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LOCAL CONTROLLABILITY OF REACTION-DIFFUSION
SYSTEMS AROUND NONNEGATIVE STATIONARY STATES

KÉVIN LE BALC’H

September 10, 2018

Abstract. We consider a n × n nonlinear reaction-diffusion system posed on a
smooth bounded domain Ω of RN . This system models reversible chemical reac-
tions. We act on the system through m controls (1 ≤ m < n), localized in some
arbitrary nonempty open subset ω of the domain Ω. We prove the local exact
controllability to nonnegative (constant) stationary states in any time T > 0. A
specificity of this control system is the existence of some invariant quantities in
the nonlinear dynamics that prevents controllability from happening in the whole
space L∞(Ω)n. The proof relies on several ingredients. First, an adequate affine
change of variables transforms the system into a cascade system with second or-
der coupling terms. Secondly, we establish a new null-controllability result for the
linearized system thanks to a spectral inequality for finite sums of eigenfunctions
of the Neumann Laplacian operator, due to David Jerison, Gilles Lebeau and Luc
Robbiano and precise observability inequalities for a family of finite dimensional
systems. Thirdly, the source term method, introduced by Yuning Liu, Takéo Taka-
hashi and Marius Tucsnak, is revisited in a L∞-context. Finally, an appropriate
inverse mapping theorem enables to go back to the nonlinear reaction-diffusion
system.

Contents

1. Introduction 2
1.1. Free system 2
1.2. Control system and open question 2
1.3. Bibliographical comments 3
2. Definition and general properties of the trajectories 6
2.1. Usual notations 6
2.2. Well-posedness results and definition of a trajectory 7
2.3. Invariant quantities of the nonlinear dynamics 8
3. An adequate change of variables and linearization 8
3.1. Change of variables - Cross diffusion system 8
3.2. Linearization 10
4. Main results 10
5. Linear null-controllability under constraints in L2 11
5.1. A null-controllability result for the low frequencies 12
5.2. The Lebeau-Robbiano’s method 13
6. The source term method in L2 15
7. Construct L∞-controls and the source term method in L∞ 16
7.1. Construct L∞-controls: the Penalized Hilbert Uniqueness Method 16
7.2. The come back to the source term method in L∞ 20
8. The inverse mapping theorem in appropriate spaces 20
9. Comments 21
9.1. More general semilinearities 21
9.2. Degenerate cases 21
Appendix A. 23
A.1. Stationary states 23
A.2. Proof of the existence of invariant quantities in the system 24
A.3. Proofs concerning the change of variables 25
A.4. Proof of an observability estimate for linear finite dimensional systems 27

1



A.5. Source term method in Lr for r ∈ {2,+∞} 28
A.6. Proof of a strong observability inequality 30
References 30

1. Introduction

1.1. Free system. We consider the following reversible chemical reaction:

(1) α1A1 + · · ·+ αnAn 
 β1A1 + · · ·+ βnAn,

where n ∈ N∗, A1, . . . , An denote n chemical species and (α1, . . . , αn), (β1, . . . , βn)
belongs to (N)n and are such that for every 1 ≤ i ≤ n, αi 6= βi.

For 1 ≤ i ≤ n, let ui(t, .) : Ω→ R be the concentration of the chemical component
Ai at time t. By using the law of mass action and Fick’s law, (ui)1≤i≤n satisfies the
following reaction-diffusion system:

∀1 ≤ i ≤ n,

∂tui − di∆ui︸ ︷︷ ︸
diffusion

= (βi − αi)

(
n∏
k=1

uαkk −
n∏
k=1

uβkk

)
︸ ︷︷ ︸

reaction

in (0, T )× Ω,

∂ui
∂ν = 0 on (0, T )× ∂Ω,
ui(0, .) = ui,0 in Ω,

(2)

where T ∈ (0,+∞), Ω is a bounded, connected, open subset of RN (with N ≥ 1)
of class C2, ν is the outer unit normal vector to ∂Ω and for every 1 ≤ i ≤ n,
di ∈ (0,+∞) is the diffusion coefficient of the chemical species Ai.

In general, global existence of classical solutions (in the sense of [35, Definition
(1.5)]) or weak solutions (in the sense of [35, Definition (5.12)]) for (2) is an open
problem.

• For particular semilinearities with a so-called triangular structure (see [35,
Section 3.3]), classical solutions exist in the time interval [0,+∞) and are
unique. For example, take n = 2, α1 ≥ 1, β2 = 1, α2 = β1 = 0 and apply
[35, Theorem 3.1].
• For at most quadratic nonlinearities, global existence of weak solutions holds
(see [35, Theorem 5.12]). For instance, take n = 4, α1 = α3 = β2 = β4 = 1,
α2 = α4 = β1 = β3 = 0. For spatial dimension N ≥ 3, the recent works
[7] and [37] (inspired by the previous works [25] and [26]) prove that the
solutions are bounded for bounded initial data, which ensure global existence
of classical solutions.
• Without a priori L1-bound on the nonlinearities, a challenging problem is
to understand whether global solutions exist. For example, take n = 2,
α1 = β2 = 2, β1 = α2 = 3 (see [35, Problem 1]).

Let us also mention that global existence of renormalized solutions holds in all cases
for (2) (see [19]).

1.2. Control system and open question. We assume that one can act on the
system through controls localized on a nonempty open subset ω of Ω. From a chem-
ical viewpoint, it means that one can add or remove chemical species at a specific
location of the domain Ω. More precisely, let

(3) J ⊂ {1, . . . , n} and := #J < n be the number of controls.
2



We consider the control system:

∀1 ≤ i ≤ n,
∂tui − di∆ui =

(βi − αi)
(

n∏
k=1

uαkk −
n∏
k=1

uβkk

)
+ hi1ω1i∈J in (0, T )× Ω,

∂ui
∂ν = 0 on (0, T )× ∂Ω,
ui(0, .) = ui,0 in Ω,

(NL-U)

where 1i∈J := 1 if i ∈ J and 0 if i /∈ J . Here, (ui(t, .))1≤i≤n : Ω→ Rn is the state to
be controlled, (hi(t, .))i∈J : Ω→ Rm is the control input supported in ω.

Let (u∗i )1≤i≤n be a nonnegative stationary state of (2) i.e.

(4) ∀1 ≤ i ≤ n, u∗i ∈ [0,+∞) and
n∏
k=1

u∗k
αk =

n∏
k=1

u∗k
βk .

Note that the nonnegative stationary solutions of (2) do not depend on the space
variable (see Proposition A.1 in Appendix A.1). Thus, it is not restrictive to assume
that (u∗i )1≤i≤n ∈ [0,+∞)n.

The question we ask is the following one: For a given initial condition (ui,0)1≤i≤n,
does there exist (hi)i∈J such that the solution (ui)1≤i≤n of (NL-U) satisfies

(5) ∀i ∈ {1, . . . , n}, ui(T, .) = u∗i ?

Under appropriate assumptions (see Assumption 2.4 and Assumption 3.2 below),
we prove the controllability of (NL-U), in an appropriate subspace of L∞(Ω)n, locally
around (u∗i )1≤i≤n, with controls in L∞((0, T )× Ω)m (see Theorem 4.2 below).

By an adequate affine transformation, the proof relies on the study of the null-
controllability of an equivalent cascade system with second order coupling terms (see
Section 3.1 below).

1.3. Bibliographical comments. In this section, we recall some known results
about the null-controllability of linear and semilinear parabolic systems with Neu-
mann boundary conditions. We investigate the case of one control, i.e., m = 1 in
this section to simplify. We introduce the notation

QT := (0, T )× Ω.

1.3.1. Linear results. The null-controllability of the heat equation was proved inde-
pendently by Gilles Lebeau, Luc Robbiano in 1995 (see [30], [24] and the survey [29])
and by Andrei Fursikov, Oleg Imanuvilov in 1996 (see [20] and [17]).

Theorem 1.1. [20, Chapter I, Theorem 2.1]
For every z0 ∈ L2(Ω), there exists h ∈ L2(QT ) such that the solution z of

∂tz −∆z = h1ω in (0, T )× Ω,
∂z
∂ν = 0 on (0, T )× ∂Ω,
z(0, .) = z0 in Ω,

satisfies z(T, .) = 0.

In the work [16], Enrique Fernández-Cara, Manuel González-Burgos, Sergio Guer-
rero and Jean-Pierre Puel prove the same null-controllability result for more gen-
eral parabolic operators, i.e., ∂tz − ∆z + B(t, x).∇z + a(t, x)z with a ∈ L∞(QT ),
B ∈ L∞(QT )n and linear Robin conditions, i.e., ∂z

∂ν + β(t, x)z = 0 on (0, T ) × ∂Ω
with β ∈ L∞((0, T )× ∂Ω;R+).

Then, the null-controllability of coupled linear parabolic systems has been a chal-
lenging issue. Let us now focus on a cascade system with coupling terms of zero
order. The following result comes from an easy adaptation of Manuel González-
Burgos and Luz de Teresa’s proof in the case of Dirichlet boundary conditions to
Neumann boundary conditions.
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Theorem 1.2. [22, Theorem 1.1]
Let (di)1≤i≤n ∈ (0,+∞)n, (ai,j)1≤i,j≤n ∈ Rn×n and assume that ai+1,i 6= 0 for every
1 ≤ i ≤ n. Then, for every (zi,0)1≤i≤n ∈ L2(Ω)n, there exists h ∈ L2(QT ) such that
the solution (zi)1≤i≤n of

∂tz1 − d1∆z1 =
n∑
k=1

a1,kzk + h1ω in (0, T )× Ω,

∂tzi − di∆zi = ai,i−1zi−1 in (0, T )× Ω, 2 ≤ i ≤ n,
∂zi
∂ν = 0 on (0, T )× ∂Ω, 1 ≤ i ≤ n,
zi(0, .) = zi,0 in Ω, 1 ≤ i ≤ n,

satisfies zi(T, .) = 0 for every 1 ≤ i ≤ n.

Roughly speaking, the component z1 is controlled by the control input h, the com-
ponent z2 is controlled by z1 thanks to the coupling term a2,1z1, . . . , the component
zn is controlled by zn−1 thanks to the coupling term an,n−1zn−1.

The following result for a 2 × 2 linear parabolic system with a “cross-diffusion”
term is due to Sergio Guerrero. We introduce the function space

L2
σ(Ω) :=

{
z ∈ L2(Ω) ;

∫
Ω
z = 0

}
.

