1
+ λp2

)
‖y0‖2Rn (A.21)

such that the solution y ∈ L2(0, τ ;Rn) of{
y′ = Ay +Bh, in (0, τ),
y(0) = y0 in Rn, (A.22)

where A = −λDJ +AJ (see (2.5), (2.8) and (2.9)) and B =

(
Im
(0)

)
∈Mn,m(R), satisfies y(τ) = 0.

Remark A.10. We do not treat the case λ0 = 0 with initial data y0 ∈ Rm+1×{0}n−m−1 because it is a simple
adaptation of the following proof.

Proof. Let τ ∈ (0, 1), λ ≥ λ1, y0 ∈ Rn.

Step 1: Construction of the control h by a Brunovsky approach. We start by defining y to be the free
solution of the system (A.22) (take h = 0). We have y(t) = etAy0 = et(−λDJ+AJ )y0. We easily have that for any
l ≥ 0, ∥∥∥y(l)

∥∥∥
L2(0,τ ;Rn)

≤ C(1 + λl−1/2) ‖y0‖Rn . (A.23)

We choose a cut-off function η ∈ C∞([0, τ ];R) such that η = 1 on [0, τ/3] and η = 0 on [2τ/3, τ ] verifying:

∀p ∈ N, ∀t ∈ [0, τ ], |η(p)(t)| ≤ Cp
τp
. (A.24)

We start by choosing for every i ∈ {1, . . . ,m− 1, n},

yi(t) := η(t)yi(t). (A.25)

Then, by using the cascade form of (A.22), we define by reverse induction on i ∈ {n− 1, n− 2, . . . ,m+ 1},

yi(t) := − 1

λ

(
y′i+1(t) + λdi+1yi+1(t)

)
. (A.26)

Then, ym is defined by the equation number (m+ 1) by

ym(t) :=
1

am+1,m

y′m+1(t) + λdm+1ym+1(t)−
n∑
s=1
s6=m

am+1,sys(t)

 . (A.27)

Finally, we set for the control

h := y′ −Ay. (A.28)
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By (A.27) and (A.28), h is of the form h = (h1, . . . , hm, 0, . . . , 0).

Step 2: Properties of the solution y and estimate of the control h. First, we remark that,

∀1 ≤ i ≤ n,
{
yi = yi, in [0, τ/3],
yi = 0, in [2τ/3, τ ].

(A.29)

Indeed, the property (A.29) is clear for i ∈ {1, . . . ,m − 1, n} by definition (A.25). Then, we prove (A.29) by
reverse induction on m ≤ i ≤ n by using (A.26), (A.27) and the definition of y, for instance, for t ∈ [0, τ/3]:

yn−1(t) = − 1

λ
(y′n(t) + λdnyn(t)) = − 1

λ
(yn
′(t) + λdnyn(t)) = yn−1(t).

Now, we have by (A.25), (A.24) and (A.23) that for every i ∈ {1, . . . ,m− 1},

1∑
l=0

∥∥∥y(l)
i

∥∥∥
L2(0,τ ;Rn)

≤ C
(

1 +
1

τ1/2
+ λ1/2

)
‖y0‖Rn . (A.30)

Then, we easily prove by reverse induction on m ≤ i ≤ n by using (A.23), (A.24), (A.25), (A.26), (A.27) and
(A.30)

i+1−m∑
l=0

∥∥∥y(l)
i

∥∥∥
L2(0,τ ;Rn)

≤ C
(

1 +
1

τn−m+1/2
+ λn−m+1/2

)
‖y0‖L2(0,τ ;Rn) .

Hence, the control h and the state y satisfy (A.21), (A.22) with p1 = p2 = 2(n−m+ 1/2) and y(τ) = 0.

A.6 Source term method in Lr for r ∈ {2,+∞}
We use the same notations as in the beginning of Section 4. The goal of this section is to prove Propositions 4.3

and 5.3. We have the following result.

Proposition A.11. For every S ∈ Sr and Z0 ∈ Lrinv, there exists HJ ∈ Hr, such that the solution Z of (L+S-Z)
satisfies Z ∈ Zr. Furthermore, there exists C > 0, not depending on S and Z0, such that

‖Z/ρ0‖L∞([0,T ];Lr(Ω)n) +
∥∥HJ

∥∥
Hr
≤ CT

(
‖Z0‖Lr(Ω)n + ‖S‖Sr

)
, (A.31)

where CT = CeC/T .

The proof is inspired by ([5], Prop. 2.6) and ([28], Prop. 2.3).