Theorem 1.3. [21, Theorem 1]
Let (d1, d2) ∈ (0,+∞)2, a, b ∈ R. Then, for every (z1,0, z2,0) ∈ L2(Ω)×L2

σ(Ω), there
exists h ∈ L2(QT ) such that the solution (z1, z2) of

∂tz1 − d1∆z1 = az1 + bz2 + h1ω in (0, T )× Ω,
∂tz2 − d2∆z2 = ∆z1 in (0, T )× Ω,
∂z1
∂ν = ∂z2

∂ν = 0 on (0, T )× ∂Ω,
(z1, z2)(0, .) = (z1,0, z2,0) in Ω,

satisfies (z1, z2)(T, .) = 0.

The main difference with Theorem 1.2 is that now, the coupling term is of second
order ∆z1. The condition

∫
Ω z2,0 = 0 is necessary because by integrating with respect

to the space variable the second equation of the system, we get
d

dt

∫
Ω
z2(t, .) = 0.

In particular if z2(T, .) = 0, then we need
∫

Ω z2,0 = 0.
In view of Theorem 1.2 and Theorem 1.3, a natural question is: are cascade cross-

diffusion systems (of arbitrary size n ≥ 2) null-controllable? A byproduct of this
article is a positive answer to this question.

Theorem 1.4. Let (di)1≤i≤n ∈ (0,+∞)n, (ai,j)1≤i,j≤n ∈ Rn×n and assume that
a2,1 6= 0. Then, for every (zi,0)1≤i≤n ∈ L2(Ω) × L2

σ(Ω)n−1, there exists h ∈ L2(QT )
such that the solution (zi)1≤i≤n of

∂tz1 − d1∆z1 =
n∑
k=1

a1,kzk + h1ω in (0, T )× Ω,

∂tz2 − d2∆z2 = a2,1z1 in (0, T )× Ω,
∂tzi − di∆zi = ∆zi−1 in (0, T )× Ω, 3 ≤ i ≤ n,
∂zi
∂ν = 0 on (0, T )× ∂Ω, 1 ≤ i ≤ n,
zi(0, .) = zi,0 in Ω, 1 ≤ i ≤ n,

satisfies zi(T, .) = 0 for every 1 ≤ i ≤ n.

Theorem 1.4 is a particular case of Theorem 5.1 with m = 1 (see Section 5 below).

Remark 1.5. The proof strategies of Theorem 1.2 and Theorem 1.3 rely on global
Carleman estimates. By combining these methods to obtain Theorem 1.4, we are
facing the same difficulty as appearing in [15], i.e., we can only treat the case of n×n
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systems with n ≤ 5. Inspired by the recent work [32] by Pierre Lissy and Enrique
Zuazua based on the Lebeau-Robbiano method, we prove Theorem 1.4.

Remark 1.6. Note that the diffusion matrix



d1 0 . . . . . . 0

1 d2
. . .

. . .
...

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
0 . . . 0 1 dn


is diagonalizable

if and only if di 6= dj for every i 6= j. In this case, the Kalman condition [2,
Theorem 5.3] (that can be easily extended to Neumann boundary conditions instead
of Dirichlet boundary conditions) yields null-controllability for initial data in L2

σ(Ω)n

which is smaller that L2(Ω)× L2
σ(Ω)n−1.

For a recent survey on the null-controllability of linear parabolic systems, see [3]
and references therein.

1.3.2. Semilinear results. Let (di) ∈ (0,+∞)n, (fi)1≤i≤n ∈ C∞(Rn;R)n, satisfying
fi(0) = 0 for every 1 ≤ i ≤ n. For semilinear parabolic systems

(NL) ∀1 ≤ i ≤ n,


∂tzi − di∆zi = fi((zj)1≤j≤n) + h1ω1i∈{1} in (0, T )× Ω,
∂zi
∂ν = 0 on (0, T )× ∂Ω,
zi(0, .) = zi,0 in Ω,

the usual strategy consists in deducing a local null-controllability result for (NL) from
a (global) null-controllability result for the linearized system around ((zi)1≤i≤n, h) =
(0, 0)

(L) ∀1 ≤ i ≤ n,


∂tzi − di∆zi =

n∑
j=1

∂jfi(0)zj + hi1ω1i∈{1} in (0, T )× Ω,

∂zi
∂ν = 0 on (0, T )× ∂Ω,
zi(0, .) = zi,0 in Ω.

In this article, we use the powerful source term method, introduced by Yuning Liu,
Takéo Takahashi and Marius Tucsnak in [33]. This method enables to prove null-
controllability in time T for

∀1 ≤ i ≤ n

∂tzi − di∆zi =
n∑
j=1

∂jfi(0)zj + hi1ω1i∈{1} + Si(t, x) in (0, T )× Ω,

∂zi
∂ν = 0 on (0, T )× ∂Ω,
zi(0, .) = zi,0 in Ω,

(L+S)

where Si (1 ≤ i ≤ n) has a prescribed decay rate at t = T , depending on the cost of
null-controllability for (L). Then, for (zi,0)1≤i≤n sufficiently small (in an appropriate
norm), a fixed-point strategy in suitable spaces is applied to the map:

N : (Si)1≤i≤n 7→

fi((zj)1≤j≤n)−
n∑
j=1

∂jfi(0)


1≤i≤n

,

where (zi)1≤i≤n is the solution associated to the optimal control (in an appropriate
norm) of (L+S). Consequently, the local null-controllability for (NL) comes from
the null-controllability of only one linear system (L).

In this article, we adapt the source term method in a L∞-context in the following
way.

• The source term method in L2 enables to prove a strong observability inequal-
ity (see Corollary 6.4). This estimate looks like a global Carleman estimate
(see for example [17, Lemma 1.3]), whereas the method to get it is very
different.
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• By using the Penalized Hilbert Uniqueness Method, introduced by Viorel
Barbu in [4], we construct L∞-controls (see Theorem 7.1).
• We use another time the source term method in L∞ (see Proposition 7.5).
• We conclude by an appropriate inverse mapping theorem (see Section 8).

For other results using the source term method, see for instance [6], [18] and [34].
Another strategy to get local controllability result for (NL), called the Small L∞-

perturbations method is used in [1], [4], [28], [31] and [38]. This method requires the
null-controllability of a family of linear parabolic systems. Thus, this type of result is
proved by using global Carleman estimates that enable to treat parabolic operators
as ∂tz −∆z + a(t, x)z with a ∈ L∞(QT ).

Nevertheless, for the linearized system around ((zi)1≤i≤n, h) = (0, 0) of Section 3.2
(see below), a technical difficulty appears when we want to prove an observability
inequality for the adjoint system by using global Carleman estimates when n > 4
(see Remark 1.5).

For degenerate cases (see Section 9.2), i.e., when (L) is not null-controllable,
one can try to perform the return method, introduced by Jean-Michel Coron in [8]
(see also [9, Chapter 6]). This method consists in finding a reference trajectory
((zi)1≤i≤n, h) verifying zi(0, .) = zi(T, .) = 0 (1 ≤ i ≤ n) of (NL) such that the
linearized system of (NL) around ((zi)1≤i≤n, h) is null-controllable. By using the
small L∞-perturbations method, we can obtain a local null-controllability result for
(NL). See for instance [11], [10], [12] and [28].

Let us also mention the new method of [27] to prove the global null-controllability
of reaction-diffusion systems of two species with only one control force by construct-
ing controls of the heat equation behaving as odd regular functions.

2. Definition and general properties of the trajectories

In this section, we introduce the concept of trajectory of (NL-U) which requires a
well-posedness result (see Definition-Proposition 2.2).

2.1. Usual notations. Let k, l ∈ N∗. We denote byMk(R) (respectivelyMk,l(R))
the algebra of matrices with k lines and k columns (respectively the algebra of
matrices with k lines and l columns with entries in R. The matrix Atr ∈ Ml,k(R)
denotes the transpose of the matrix A ∈ Mk,l(R). For M ∈ Mk(R), Sp(M) is the
set of complex eigenvalues of M : Sp(M) := {λ ∈ C; ∃X ∈ Ck \ {0}, MX = λX}.

For τ > 0, we introduce
Qτ := (0, τ)× Ω.

For every (a1, . . . , an) ∈ Rn, we define

∀1 ≤ i ≤ n, fi(a1, . . . , an) := (βi − αi)

(
n∏
k=1

aαkk −
n∏
k=1

aβkk

)
,(6)

F (a1, . . . , an) := (fi(a1, . . . , an))tr1≤i≤n.(7)

We introduce

U := (u1, . . . , un)tr, U∗ := (u∗1, . . . , u
∗
n)tr.(8)

Up to a renumbering of (ui)1≤i≤n, we can assume that J = {1, . . . ,m} where J is
defined in (3). Hence, we define

(9) HJ := (h1, . . . , hm, 0, . . . , 0)tr.

We must be careful with the dependence on the constants appearing in the esti-
mates with respect to T (when T is small). That is why, from now and until the end
of the article, we assume that

(10) T ∈ (0, 1).
6



Unless otherwise specified, we denote by C various positive constants varying from
line to line.

2.2. Well-posedness results and definition of a trajectory. We define the
function space

(11) WT := L2(0, T ;H1(Ω)) ∩H1(0, T ; (H1(Ω))′),

that satisfies the continuous embedding

(12) WT ↪→ C([0, T ];L2(Ω)).

The following result introduces the notion of solution for linear parabolic systems
and provides estimates in terms of the initial data and the source term.

Definition-Proposition 2.1. Let k ∈ N∗, D ∈Mk(R) a diagonalizable matrix such
that Sp(D) ⊂ (0,+∞), A ∈ Mk(R), U0 ∈ L2(Ω)k, S ∈ L2(QT )k. The following
Cauchy problem admits a unique weak solution U ∈W k

T

(13)


∂tU −D∆U = AU + S in (0, T )× Ω,
∂U
∂ν = 0 on (0, T )× ∂Ω,
U(0, .) = U0 in Ω.

This means that U is the unique function in W k
T that satisfies the variational formu-

lation

∀V ∈ L2(0, T ;H1(Ω)k),(14) ∫ T

0
(∂tU, V )(H1(Ω)k)′,H1(Ω)k) +

∫
QT

D∇U.∇V =

∫
QT

(AU + S).V,

and

(15) U(0, .) = U0 in L2(Ω)k.

Moreover, there exists C > 0 independent of U0 and S such that

(16) ‖U‖Wk
T
≤ C

(
‖U0‖L2(Ω)k + ‖S‖L2(QT )k

)
.

Finally, if U0 ∈ L∞(Ω)k and S ∈ L∞(QT )k, then U ∈ L∞(QT )k and there exists
C > 0 independent of U0 and S such that

(17) ‖U‖L∞(QT )k ≤ C
(
‖U0‖L∞(Ω)k + ‖S‖L∞(QT )k

)
.

The proof of Definition-Proposition 2.1 can be found in [28, Proposition 2.3].
The following result introduces the notion of trajectory associated to the nonlinear

system (NL-U) (see Section 1.2).

Definition-Proposition 2.2. Let D = diag(d1, . . . , dn) with di ∈ (0,+∞). For
every U0 ∈ L∞(Ω)n, (U,HJ) (see (8) and (9)) is a trajectory of (NL-U) if

(1) (U,HJ) ∈
(
WT ∩ L∞(QT )

)n
× L∞(QT )m,

(2) U is the (unique) solution of (NL-U). This means that U is the unique
function in

(
WT ∩ L∞(QT )

)n
which satisfies

∀V ∈ L2(0, T ;H1(Ω)k),(18) ∫ T

0
(∂tU, V )(H1(Ω)k)′,H1(Ω)k) +

∫
QT

D∇U.∇V =

∫
QT

(
F (U) +HJ1ω

)
.V,

with F defined in (7) and

(19) U(0, .) = U0 in L∞(Ω)k.

Moreover, (U,HJ) is a trajectory of (NL-U) reaching U∗ (see (8)) in time T if

U(T, .) = U∗.
7



The proof of the uniqueness of Definition-Proposition 2.2 comes from the fact that
F is locally Lipschitz on Rn (see the proof of [27, Definition-Proposition 2.4]).

2.3. Invariant quantities of the nonlinear dynamics. In this section, we show
that in the system (NL-U) (see Section 1.2), some quantities are invariant. They
impose some restrictions on the initial condition, for the controllability results.

Proposition 2.3. Let U0 ∈ L∞(Ω)n and let (U,HJ) be a trajectory of (NL-U)
reaching U∗ in time T . Then, we have for every k 6= l ∈ {m+ 1, . . . , n}, t ∈ [0, T ],

(20)
∫

Ω

uk(t, x)− u∗k
βk − αk

dx =

∫
Ω

ul(t, x)− u∗l
βl − αl

dx,

(21)
(
dk = dl

)
⇒
(
uk(t, .)− u∗k
βk − αk

=
ul(t, .)− u∗l
βl − αl

)
.

In particular, for every k 6= l ∈ {m+ 1, . . . , n},

(22)
∫

Ω

uk,0(x)− u∗k
βk − αk

dx =

∫
Ω

ul,0(x)− u∗l
βl − αl

dx,

(23)
(
dk = dl

)
⇒
(
uk,0 − u∗k
βk − αk

=
ul,0 − u∗l
βl − αl

)
.

The proof of Proposition 2.3 is done in Appendix A.2. We prove (20) by integrat-
ing with respect to the space variable an appropriate linear combination of equations
of (NL-U) and by using the Neumann boundary conditions. We prove (21) by the
backward uniqueness of the heat equation applied to an appropriate linear combina-
tion of equations of (NL-U).

The equation (21) implies that we can reduce the number of components of
(ui)1≤i≤n of (NL-U) when some diffusion coefficients di are equal for m+ 1 ≤ i ≤ n.
This simplify the study, thus in order to treat the more difficult case, we make the
following hypothesis.

Assumption 2.4. For every k 6= l ∈ {m+ 1, . . . , n}, dk 6= dl.

Remark 2.5. It will be interesting to note that the mass condition (22) is equivalent
to

(24) ∀k ≥ m+ 2,

∫
Ω

uk,0(x)− u∗k
βk − αk

dx =

∫
Ω

um+1,0(x)− u∗m+1

βm+1 − αm+1
dx.

3. An adequate change of variables and linearization

3.1. Change of variables - Cross diffusion system. The goal of this section
is to transform the controlled system (NL-U) (see Section 1.2) satisfied by U into
another system of cascade type for which we better understand the controllability
properties. Roughly speaking, for 1 ≤ i ≤ m, the component ui is easy to control
thanks to the localized control term hi1ω. Thus, the challenge is to understand how
the reaction term fi(U) (see (6)) acts on the component ui for m+ 1 ≤ i ≤ n.

We multiply the (m+1)-th equation of (NL-U) by 1/((βm+1−αm+1)(dm+1−dm+2))
and the (m+ 2)-th equation of (NL-U) by 1/((βm+2−αm+2)(dm+2−dm+1)) and we
sum:

∂tvm+2 − dm+2∆vm+2 =
1

βm+1 − αm+1
∆um+1,

where

vm+2 =
1

(βm+1 − αm+1)(dm+1 − dm+2)
um+1 +

1

(βm+2 − αm+2)(dm+2 − dm+1)
um+2.

Roughly speaking, this linear combination enables to “kill” the reaction-term and to
create a coupling term of second order.
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By iterating this strategy, we construct a linear transformation V = PU such that
um+1 acts on vm+2, vm+2 acts on vm+3, ..., vn−1 acts on vn through cross diffusion
terms. Moreover, we transform the problem of controllability for U to U∗ into a
null-controllability problem for

(25) Z := P (U − U∗),

where P is the invertible triangular matrix defined by:

(26) P :=

(
Im (0)
(0) ∗

)
,

with

(27) ∀k, l ≥ m+ 1, Pkl :=



(βl − αl)
∏

m+1≤r≤k
r 6=l

(dl − dr)


−1

if k ≥ l,

0 if k < l,

with the convention
∏
∅

= 1.

Proposition 3.1. The couple (U,HJ) is a trajectory of (NL-U) if and only if
(Z,HJ) satisfies

∂tzi − di∆zi = fi(P
−1Z + U∗) + hi1ω in (0, T )× Ω, 1 ≤ i ≤ m

∂tzm+1 − dm+1∆zm+1 = fm+1(P−1Z+U∗)
βm+1−αm+1

in (0, T )× Ω,

∂tzi − di∆zi = ∆zi−1 in (0, T )× Ω, m+ 2 ≤ i ≤ n,
∂Z
∂ν = 0 on (0, T )× ∂Ω,
Z(0, .) = Z0 in Ω,

(28)

The proof of Proposition 3.1 is done in Appendix A.3.1.
We introduce the notations: for every (a1, . . . , an) ∈ Rn,

(29) ∀1 ≤ i ≤ m, gi(a1, . . . , an) := fi(P
−1(a1, . . . , an)tr + U∗),

(30) gm+1(a1, . . . , an) :=
fm+1(P−1(a1, . . . , an)tr + U∗)

βm+1 − αm+1
,

(31) G(a1, . . . , an) := (g1(a1, . . . , an), . . . , gm+1(a1, . . . , an), 0 . . . , 0)tr,

(32) DJ :=

(
diag(d1, . . . , dm) (0)

(0) D]

)
, D] :=



dm+1 0 . . . . . . 0

1 dm+2
. . . . . .

...

0
. . . . . . . . .

...
...

. . . . . . . . . 0
0 . . . 0 1 dn

 .

With these notations, the nonlinear system (28) is

(NL-Z)


∂tZ −DJ∆Z = G(Z) +HJ1ω in (0, T )× Ω,
∂Z
∂ν = 0 on (0, T )× ∂Ω,
Z(0, .) = Z0 in Ω.
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3.2. Linearization. We will work under the following hypothesis which will guar-
antee the null-controllability of this linearized system.

Assumption 3.2. We assume that there exists 1 ≤ j ≤ m such that

∂jgm+1

(
0, . . . , 0

)
6= 0.(33)

By using (26) and (30), we check that (33) is equivalent to

∂jfm+1

(
u∗1, . . . , u

∗
n

)
6= 0.(34)

When αj , βj ≥ 1, a sufficient condition to ensure (34) is

(35) ∀1 ≤ k ≤ n, u∗k 6= 0.

Indeed, by using (6), (4) and αj 6= βj , if (35) holds true then

∂jfm+1

(
u∗1, . . . , u

∗
n

)
= αj(u

∗
j )
αj−1

n∏
k=1
k 6=j

u∗k
αk − βj(u∗j )βj−1

n∏
k=1
k 6=j

u∗k
βk

=
αj
u∗j

n∏
k=1

u∗k
αk − βj

u∗j

n∏
k=1

u∗k
βk

=
αj − βj
u∗j

n∏
k=1

u∗k
αk 6= 0.

Note that (35) is not equivalent to (34) as shown by the examples in Application 4.3.

The linearized system of (NL-Z) satisfied by Z around (0, 0) is

(L-Z)


∂tZ −DJ∆Z = AJZ +HJ1ω in (0, T )× Ω,
∂Z
∂ν = 0 on (0, T )× ∂Ω,
Z(0, .) = Z0 in Ω,

where

(36) AJ = (aik)1≤i,k≤n, aik =

{
∂kgi(0, . . . , 0) if 1 ≤ i ≤ m+ 1,

0 if m+ 2 ≤ i ≤ n.
Up to a renumbering of the first m equations, we can assume that j = m. Then, by
Assumption 3.2, we have

(37) am+1,m 6= 0.

Roughly speaking, we summarize the controllability properties established in the
following diagram:

h1
controls−−−−−→ z1, h2

controls−−−−−→ z2, . . . , hm−1
controls−−−−−→ zm−1,

hm
controls−−−−−→ zm

controls−−−−−−→
am+1mzm

zm+1
controls−−−−−→
∆zm+1

zm+2
controls−−−−−→
∆zm+2

. . .
controls−−−−−→
∆zn−1

zn.

4. Main results

The goal of this section is to state the main results of the paper. First, we prove
a local null-controllability result for the system (NL-Z) (see Section 3.1). Then, we
deduce a local controllability result around U∗ for (NL-U) (see Section 1.2).

We have seen in Proposition 2.3 that a trajectory (U,HJ) reaching U∗ has to
verify the condition (20). Thus, it prevents local-controllability from happening for
arbitrary initial data. This is why we introduce a notion of local controllability
adapted to (22).

Let p ∈ [1,+∞]. We introduce the following subspace of Lp(Ω)n:

(38) Lpinv :=

{
Z0 ∈ Lp(Ω)n ; ∀m+ 2 ≤ i ≤ n,

∫
Ω
zi,0(x)dx = 0

}
.
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Theorem 4.1. Under Assumption 2.4 and Assumption 3.2, the system (NL-Z) is
locally null-controllable, i.e., there exists r > 0 such that for every Z0 ∈ L∞inv verifying
‖Z0‖L∞(Ω)n ≤ r, there exists HJ ∈ L∞(QT )m such that the solution Z of (NL-Z)
satisfies Z(T, .) = 0.

We deduce from Theorem 4.1 the following local controllability result.

Theorem 4.2. Under Assumption 2.4 and Assumption 3.2, the system (NL-U) is
locally controllable around U∗, i.e., there exists r > 0 such that for every U0 ∈
L∞ satisfying the mass condition (22) and ‖U0 − U∗‖L∞(Ω) ≤ r, there exists HJ ∈
L∞(QT )m such that the solution U of (NL-U) satisfies U(T, .) = U∗.