Proof. For k ≥ 0, we define Tk := T (1− q−k) where q ∈ (1,
√

2). On the one hand, let a0 := Z0 and, for k ≥ 0,
we define ak+1 := ZS(T−k+1, .) where ZS is the solution to


∂tZS −DJ∆ZS = AJZS + S in (Tk, Tk+1)× Ω,
∂ZS
∂ν = 0 on (Tk, Tk+1)× ∂Ω,
ZS(T+

k , .) = 0 in Ω.
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From Propositions A.2 and A.3, using the estimates (A.2) and (1.11) for r = 2 or (A.3) and (1.11) for r = +∞,
we have

‖ak+1‖Lr(Ω)n ≤ ‖ZS‖L∞([Tk,Tk+1];Lr(Ω)n) ≤ C ‖S‖Lr((Tk,Tk+1);Lr(Ω)n) . (A.32)

On the other hand, for k ≥ 0, we also consider the control systems
∂tZH −DJ∆ZH = AJZH +HJ1ω in (Tk, Tk+1)× Ω,
∂ZH
∂ν = 0 on (Tk, Tk+1)× ∂Ω,
ZH(T+

k , .) = ak in Ω.

Using Theorem 3.1 for r = 2 or Theorem 5.1 for r = +∞, we can define HJ
k ∈ Lr((Tk, Tk+1) × Ω)m such

that ZH(T−k+1, .) = 0 and, thanks to the cost estimate (3.1) for r = 2 or (5.1) for r = +∞ (recalling that

CT ≤MeM/T ),

∥∥HJ
k

∥∥
Lr((Tk,Tk+1)×Ω)m

≤Me
M

Tk+1−Tk ‖ak‖L2(Ω)n . (A.33)

In particular, for k = 0, we have

∥∥HJ
0

∥∥
Lr((T0,T1)×Ω)m

≤Me
qM

T (q−1) ‖Z0‖L2(Ω)n .

And, since ρ0 is decreasing

∥∥HJ
0 /ρ0

∥∥
Lr((T0,T1)×Ω)m

≤ ρ−1
0 (T1)Me

qM
T (q−1) ‖Z0‖L2(Ω)n . (A.34)

For k ≥ 0, since ρS is decreasing, combining (A.32) and (A.33) yields

∥∥HJ
k+1

∥∥
Lr((Tk+1,Tk+2)×Ω)m

≤ CMe
M

Tk+2−Tk+1 ρS(Tk) ‖S/ρS‖Lr((Tk,Tk+1)×Ω)n . (A.35)

In particular, by using Me
M

Tk+2−Tk+1 ρS(Tk) = ρ0(Tk+2) (see (4.1) and (4.2)), we have∥∥HJ
k+1

∥∥
Lr((Tk+1,Tk+2)×Ω)m

≤ Cρ0(Tk+2) ‖S/ρS‖Lr((Tk,Tk+1)×Ω)n . (A.36)

Then, from (A.36), by using the fact that ρ0 is decreasing,∥∥HJ
k+1/ρ0

∥∥
Lr((Tk+1,Tk+2)×Ω)m

≤ C ‖S/ρS‖Lr((Tk,Tk+1)×Ω)n . (A.37)

As in the original proof, we can paste the controls HJ
k for k ≥ 0 together by defining

HJ :=
∑
k≥0

HJ
k 1(Tk,Tk+1).

We have the estimate from (A.34) and (A.37)

∥∥HJ
∥∥
Hr
≤ C ‖S‖Sr + Cρ−1

0 (T1)Me
qM

T (q−1) ‖Z0‖L2(Ω)n .
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The state Z can also be reconstructed by concatenation of ZS + ZH , which are continuous at each junction Tk
thanks to the construction. Then, we estimate the state. We use the energy estimate (A.2) for r = 2 or (A.3)
for r = +∞ on each time interval (Tk, Tk+1):

‖ZS‖L∞(Tk,Tk+1;Lr(Ω)n) ≤ C ‖S‖Lr((Tk,Tk+1)×Ω)n ,

and

‖ZH‖L∞(Tk,Tk+1;Lr(Ω)n) ≤ C
(
‖ak‖Lr(Ω)n +

∥∥HJ
k

∥∥
Lr((Tk,Tk+1)×Ω)m

)
.

Proceeding similarly as for the estimate on the control, we obtain respectively

‖ZS/ρ0‖L∞(Tk,Tk+1;Lr(Ω)n) ≤ CM
−1 ‖S‖Sr ,

and

‖ZH/ρ0‖L∞(Tk,Tk+1;Lr(Ω)n) ≤ CM
−1 ‖S‖Sr + Cρ−1

0 (T1)Me
qM

T (q−1) ‖Z0‖L∞(Ω)n .

Therefore, for an appropriate choice of constant C > 0, Z and HJ satisfy (A.31). This concludes the proof of
Proposition A.11.

A.7 Proof of a strong observability inequality

We take the same notations as in the beginning of Section 4. The goal of this section is to prove Corollary 4.4.

Proof. We define F1 : (Z0, S) ∈ L2
inv × S2 7→ Z(T, .) ∈ L2

inv, where Z is the solution of (L+S-Z) with HJ = 0
and F2 : HJ ∈ H2 7→ Z(T, .) ∈ L2

inv is the solution of (L+S-Z) with (Z0, S) = (0, 0). It is easy to see that the
null-controllability of (L+S-Z) is equivalent to Range(F1) ⊂ Range(F2).