Theorem 4.1 is equivalent to Theorem 4.2. Indeed, it comes from Proposition 3.1
and the following equivalence

(39) Z0 ∈ L∞inv ⇔ U0 satisfies (22)⇔ U0 satisfies (24) (Remark 2.5).

The proof of (39) is done in Appendix A.3.2.

Application 4.3. For n = 4, α1 = α3 = β2 = β4 = 1 and α2 = α4 = β1 = 0, we are
studying the following system:

(40) ∀1 ≤ i ≤ 4,


∂tui − di∆ui = (−1)i(u1u3 − u2u4) + hi1ω1i∈J in (0, T )× Ω,
∂ui

∂ν = 0 on (0, T )× ∂Ω,
ui(0, .) = ui,0 in Ω.

In this case, we check that Assumption 3.2 is

for J = {1, 2, 3},
(
∃j ∈ {1, 2, 3}, ∂jf4(u∗1, . . . , u

∗
4) 6= 0

)
⇔
(

(u∗1, u
∗
3, u
∗
4) 6= (0, 0, 0)

)
,

for J = {1, 2},
(
∃j ∈ {1, 2}, ∂jf3(u∗1, . . . , u

∗
4) 6= 0

)
⇔
(

(u∗3, u
∗
4) 6= (0, 0)

)
,

for J = {1},
(
∂1f2(u∗1, . . . , u

∗
4) 6= 0

)
⇔
(
u∗3 6= 0

)
.

Thus, Theorem 4.2 recovers the result of [28, Theorem 3.2] except for the case J =
{1, 2, 3} and (u∗1, u

∗
3, u
∗
4) = (0, 0, 0) that the proof of the present article does not treat

(see Example 9.2 for more details about the strategy of [28]).

5. Linear null-controllability under constraints in L2

The main result of this section, stated in the following theorem, is the null-
controllability in L2

inv for the linear system (L-Z) (see Section 3.2).

Theorem 5.1. The system (L-Z) is null-controllable in L2
inv. More precisely, there

exists C > 0 such that for every T > 0 and Z0 ∈ L2
inv, there exists a control

HJ ∈ L2((0, T )× Ω)m verifying

(41)
∥∥HJ

∥∥
L2(QT )m

≤ CT ‖Z0‖L2(Ω)n , where CT = CeC/T ,

and such that the solution Z ∈Wn
T of (L-Z) satisfies Z(T, .) = 0.

The goal of the next two subsections is to prove Theorem 5.1. The proof is based
on the Lebeau-Robbiano’s method, introduced for the first time to prove the null-
controllability of the heat equation (see [30]). First, it consists in establishing a
null-controllability result in finite dimensional subspaces of L2

inv with a precise es-
timate of the cost of the control (see Proposition 5.2). This first step is based on
two main results: the spectral inequality for eigenfunctions of the Neumann-Laplace
operator (see Lemma 5.4) and precise observability estimates of linear finite dimen-
sional systems associated to the adjoint system of (L-Z) (see Lemma 5.5). Secondly,
we conclude by a time-splitting procedure: the control HJ is built as a sequence of
active controls and passive controls. The passive mode allows to take advantage of
the natural parabolic exponential decay of the L2 norm of the solution. This decay
enables to compensate the cost of the control which steers the low frequencies to 0
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(see Section 5.2).

5.1. A null-controllability result for the low frequencies. We defineH2
Ne(Ω) :={

y ∈ H2(Ω) ; ∂y
∂ν = 0

}
. The unbounded operator on L2(Ω): (−∆, H2

Ne(Ω)) is self-
adjoint and has compact resolvent. Thus, we introduce the orthonormal basis (ek)k≥0

of L2(Ω) of eigenfunctions associated to the increasing sequence of eigenvalues (λk)k≥0

of the Laplacian operator, i.e., we have −∆ek = λkek and (ek, el)L2(Ω) = δk,l. For

λ > 0, we define the finite dimensional space Eλ =

{ ∑
λk≤λ

ckek ; ck ∈ Rn
}
⊂ L2(Ω)n

and the orthogonal projection ΠEλ onto Eλ in L2(Ω)n.

The goal of this section is to prove the following null-controllability result in a
finite dimensional subspace of L2

inv.

Proposition 5.2. There exist C > 0, p1 ∈ N such that for every τ ∈ (0, T ), λ > 0,
Z0 ∈ Eλ ∩ L2

inv, there exists a control function HJ ∈ L2(Qτ ) verifying

(42)
∥∥HJ

∥∥2

L2(Qτ )m
≤ C

τp1
eC
√
λ ‖Z0‖2L2(Ω)n ,

such that the solution Z of

(43)


∂tZ −DJ∆Z = AJZ +HJ1ω in (0, τ)× Ω,
∂Z
∂ν = 0 on (0, τ)× ∂Ω,
Z(0, .) = Z0 ∈ Eλ in Ω,

satisfies Z(τ, .) = 0.

From Proposition 5.2, for every τ, λ > 0 and Z0 ∈ Eλ ∩ L2
inv we introduce the

notation:

(44) Hλ(Z0, 0, τ) := HJ ,

such that the solution Z of (43) satisfies Z(τ, .) = 0 and HJ is the minimal-norm
element of L2(Qτ )m satisfying the estimate (42). In other words, HJ is the projec-
tion of 0 in the nonempty closed convex set of controls satisfying (42) and driving
the solution Z of (43) in time τ to 0.

By the Hilbert Uniqueness Method (see [9, Theorem 2.44]), in order to prove
Proposition 5.2, we need to prove an observability inequality for the solution of the
adjoint system of (43).

Proposition 5.3. There exist C > 0, p1 ∈ N such that for every τ ∈ (0, T ), λ > 0
and ϕτ ∈ Eλ ∩ L2

inv, the solution ϕ of

(45)


−∂tϕ−Dtr

J ∆ϕ = Atr
J ϕ in (0, τ)× Ω,

∂ϕ
∂ν = 0 on (0, τ)× ∂Ω,
ϕ(τ, .) = ϕτ in Ω,

satisfies

(46) ‖ϕ(0, .)‖2L2(Ω)n ≤
C

τp1
eC
√
λ

m∑
i=1

∫ τ

0

∫
ω
|ϕi(t, x)|2 dxdt.

Proof. The proof is inspired by [32, Section 3].
Let τ > 0, λ > 0 and ϕτ ∈ Eλ ∩ L2

inv. We have:

(47) ϕτ (x) =
∑
λk≤λ

ϕτkek(x),
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with ϕτk ∈ Fk where F0 := Rm+1 × {0}n−m−1 because ϕτ ∈ L2
inv and Fk := Rn for

k ≥ 1.
Then, the solution ϕ of (45) is

(48) ∀(t, x) ∈ (0, τ)× Ω, ϕ(t, x) =
∑
λk≤λ

ϕk(t)ek(x),

where ϕk is the unique solution of the ordinary differential system

(49)
{
−ϕ′k + λkD

tr
J ϕk = Atr

J ϕk, in (0, τ),
ϕk(τ) = ϕτk .

We recall the spectral inequality for eigenfunctions of the Neumann-Laplace operator.

Lemma 5.4. [24, Theorem 14.6]
There exists C > 0 such that for every sequence (ak)k≥0 ⊂ CN and for every λ > 0,
we have:

(50)
∑
λk≤λ

|ak|2 =

∫
Ω

∣∣∣∣∣∣
∑
λk≤λ

akek(x)

∣∣∣∣∣∣
2

dx ≤ CeC
√
λ

∫
ω

∣∣∣∣∣∣
∑
λk≤λ

akek(x)

∣∣∣∣∣∣
2

dx.

By using (50) for ak = ϕk,i(t) with 1 ≤ i ≤ m and by summing on 1 ≤ i ≤ m, we
obtain that there exists C > 0 such that

(51)
∑
λk≤λ

m∑
i=1

|ϕk,i(t)|2 ≤ CeC
√
λ

m∑
i=1

∫
ω

∣∣∣∣∣∣
∑
λk≤λ

ϕk,i(t)ek(x)

∣∣∣∣∣∣
2

dx.

By integrating with respect to the time variable between 0 and τ the inequality (51),
we obtain

(52)
∫ τ

0

∑
λk≤λ

m∑
i=1

|ϕk,i(t)|2dt ≤ CeC
√
λ

m∑
i=1

∫ τ

0

∫
ω

∣∣∣∣∣∣
∑
λk≤λ

ϕk,i(t)ek(x)

∣∣∣∣∣∣
2

dxdt.

Now, our goal is to establish the following lemma.

Lemma 5.5. There exist C, p1, p2 ∈ N such that for every τ ∈ (0, 1), k ∈ N,
ϕτk ∈ Fk, the solution ϕk of (49) satisfies

(53) ‖ϕk(0)‖2 ≤ C
(

1 +
1

τp1
+ λp2k

) m∑
i=1

∫ τ

0
|ϕk,i(t)|2dt.

One can take for instance p1 = p2 = 2(n −m + 1/2) in (53), we give a proof in
Appendix A.4 (see also [36]).

By using (52), (53), we deduce that∑
λk≤λ

‖ϕk(0)‖2 ≤
∑
λk≤λ

C

τp1
(1 + λp2k )

m∑
i=1

∫ τ

0
|ϕk,i(t)|2dt(54)

≤ C

τp1
eC
√
λ

m∑
i=1

∫ τ

0

∫
ω

∣∣∣∣∣∣
∑
λk≤λ

ϕk,i(t)ek(x)

∣∣∣∣∣∣
2

dxdt.

By using (48), we deduce (46) from (54). �

5.2. The Lebeau-Robbiano’s method. The goal of this section is to prove The-
orem 5.1.

Proof. The proof is inspired by [29, Section 6.2]. The constants C,C ′ will increase
from line to line.

We split the interval [0, T ] = ∪k∈N[ak, ak+1] with a0 = 0, ak+1 = ak + 2Tk and
Tk = T/2k for k ∈ N. We also define µk = M22k for M > 0 sufficiently large which
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will be defined later and for k ∈ N. Then, we define the control HJ in the following
way:

• if t ∈ (ak, ak + Tk), HJ = Hµk(ΠEµk
Z(ak, .), ak, Tk) (see the notation (44))

and Z(t, .) = S(t− ak)Z(ak, .) +
∫ t
ak
S(t− s)HJ(s, .)ds,

• if t ∈ (ak + Tk, ak+1), HJ = 0 and Z(t, .) = S(t− ak − Tk)Z(ak + Tk, .),

where S(t) denotes the semigroup of the parabolic system: S(t) = et(DJ∆+AJ ). In
particular, by (16) and (12), ‖S(t)‖L(L2(Ω)n) ≤ C.

By (42), the choice of HJ during the interval time [ak, ak + Tk] implies

‖Z(ak + Tk, .)‖2L2(Ω)n ≤ (C + C(2−kT )−p1eC
√
M2k) ‖Z(ak, .)‖2L2(Ω)n(55)

≤ C

T p1
eC
√
M2k ‖Z(ak, .)‖2L2(Ω)n .

During the passive period of the control, t ∈ [ak+Tk, ak+1], the solution exponentially
decreases:

(56) ‖Z(ak+1, .)‖2L2(Ω)n ≤ C
′e−C

′M22kTk ‖Z(ak + Tk, .)‖2L2(Ω)n .

Thus, by using 22kTk = 2kT , (55) and (56), we have

‖Z(ak+1, .)‖2L2(Ω)n ≤ e
C
√
M2k−C′M2kT+C/T ‖Z(ak, .)‖2L2(Ω)n ,

and consequently,

‖Z(ak+1, .)‖2L2(Ω)n ≤ e
∑k
j=0(C

√
M2j−C′MT2j+C/T) ‖Z0‖2L2(Ω)n(57)

≤ e(C
√
M−C′MT )2k+1+(C/T )(k+1) ‖Z0‖2L2(Ω)n .

By taking M such that C
√
M − C ′MT < 0, for instance M ≥ 2(C/C ′T )2, we con-

clude by (57) that we have limk→+∞ ‖Z(ak, .)‖ = 0, i.e., Z(T, .) = 0 because t 7→
Z(t, .) ∈ C([0, T ];L2(Ω)n) because HJ ∈ L2(QT )m (see Definition-Proposition 2.1
and (12)) as we will show now.

We have
∥∥HJ

∥∥2

L2(QT )m
=
∑+∞

k=0

∥∥HJ
∥∥2

L2((ak,ak+Tk)×Ω)m
. Then, by using the esti-

mate (42) of the control on each time interval (a0, a0 + T0) and the estimate (57),
we get:

∥∥HJ
∥∥2

L2(QT )m
≤

CT−p10 eC
√
M +

∑
k≥1

CT−p1k eC
√
M2ke−C

′MT2(k−1)

 ‖Z0‖2L2(Ω)n

(58)

≤

CT−p1eC√M +
∑
k≥1

C(2kT−1)p1e(C
√
M−C′MT/2)2k

 ‖Z0‖2L2(Ω)n .

By taking M such that C
√
M − C ′MT/2 < 0, for instance M ≥ 8(C/C ′T )2 ⇒

C
√
M −C ′MT/2 = −C ′′/T with C ′′ > 0, we deduce from (58) that HJ ∈ L2(QT )m

and ∥∥HJ
∥∥2

L2(QT )m
≤
(
CeC/T + C

∫ +∞

0

(σ
T

)p1
e−C

′′ σ
T dσ

)
‖Z0‖2L2(Ω)n

≤ CeC/T ‖Z0‖2L2(Ω)n .

This concludes the proof of Theorem 5.1. �
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6. The source term method in L2

We use the source term method, introduced by Yuning Liu, Takéo Takahashi and
Marius Tucsnak in [33, Proposition 2.3] to deduce a local null-controllability result
for a nonlinear system from the null-controllability result for only one linear system
(and an estimate of the cost of the control) (see also [6]).

By Theorem 5.1, we have an estimate for the control cost in L2, then we fixM > 0
such that CT ≤MeM/T . Let q ∈ (1,

√
2) and p > q2/(2− q2). We define the weights

(59) ρ0(t) := M−p exp

(
− Mp

(q − 1)(T − t)

)
,

(60) ρS(t) = M−1−p exp

(
− (1 + p)q2M

(q − 1)(T − t)

)
.

Remark 6.1. The assumption p > q2/(2− q2)⇔ 2p > (1 + p)q2 implies

(61) ρ2
0/ρS ∈ C([0, T ]),

which will be useful for the estimate of the polynomial nonlinearity (see Section 8).

Let r ∈ {2,+∞}. For S ∈ Lr((0, T );Lrinv), H
J ∈ Lr((0, T );Lr(Ω)m), Z0 ∈ Lrinv,

we introduce the following system:

(L+S-Z)


∂tZ −DJ∆Z = AJZ + S +HJ1ω in (0, T )× Ω,
∂Z
∂ν = 0 on (0, T )× ∂Ω,
Z(0, .) = Z0 in Ω.

Then, we define associated spaces for the source term, the state and the control

Sr :=

{
S ∈ Lr((0, T );Lrinv) ;

S

ρS
∈ Lr((0, T );Lrinv)

}
,(62)

Zr :=

{
Z ∈ Lr((0, T );Lrinv) ;

Z

ρ0
∈ Lr((0, T );Lrinv)

}
,(63)

Hr :=

{
HJ ∈ Lr((0, T );Lr(Ω)m) ;

HJ

ρ0
∈ Lr((0, T );Lr(Ω)m)

}
.(64)

Remark 6.2. From the behaviors near t = T of ρS and ρ0, we deduce that each
element of Sr, Zr, Hr vanishes at t = T .

From the abstract result: [33, Proposition 2.3], we deduce the null-controllability
for (L+S-Z) in L2

inv.

Proposition 6.3. For every S ∈ S2 and Z0 ∈ L2
inv, there exists HJ ∈ H2, such that

the solution Z of (L+S-Z) satisfies Z ∈ Z2. Furthermore, there exists C > 0, not
depending on S and Z0, such that

(65) ‖Z/ρ0‖C([0,T ];L2(Ω)n) +
∥∥HJ

∥∥
H2
≤ CT

(
‖Z0‖L2(Ω)n + ‖S‖S2

)
,

where CT = CeC/T . In particular, since ρ0 is a continuous function satisfying
ρ0(T ) = 0, the above relation (65) yields Z(T, .) = 0.

For the sake of completeness, the proof of Proposition 6.3 is in Appendix A.5 (see
Proposition A.6 applied with r = 2).

Now, we will deduce an observability estimate for the adjoint system:

(66)


−∂tϕ−Dtr

J ∆ϕ = Atr
J ϕ in (0, T )× Ω,

∂ϕ
∂ν = 0 on (0, T )× ∂Ω,
ϕ(T, .) = ϕT in Ω.

We have the following result which is an adaptation of [33, Corollary 2.6] or [23,
Theorem 4.1] (see Appendix A.6 for a complete proof).
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Corollary 6.4. There exists C > 0 such that for every ϕT ∈ L2
inv, the solution of

(66) satisfies:
(67)

‖ϕ(0, .)‖2L2(Ω)n +

∫ T

0

∫
Ω
|ρS(t)ϕ(t, x)|2dtdx ≤ CT

(
m∑
i=1

∫ T

0

∫
ω
|ρ0(t)ϕi(t, x)|2dtdx

)
,

where CT = CeC/T .

Remark 6.5. The estimate (67) looks like a global Carleman inequality for (66).
But the strategy to get this type of estimate comes from the null-controllability
theorem in L2

inv for (L-Z) with an estimate of the cost and the source term method:
Theorem 5.1 and Proposition 6.3. We insist on the fact that we do not know how to
prove the null-controllability in L2

inv of (L-Z) by the usual global Carleman estimates
applied to each equation of (66) when m < n − 4 (see Section 9 and in particular
Open problem 9.4).

In the next section, we take advantage of the strong observability estimate (67)
to get more regularity in Lp-sense for the control HJ .

7. Construct L∞-controls and the source term method in L∞

7.1. Construct L∞-controls: the Penalized Hilbert Uniqueness Method.
The goal of this section is to prove a null-controllability result in L∞ with an estimate
of the cost of the control.

Theorem 7.1. There exists C > 0 such that for every T > 0, Z0 ∈ L2
inv, there exists

a control HJ ∈ L∞((0, T )× Ω)m verifying

(68)
∥∥HJ

∥∥
L∞(QT )m

≤ CT ‖Z0‖L2(Ω)n , where CT = CeC/T .

and such that the solution Z of (L-Z) (see Section 3.2) satisfies Z(T, .) = 0.

From now and until the end of the section, we will denote by CT various positive
constants which can change from line to line and such that CT ≤ CeC/T .

In the next four parts, we perform the usual Penalized Hilbert Uniqueness Method,
introduced for the first time by Viorel Barbu in [4]. The idea is the following one:
it is a well-known fact that the optimal control HJ ∈ L2((0, T ) × Ω)m, i.e., the
minimal-norm element in L2, which steers the solution Z of (L-Z) to 0 in time T can
be expressed as a function of a solution of the adjoint system (66) (see [9, Section
1.4] for more details in the context of linear finite dimensional controlled systems).
By using the strong observability inequality (67), we will use this link by considering
a penalized problem in H2 ⊂ L2((0, T ) × Ω)m: the behavior at time t = T of the
weight ρ0 will be the key point to produce more regular controls in Lp-sense.

7.1.1. The beginning of the Penalized Hilbert Uniqueness Method. Let us fix Z0 ∈
L2
inv.
We define Pε : H2 → R+, by, for every HJ ∈ H2,

(69) Pε(H
J) :=

1

2

∫ ∫
(0,T )×ω

ρ−2
0 (t)|HJ(t, x)|2dxdt+

1

2ε
‖Z(T, .)‖2L2(Ω)n ,

where Z is the solution to the Cauchy problem (L-Z) (see Section 3.2) associated to
the control HJ .

The functional Pε is a C1, coercive, strictly convex functional on the Hilbert space
H2, then Pε has a unique minimum HJ,ε ∈ H2. Let Zε be the solution to the Cauchy
problem (L-Z) with control HJ,ε and initial data Z0.

The Euler-Lagrange equation gives

(70) ∀HJ ∈ H2,

∫ ∫
(0,T )×ω

ρ−2
0 HJ,ε.HJdxdt+

1

ε

∫
Ω
Zε(T, x).Z(T, x)dx = 0,

16



where Z is the solution to the Cauchy problem (L-Z) associated to the control HJ

and initial data Z0 = 0.
We introduce ϕε the solution to the adjoint problem (66) with final condition

ϕε(T, .) = −1
εZ

ε(T, .). A duality argument between Z and ϕε gives

(71) −1

ε

∫
Ω
Z(T, x).Zε(T, x)dx =

∫
Ω
Z(T, x).ϕε(T, x)dx =

∫ ∫
(0,T )×ω

HJ .ϕε.

Then, we deduce from (70) and (71) that

∀HJ ∈ H2,

∫ ∫
(0,T )×ω

ρ−2
0 HJ,ε.HJ =

∫ ∫
(0,T )×ω

ϕε.HJ .

Consequently, we have

(72) ∀i ∈ {1, . . . ,m}, hεi = ρ2
0ϕ

ε
i1ω.