From ([8], Lem. 2.48), we have that Range(F1) ⊂ Range(F2) is equivalent to the observability inequality

∃CT > 0, ∀ϕT ∈ L2
inv, ‖F∗1 (ϕT )‖L2

inv×S2
≤ CT ‖F∗2 (ϕT )‖H2

. (A.38)

Consequently, by using the null-controllability result for (L+S-Z): Proposition 4.3, we have that (A.38) holds
true. Moreover, the constant CT in (A.38) can be chosen such that CT ≤ CeC/T by using the cost estimate
(4.7) (see the proof of [8], Thm. 2.44 for more details between the constant of cost estimate and the constant of
observability inequality).

Duality arguments between Z, the solution of (L+S-Z), and ϕ, the solution of (4.8), lead to:∫
Ω

F1(Z0, S)(x).ϕT (x)dx =

∫
Ω

Z0(x).ϕ(0, x)dx+

∫ ∫
(0,T )×Ω

S.ϕ,

((Z0, S),F∗1 (ϕT ))L2(Ω)n×S2 =

∫
Ω

Z0(x).ϕ(0, x)dx+

∫ ∫
(0,T )×Ω

S.ϕρ2
Sρ
−2
S ,

∫
Ω

F2(HJ)(x).ϕT (x)dx =

∫ ∫
(0,T )×ω

HJ .ϕ,

(HJ ,F∗2 (ϕT ))H2 =

m∑
i=1

∫ ∫
(0,T )×Ω

hi.ϕiρ
2
01ωρ

−2
0 .
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Consequently, by identification, we find

F∗1 (ϕT ) = (ϕ(0, .), ϕρ2
S) ∈ L2(Ω)n × S2, F∗2 (ϕT ) = (ϕiρ

2
01ω)1≤i≤m ∈ H2. (A.39)

Finally, by putting (A.39) in (A.38), we exactly obtain (4.9) with CT = CeC/T . This ends the proof of
Corollary 4.4.
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[27] P. Lissy and E. Zuazua, Internal observability for coupled systems of linear partial differential equations. Preprint hal-01480301
(2018).

[28] Y. Liu, T. Takahashi and M. Tucsnak, Single input controllability of a simplified fluid-structure interaction model. ESAIM:
COCV 19 (2013) 20–42.

[29] S. Micu and T. Takahashi, Local controllability to stationary trajectories of a Burgers equation with nonlocal viscosity. J.
Differ. Equ. 264 (2018) 3664–3703.

[30] B. Perthame, Parabolic equations in biology. Growth, reaction, movement and diffusion. Lecture Notes on Mathematical
Modelling in the Life Sciences. Springer, Cham, 2015.

[31] M. Pierre, Global existence in reaction-diffusion systems with control of mass: a survey. Milan J. Math. 78 (2010) 417–45.

[32] T.I. Seidman, How violent are fast controls? Math. Control Signals Syst. 1 (1988) 89–95.
[33] P. Souplet, Global existence for reaction-diffusion systems with dissipation of mass and quadratic growth. J. Evolut. Equ. 18

(2018) 1713–1720.
[34] Z. Wu, J. Yin and C. Wang, Elliptic & parabolic equations. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ (2006).

https://hal.archives-ouvertes.fr/hal-01480301v2

	Local controllability of reaction-diffusion systems around nonnegative stationary states
	1 Introduction
	1.1 Free system
	1.2 Control system and open question
	1.3 Nonlinear well-posedness result
	1.4 Invariant quantities of the nonlinear dynamics
	1.5 Main result
	1.6 Bibliographical comments
	1.6.1 Linear results
	1.6.2 Semilinear results


	2 An adequate change of variables and linearization
	2.1 Change of variables rotect -- cross diffusion system
	2.2 Linearization

	3 Linear null-controllability under constraints in L2
	3.1 A null-controllability result for the low frequencies
	3.2 The Lebeau-Robbiano's method

	4 The source term method in L2
	5 Construction of L-controls and the source term method in L
	5.1 The Penalized Hilbert Uniqueness Method to build L-controls
	5.1.1 The beginning of the Penalized Hilbert Uniqueness Method
	5.1.2 Bootstrap method
	5.1.3 The end of the Penalized Hilbert Uniqueness Method

	5.2 The come back to the source term method in L

	6 The inverse mapping theorem in appropriate spaces
	7 Comments
	7.1 More general semilinearities
	7.2 Degenerate cases

	Appendix A 
	A.1 Toolbox for linear parabolic systems
	A.1.1 Well-posedness results
	A.1.2 Maximal regularity theorems and Sobolev embeddings

	A.2 Stationary states
	A.3 Proof of the existence of invariant quantities in the system
	A.4 Proofs concerning the change of variables
	A.4.1 Proof of the equivalence of the two systems
	A.4.2 Proof of the equivalence concerning the mass condition

	A.5 Proof of an observability estimate for linear finite dimensional systems
	A.6 Source term method in Lr for r {2,+}
	A.7 Proof of a strong observability inequality


	References