Another duality argument applied between Zε and ϕε together with (72) gives

−1

ε

∫
Ω
|Zε(T, x)|2dx =

∫
Ω
Zε(T, x).ϕε(T, x)dx

=

∫
Ω
Z0(x).ϕε(0, x)dx+

∫ ∫
(0,T )×ω

HJ,ε.ϕε,

which yields

(73) −1

ε
‖Zε(T, .)‖2L2(Ω)n =

∫
Ω
Z0(x).ϕε(0, x)dx+

m∑
i=1

∫ ∫
(0,T )×ω

|ρ0ϕ
ε
i |2.

By Young’s inequality and the observability estimate (67) applied to ϕε, for δ > 0,
we have: ∣∣∣∣∫

Ω
Z0(x).ϕε(0, x)dx

∣∣∣∣(74)

≤ δ ‖ϕε(0, .)‖2L2(Ω)n + Cδ ‖Z0‖L2(Ω)n

≤ δCT

(
m∑
i=1

∫ ∫
(0,T )×ω

|ρ0(t)ϕεi (t, x)|2dxdt

)
+ Cδ ‖Z0‖L2(Ω)n .

Then, by using (72), (73), (74) and by taking δ sufficiently small, we get

(75)
1

ε
‖Zε(T, .)‖2L2(Ω)n +

1

2

∥∥ρ−1
0 HJ,ε

∥∥2

L2((0,T )×ω)n
≤ CT ‖Z0‖2L2(Ω)n .

Remark 7.2. The estimate (75) yields Proposition 6.3 for S = 0 by letting ε → 0.
We remark that we have only used the term ‖ϕ(0, .)‖2L2(Ω)n in the left hand side of
(67). The second term in the left hand side of (67) enables to get more regularity
(in Lp-sense) for the control HJ (see Section 7.1.3 below).

7.1.2. Maximal regularity theorems and Sobolev embeddings. In this part, we recall
a maximal regularity theorem in Lp (1 < p < +∞) for parabolic systems and an
embedding result for Sobolev spaces.

We introduce the following spaces: for every r ∈ [1,+∞],

W 2,r
Ne(Ω) :=

{
u ∈W 2,r(Ω) ;

∂u

∂ν
= 0

}
, Xr := Lr(0, T ;W 2,r

Ne(Ω))∩W 1,r(0, T ;Lr(Ω)).

We have the following maximal regularity theorem.

Proposition 7.3. [13, Theorem 2.1]
Let 1 < r < +∞, k ∈ N∗, D ∈Mk(R) such that Sp(D) ⊂ (0,+∞), A ∈Mk(R) and
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S ∈ Lr(QT )k. The following Cauchy problem admits a unique solution U ∈ Xk
r

∂tU −D∆U = AU + S(t, x) in (0, T )× Ω,
∂U
∂ν = 0 on (0, T )× ∂Ω,
U(0, .) = 0 in Ω.

Moreover, there exists C > 0 independent of S such that

‖U‖Xk
r
≤ C ‖S‖Lr(QT )k .

We have the following embedding result for Sobolev spaces.

Proposition 7.4. [39, Theorem 1.4.1]
Let r ∈ [1,+∞[, we have

Xr ↪→


L

(N+2)r
N+2−2r (QT ) if r < N+2

2 ,
L2r(QT ) if r = N+2

2 ,
L∞(QT ) if r > N+2

2 .

7.1.3. Bootstrap method. In the next two parts, we will use the key identity be-
tween the control HJ,ε and the solution of the adjoint system ϕε, i.e, (72) in order
to deduce Lp-regularity for HJ,ε from Lp-regularity for ϕε. This kind of regular-
ity will come from the application of successive Lp-parabolic regularity theorems
stated in Proposition 7.3 to a modification of ϕε called ψε,r (see a precise defini-
tion in (80) below) which is bounded from below by ρ2

0ϕ. The beginning of this
bootstrap argument is the strong observability inequality (67). Finally, we will pass
to the limit (ε → 0) in 1

ε ‖Z
ε(T, .)‖2L2(Ω)n ≤ CT ‖Z0‖2L2(Ω)n coming from (75) and∥∥HJ,ε

∥∥
L∞(QT )

≤ CT ‖Z0‖L2(Ω)n coming from (89) (see below).
By using Remark 6.1, we introduce the positive real number

(76) γ := 2p− (1 + p)q2 > 0.

Let us define a sequence of increasing positive real numbers (γr)r∈N such that lim
r→+∞

γr =

γ, where γ is defined in (76).
We introduce for every r ∈ N,

(77) ρS,r(t) = M−1−p exp

(
−
(
(1 + p)q2 + γr

)
M

(q − 1)(T − t)

)
.

Then, we have from (59), for every r ∈ N,

(78) ρ2
0 ≤ CTρS,r.

We remark that we have for every r ∈ N,

(79) |ρ′S,r+1(t)| ≤ CT,rρS,r(t).

We define for every r ∈ N,

(80) ψε,r(t, x) := ρS,r(t)ϕ
ε(t, x).

From (66), (77) and (80), we have for every r ∈ N∗,

(81)


−∂tψε,r −Dtr

J ∆ψε,r = Atr
J ψ

ε,r − ρ′S,r(t)ϕε in (0, T )× Ω,
∂ψε,r

∂ν = 0 on (0, T )× ∂Ω,
ψε,r(T, .) = 0 in Ω.

By using (79), we remark that

(82) | − ρ′S,r(t)ϕε| ≤ CT |ψε,r−1|.

Let (pr)r∈N be the following sequence defined by induction

(83) p0 = 2,
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(84) pr+1 :=


(N+2)pr
N+2−2pr

if pr <
N+2

2 ,

2pr if pr = N+2
2 ,

+∞ if pr >
N+2

2 .

There exists l ∈ N∗ such that

(85) ∀r ≥ l, pr = +∞.
We show, by induction, that for every 0 ≤ r ≤ l, we have

(86) ψε,r ∈ Lpr(QT )n and ‖ψε,r‖Lpr (QT )n ≤ CT ‖Z0‖L2(Ω)n .

The case r = 0 can be deduced from the fact that γ0 > 0 and the observability
estimate (67) (p0 = 2 by (83)).

Let r ∈ N∗. We assume that

(87) ψε,r−1 ∈ Lpr−1(QT )n and
∥∥ψε,r−1

∥∥
Lpr−1 (QT )n

≤ CT ‖Z0‖L2(Ω)n .

Then, from (81), (82), (87) and from the maximal regularity theorem: Proposition 7.3
applied with pr−1 ∈ (1,+∞), we get

(88) ψε,r ∈ Xn
pr−1

and ‖ψε,r‖Xr
pr−1
≤ CT ‖Z0‖L2(Ω)n .

Moreover, by the Sobolev embedding: Proposition 7.4 and (84), we have

ψε,r ∈ Lpr(QT )n and ‖ψε,r‖Lpr (QT )n ≤ CT ‖Z0‖L2(Ω)n .

This concludes the induction.

7.1.4. The end of the Penalized Hilbert Uniqueness Method. Now, by applying con-
secutively (85) (pl = +∞), (72), (78) and (86), we have for every i ∈ {1, . . . ,m},
(89)
‖hεi‖L∞(QT ) =

∥∥ρ2
0ϕ

ε
i

∥∥
Lpl (QT )

≤ CT ‖ρS,lϕεi‖Lpl (QT ) ≤ CT
∥∥∥ψε,li ∥∥∥

Lpl (QT )
≤ CT ‖Z0‖L2(Ω)n .

Therefore, from (89), (HJ,ε)ε is bounded in L∞(QT )m, then up to a subsequence,
we can assume that there exists HJ ∈ L∞(QT )m such that

(90) HJ,ε ⇀
ε→0

∗ HJ in L∞(QT )m,

and

(91)
∥∥HJ

∥∥
L∞(QT )m

≤ CT ‖Z0‖L2(Ω)n .

From (89), Definition-Proposition 2.1 applied to (L-Z) satisfied by Zε, we obtain

(92) ‖Zε‖Wn
T
≤ CT ‖Z0‖L2(Ω)n .

So, from (92), up to a subsequence, we can suppose that there exists Z ∈ Wn
T such

that

(93) Zε ⇀
ε→0

Z in L2(0, T ;H1(Ω)n), ∂tZ
ε ⇀
ε→0

∂tZ in L2(0, T ; (H1(Ω))′n),

and from (12),

(94) Zε(0, .) ⇀
ε→0

Z(0, .) in L2(Ω)n, Zε(T, .) ⇀
ε→0

Z(T, .) in L2(Ω)n.

Then, as we have Zε(0, .) = Z0 and Zε(T, .)→ 0 from (75), we deduce that

(95) Z(0, .) = Z0, and Z(T, .) = 0.

By letting ε→ 0, we have from (93), (90) and (95) that

(96)


∂tZ −DJ∆Z = AJZ +HJ1ω in (0, T )× Ω,
∂Z
∂ν = 0 on (0, T )× ∂Ω,
(Z(0, .), Z(T, .)) = (Z0, 0) in Ω.

This ends the proof of Theorem 7.1 by using (91) and (96).
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7.2. The come back to the source term method in L∞. The goal of this section
is to apply the source term method in L∞ thanks to the null-controllability result in
L∞: Theorem 7.1.

To simplify the notations, we assume that the control cost in L∞ of Theorem 7.1
satisfies: CT ≤MeM/T where M is already defined at the beginning of Section 6.

From Proposition A.6 with r = +∞ proved in Appendix A.5, we deduce the
following null-controllability result for (L+S-Z) (see Section 6) in L∞.

Proposition 7.5. For every S ∈ S∞ and Z0 ∈ L∞inv, there exists HJ ∈ H∞, such
that the solution Z of (L+S-Z) satisfies Z ∈ Z∞. Furthermore, there exists C > 0,
not depending on S and Z0, such that

(97) ‖Z/ρ0‖L∞([0,T ];L∞(Ω)n) +
∥∥HJ

∥∥
H∞ ≤ C

(
‖Z0‖L∞(Ω)n + ‖S‖S∞

)
.

In particular, since ρ0 is a continuous function satisfying ρ0(T ) = 0, the above
relation (97) yields Z(T, .) = 0.

8. The inverse mapping theorem in appropriate spaces

The goal of this section is to prove Theorem 4.1. The proof is based on Proposi-
tion 7.5 and an inverse mapping theorem in suitable spaces.

Proof. Let us introduce the following space (see the definitions (62), (63) and (64)):

(98) E := {(Z,HJ) ∈ Z∞ ×H∞; ∂tZ −DJ∆Z −AJZ −HJ1ω ∈ S∞}.
We endow E with the following norm: for every (Z,HJ) ∈ E,
(99)∥∥(Z,HJ)

∥∥
E

= ‖Z(0, .)‖L∞+‖Z‖Z∞+
∥∥HJ

∥∥
H∞+

∥∥∂tZ −DJ∆Z −AJZ −HJ1ω
∥∥
S∞

.

Then, (E, ‖.‖E) is a Banach space.
For every Z ∈ Z∞, we introduce the following polynomial nonlinearity of degree

more than 2:

(100) Q(Z) := G(Z)−AJZ,

where G is defined in (31). By denoting γ := max

(
n∑
i=1

αi,
n∑
i=1

βi

)
, we remark that for

every Z ∈ Z∞, Q(Z) =
γ∑
i=2

Qi(Z) where for every 2 ≤ i ≤ γ, Qi(Z) is a polynomial

term with respect to Z = (z1, . . . , zn) of degree i. By using (61), we deduce that
Q(Z) ∈ S∞ and for every 2 ≤ i ≤ γ,

(101) ‖Qi(Z)‖S∞ =

∥∥∥∥Qi(Z)

ρS

∥∥∥∥
L∞(QT )n

=

∥∥∥∥ρi−2
0

ρ2
0

ρS

Qi(Z)

ρi0

∥∥∥∥
L∞(QT )n

≤ C ‖Z‖iZ∞ .

We introduce the following mapping:

(102) A : E −→ F := S∞ × L∞inv
(Z,H) 7−→ (∂tZ −DJ∆Z −AJZ −HJ1ω −Q(Z), Z(0, .)).

By using (98), the fact that for (Z,HJ) ∈ E and Q(Z) ∈ S∞ by (101), we see
that A is well-defined. Moreover, A ∈ C1(E;F ). Indeed, all the terms in (102) are
linear and continuous (thus C∞) thanks to (99) except the term Q(Z). And, for
(Z,HJ) ∈ E, Q(Z) is a polynomial function with respect to Z which is C∞. Indeed,

Qi(Z) =
∑

γ1+···+γn=i
γ1,...,γn≥0

cγ1,...,γnz
γ1
1 . . . zγnn =

∑
γ1+···+γn=i
γ1,...,γn≥0

cγ1,...,γnBγ1,...,γn ◦ Lγ1,...,γn(Z),

where
Lγ1,...,γn(z1, . . . , zn) := (z1, . . . , z1︸ ︷︷ ︸

γ1 times

, z2, . . . , z2︸ ︷︷ ︸
γ2 times

, . . . , zn, . . . , zn︸ ︷︷ ︸
γn times

),

20



Bγ1,...,γn(a1,1, . . . , a1,γ1 , a2,1, . . . , a2,γ2 , . . . , an,1, . . . , an,γn︸ ︷︷ ︸
aγ1,...,γn

) :=
n∏
i=1

γi∏
j=1

ai,j .

To simplify, we renote L := Lγ1,...,γn and B := Bγ1,...,γn . The mapping L is C∞
because L is linear and continuous. The mapping B is C∞ because B is i-linear and
continuous. Indeed, by using (61), we have

‖B(aγ1,...,γn)‖S∞ =

∥∥∥∥B(aγ1,...,γn)

ρS

∥∥∥∥
L∞(QT )n

=

∥∥∥∥ρi−2
0

ρ2
0

ρS

B(aγ1,...,γn)

ρi0

∥∥∥∥
L∞(QT )n

≤ C
n∏
i=1

γi∏
j=1

‖ai,j‖Z∞ .

Moreover, the differential of A at the point (0, 0) in the direction (Z,HJ) is

(103) DA(0, 0).(Z,HJ) = (∂tZ −DJ∆Z −AJZ −HJ1ω, Z(0, .)),

which is onto by using Proposition 7.5. Then, by using the inverse mapping theorem
(see [10, Theorem 2]), we deduce that there exists r > 0, such that for every (S,Z0) ∈
F satisfying ‖(S,Z0)‖F ≤ r, there exists (Z,HJ) ∈ E such that A(Z,HJ) = (S,Z0).
By taking S = 0 and Z0 ∈ L∞inv such that ‖Z0‖L∞(Ω)n ≤ r, we get the existence of
(Z,HJ) ∈ Z∞ ×H∞ such that

∂tZ −DJ∆Z = AJZ +Q(Z)︸ ︷︷ ︸
G(Z) by (100)

+HJ1ω in (0, T )× Ω,

∂Z
∂ν = 0 on (0, T )× ∂Ω,
(Z(0, .), Z(T, .)) = (Z0, 0) in Ω.

This concludes the proof of Theorem 4.1. �

9. Comments

9.1. More general semilinearities. In this paper, we have only considered par-
ticular semilinearities of the form:

(104) ∀1 ≤ i ≤ n, fi(u1, . . . , un) = (βi − αi)

(
n∏
k=1

uαkk −
n∏
k=1

uβkk

)
.

But the main result of the article, i.e., Theorem 4.2 holds true with more general
polynomial semilinearities satisfying

∃R ∈ R[X1, . . . , Xn], ∀1 ≤ i ≤ n, ∃ai ∈ R∗, fi = aiR,

where R[X1, . . . , Xn] denotes the space of multivariate polynomials with coefficients
in R. In this case, (u∗i )1≤i≤n is a constant nonnegative stationary state if

(u∗i )1≤i≤n ∈ [0,+∞)n and R(u∗1, . . . , u
∗
n) = 0.

For example, (104) rewrites as follows

∀1 ≤ i ≤ n, fi(X1, . . . , Xn) = (βi − αi)

(
n∏
k=1

Xαk
k −

n∏
k=1

Xβk
k

)
.

9.2. Degenerate cases. In this part, we assume that Assumption 3.2 is not satis-
fied. Then, the usual strategy is to perform the return method, introduced by Jean-
Michel Coron in [8] (see also [9, Chapter 6]). This method consists in finding a refer-
ence trajectory (U,HJ) verifying U(0, .) = U(T, .) = U∗ of (NL-U) (see Section 1.2)
such that the linearized system of (NL-U) around (U,HJ) is null-controllable.
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Example 9.1. For n = 2, we take α1 = 3, β1 = 0, α2 = 0, β2 = 1 and J = {1}. We
get the following control reaction-diffusion system:

(105)


∂tu1 − d1∆u1 = −u3

1 + u2 + h11ω in (0, T )× Ω,
∂tu2 − d2∆u2 = u3

1 − u2 in (0, T )× Ω,
∂U
∂ν = 0 on (0, T )× ∂Ω,
U(0, .) = U0 in Ω.

In this case, Assumption 3.2 is not satisfied if and only if (u∗1, u
∗
2) = (0, 0). By using

the return method, Jean-Michel Coron, Sergio Guerrero and Lionel Rosier prove the
local null-controllability around (0, 0) of (105) (see [11]).

Example 9.2. For n = 4, we take α1 = α3 = β2 = β4 = 1, α2 = α4 = β1 = β3 = 0
and J = {1, 2, 3}. Then, we get the controlled reaction-diffusion system as in (40).
In this case, Assumption 3.2 is not satisfied if and only if (u∗1, u

∗
3, u
∗
4) = (0, 0, 0). More

precisely, the linearized system around
(

(0, u∗2, 0, 0), (0, 0, 0)
)
is not null-controllable

because the fourth equation is decoupled from the others:

∂tu4 − d4∆u4 = u∗2u4.

By using the return method, the author proves the local null-controllability around
(0, u∗2, 0, 0) of (40) (see [28]). More precisely, for this system, a reference trajectory
is not difficult to construct. Indeed, one can take

(
(0, u∗2, g, 0), (0, 0, ∂tg − d3∆g)

)
where g satisfies

(106) g ∈ C∞(Q), g ≥ 0, g 6= 0, supp(g) ⊂ (0, T )× ω.

Thus, the fourth equation of the linearized system around this trajectory is:

∂tu4 − d4∆u4 = g(t, x)u1 − u∗2u4.

Roughly speaking, the component u4 can be controlled throughout the coupling term
g(t, x)u1 which lives in the control zone (see for instance [11, Section 3.1, Lemma
3]).

Example 9.3. For n = 10, we take α1 = α3 = α5 = α7 = α9 = β2 = β4 = β6 =
β8 = β10 = 1, α2 = α4 = α6 = α8 = α10 = β1 = β3 = β5 = β7 = β9 = 0 and
J = {1, 2, 3, 4, 5}. The control system is the following one:

(107) ∀1 ≤ i ≤ 10,


∂tui − di∆ui =
(−1)i(u1u3u5u7u9 − u2u4u6u8u10) + hi1ω1i∈J in (0, T )× Ω,
∂ui

∂ν = 0 on (0, T )× ∂Ω,
ui(0, .) = ui,0 in Ω.

The stationary state
(0, 0, 0, 0, u∗5, u

∗
6, u
∗
7, u
∗
8, u
∗
9, u
∗
10),

where (u∗5, u
∗
7, u
∗
9) ∈ (0,+∞)3 and (u∗6, u

∗
8, u
∗
10) ∈ [0,+∞)3 does not satisfy Assump-

tion 3.2. In this case, the linearized system around(
(0, 0, 0, 0, u∗5, u

∗
6, u
∗
7, u
∗
8, u
∗
9, u
∗
10), (0, 0, 0, 0, 0)

)
is not null-controllable because the

sixth equation of this system is:

∂tu6 − d6∆u6 = 0.

As for Example 9.2, we can easily construct a reference trajectory:(
(0, 0, g, 0, u∗5, u

∗
6, u
∗
7, u
∗
8, u
∗
9, u
∗
10), (0, 0, ∂tg − d3∆g, 0, 0)

)
,

where g satisfies (106). By performing the same change of variables as in Section 3.1
and by linearizing around the reference trajectory, we find the same system as in
(L-Z) (see Section 3.2 with n = 10, m = 5) where the coefficients of A are allowed
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to depend on (t, x) and a61(t, x) ≥ ε > 0 on (t1, t2) × ω0 ⊂ (0, T ) × ω. This linear
system seems to be null-controllable according to the following heuristic diagram:

h1
controls−−−−−→ z1, h2

controls−−−−−→ z2, h3
controls−−−−−→ z3, h4

controls−−−−−→ z4, h5
controls−−−−−→ z5,

z1
controls−−−−−−→
a61(t,x)z1

z6
controls−−−−−→

∆z6
z7

controls−−−−−→
∆z7

z8
controls−−−−−→

∆z8
z9

controls−−−−−→
∆z9

z10.

Unfortunately, we do not know how to prove that the linearized system around this
trajectory is null-controllable for technical reasons maybe. It comes from the fact
that in this case m = 5 < n−4 = 6. Intuitively, with the proof strategy performed in
[28], we have to benefit from one coupling term of order 0 (in L∞) and four coupling
terms of order 2. This leads to the following open problem.

We introduce the following notation: C∞b (QT ) is the set of functions A defined
on QT of class C∞ and such that all the derivatives of A are bounded. We choose
to state the following open problem for Dirichlet conditions instead of Neumann
conditions to avoid the constraints on the initial data.

Open problem 9.4. Let n,m be two integers such that n ≥ 6, m < n − 4
and (di)1≤i≤n ∈ (0,+∞)n. Let A ∈ C∞b (QT )m×n. We assume that there exist
(t1, t2) ⊂ (0, T ), a nonempty open subset ω0 such that ω0 ⊂⊂ ω and ε > 0 such that
Am+1,m(t, x) ≥ ε on (t1, t2)×ω0. For y0 ∈ L2(Ω)n, (hi)1≤i≤m ∈ L2((0, T )×Ω)m, we
consider the linear control system:

∂tyi − di∆yi =
n∑
j=1

Ai,j(t, x)yj + hi1ω11≤i≤m in (0, T )× Ω, 1 ≤ i ≤ m+ 1

∂tyi − di∆yi = ∆yi−1 in (0, T )× Ω, m+ 2 ≤ i ≤ n
y = 0 on (0, T )× ∂Ω,
y(0, .) = y0 in Ω.

(108)

Is the system (108) null-controllable in L2(Ω)n?

Remark 9.5. Open problem 9.4 is closely related to the generalization of [15, The-
orem 1.1] to linear parabolic systems with diffusion matrices that contain Jordan
blocks of dimension more than 5. Indeed, the diffusion matrix of (108) is DJ defined
in (32). The submatrix D] (see again (32)) looks like a Jordan block of dimension
more than 5 if m < n − 4. Consequently, the strategy of Carleman inequalities ap-
plied to each equation of the adjoint system of (108) yields some global terms in the
right hand side of the inequality that cannot be absorbed by the left hand side (see
[15, Section 2]).

Appendix A.

A.1. Stationary states. We only have considered nonnegative stationary constant
solutions of (2). It is not restrictive because of the following proposition.

Proposition A.1. Let (ui)1≤i≤n ∈ C2(Ω)n be a nonnegative solution of

(109) ∀1 ≤ i ≤ n,
{
−di∆ui = fi(U) in Ω,
∂ui
∂ν = 0 on ∂Ω,

where fi(U) (1 ≤ i ≤ n) is defined in (6). Then, for every 1 ≤ i ≤ n, ui is constant.

The proof relies on an entropy inequality: −
∑n

i=1 log(ui)fi(U) ≤ 0.

Proof. Let ε > 0 be a small parameter. For every 1 ≤ i ≤ n, we introduce

ui,ε = ui + ε, wi,ε = ui,ε(log ui,ε − 1) + 1 ≥ 0.

We have

(110) ∀1 ≤ i ≤ n, ∇wi,ε = log(ui,ε)∇ui,ε, ∆wi,ε = log(ui,ε)∆ui,ε +
|∇ui,ε|2

ui,ε
.
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Then, from (109) and (110), we have

(111) ∀1 ≤ i ≤ n,

{
−di∆wi,ε + di

|∇ui,ε|2
ui,ε

= − log(ui,ε)fi(U) in Ω,
∂wi,ε
∂n = 0 on ∂Ω.

We sum the n equations of (111), we integrate on Ω and we use the increasing of the
function log:

0 +

∫
Ω

n∑
i=1

di
|∇ui,ε|2

ui,ε

(112)

= −

(∫
Ω

{
log

(
n∏
i=1

uαii,ε

)
− log

(
n∏
i=1

uβii,ε

)}{
n∏
i=1

uαii −
n∏
i=1

uβii

})

= −

(∫
Ω

{
log

(
n∏
i=1

uαii,ε

)
− log

(
n∏
i=1

uβii,ε

)}{
n∏
i=1

uαii,ε −
n∏
i=1

uβii,ε +O(ε)

})

≤
∫

Ω

∣∣∣∣∣log

(
n∏
i=1

uαii,ε

)
− log

(
n∏
i=1

uβii,ε

)∣∣∣∣∣O(ε) ≤

(
n∑
i=1

(αi + βi)

)
| log(ε)|O(ε) →

ε→0
0.

Moreover,

(113) ∀1 ≤ i ≤ n,
∫

Ω
di
|∇uεi |2

uεi
=

∫
Ω

4di|∇
√
uεi |

2.

Consequently, from (112), (113), we get that

∀1 ≤ i ≤ n,
∫

Ω
4di|∇

√
ui|2 = 0.

Consequently, for every 1 ≤ i ≤ n, ui is constant. �

Our proof of Theorem 4.2 does not treat the case of stationary states which can
change of sign, contrary to the proof of [28, Theorem 3.2] (see [28, Section 6.2]).
As in the previous part (see Example 9.3), the proof of [28, Theorem 3.2] can be
adapted to local controllability around stationary states of (2) which can change of
sign if m ≥ n− 4 (for technical reasons maybe, see Open problem 9.4).

A.2. Proof of the existence of invariant quantities in the system. The goal
of this section is to prove Proposition 2.3.

Proof. We introduce the notation R :=
n∏
k=1

uαkk −
n∏
k=1

uβkk and we take m+ 1 ≤ i ≤ n.

By using the fact that ui ∈WT and from [14, Lemma 3], we obtain that the mapping
t 7→

∫
Ω ui(t, x)dx is absolutely continuous and for a.e. 0 ≤ t ≤ T ,

(114)
d

dt

∫
Ω
ui(t, x)dx = (∂tui(t, .), 1)(H1(Ω))′,H1(Ω) .

Then, by using that ((ui)1≤i≤n, (hi)1≤i≤m) is a trajectory of (NL-U) and by taking
w = 1 in (18), we find that for a.e. 0 ≤ t ≤ T ,

(∂tui(t, .), 1)(H1(Ω))′,H1(Ω) = di(∇ui(t, .),∇1)L2(Ω),L2(Ω) +

∫
Ω

(βi − αi)R(115)

=

∫
Ω

(βi − αi)R.

Then, by using (114) and (115), we get for a.e. 0 ≤ t ≤ T ,

(116)
d

dt

∫
Ω

ui(t, .)

βi − αi
=

∫
Ω
R.
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Now, let m+ 1 ≤ k 6= l ≤ n. By (116) for i = k and (116) for i = l , we deduce that
for a.e. 0 ≤ t ≤ T ,

(117)
d

dt

∫
Ω

(
uk(t, .)

βk − αk
− ul(t, .)

βl − αl

)
= 0.

Therefore, from (117), we have for every t ∈ [0, T ],

1

|Ω|

∫
Ω

(
uk(t, x)

βk − αk
− ul(t, x)

βl − αl

)
dx =

u∗k
βk − αk

−
u∗l

βl − αl
.

If we assume that d := dk = dl, then the equation satisfied by v := (βl − αl)uk −
(βk − αk)ul is

(118)


∂tv − d∆v = 0 in (0, T )× Ω,
∂v
∂ν = 0 on (0, T )× ∂Ω,
v(T, .) = (βl − αl)u∗k − (βk − αk)u∗l in Ω.

The backward uniqueness of the heat equation (see for instance [5, Théorème II.1])
applied to (118) leads to

∀t ∈ [0, T ], (βl − αl)uk(t, .)− (βk − αk)ul(t, .) = (βl − αl)u∗k − (βk − αk)u∗l .
This yields (21). �

A.3. Proofs concerning the change of variables.

A.3.1. Proof of the equivalence of the two systems. In this section, we prove Propo-
sition 3.1. It is based on the following algebraic lemma.

Lemma A.2. Let s be an integer such that s ≥ 2. Let (a1, . . . , as) ∈ Cs be such that
ai 6= aj for i 6= j. Then, we have

(119)
s∑
i=1

s∏
j=1
j 6=i

1

ai − aj
= 0.

Proof. Let C(X) be the field of fractional functions with coefficients in C and F ∈
C(X) be defined by

F (X) :=

s−1∑
i=1

s−1∏
j=1
j 6=i

1

ai − aj

 1

ai −X

+

s−1∏
j=1

1

X − aj
.(120)

The partial fractional decomposition of F is the following one:

F (X) =

s−1∑
i=1

bi
X − ai

, where bi ∈ C.

For 1 ≤ i ≤ s − 1, we compute each bi by multiplying (120) by (X − ai) and by
evaluating X = ai:

bi = −
s−1∏
j=1
j 6=i

1

ai − aj
+

s−1∏
j=1
j 6=i

1

ai − aj
= 0.

We deduce that F = 0. By remarking that

F (as) =

s∑
i=1

s∏
j=1
j 6=i

1

ai − aj
= 0,

we conclude the proof of (119) �

The following result is an easy consequence of Lemma A.2.
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Corollary A.3. For every m+ 2 ≤ k ≤ n, we have

(121)
k∑

l=m+1

Pkl(βl − αl) = 0.

Proof. By (27), we have by taking s = k −m and ai = di+m for 1 ≤ i ≤ k −m in
Lemma A.2

k∑
l=m+1

Pkl(βl − αl) =
k−m∑
i=1

Pk,i+m(βi+m − αi+m) =
k−m∑
i=1

i−m∏
j=1
j 6=i

1

di+m − dj+m
= 0.

This ends the proof of Corollary A.3. �

Now, we turn to the proof of Proposition 3.1.

Proof. We introduce the following notation: R :=
n∏
k=1

uαkk −
n∏
k=1

uβkk .

We assume that (U,HJ) is a trajectory of (NL-U). The equations 1 ≤ i ≤ m+ 1
of (28) are clearly satisfied. Let m+ 2 ≤ i ≤ n. We have:

∂tzi − di∆zi = ∂t

 i∑
j=m+1

Pijuj

− di∆
 i∑
j=m+1

Pijuj


=

i∑
j=m+1

Pij(∂tuj − dj∆uj + (dj − di)∆uj)

=

i∑
j=m+1

Pij((βj − αj)R) + Pij (dj − di)︸ ︷︷ ︸
0 if j=i

∆uj

(122)

= R
i∑

j=m+1

Pij(βj − αj)︸ ︷︷ ︸
0 by Corollary A.3

+
i−1∑

j=m+1

Pij(dj − di)︸ ︷︷ ︸
Pi−1,j by (27)

∆uj

= ∆zi−1.

This ends the proof of “⇒”.
We assume that (Z,HJ) satisfies (28). Then, the equations

(123) ∂tui − di∆ui = (βi − αi)R,

are clearly satisfied for 1 ≤ i ≤ m + 1. We prove (123) by strong induction on
i ∈ {m+ 2, . . . , n}. By using (122) for i = m+ 2 and (123) for i = m+ 1, we obtain

m+2∑
j=m+1

Pm+2,j(∂tuj − dj∆uj) = 0

⇔ Pm+2,m+2(∂tum+2 − dm+2∆um+2) = −RPm+2,m+1(βm+1 − αm+1).

This leads to (123) for i = m + 2 by using Pm+2,m+1/Pm+2,m+2 = −(βm+2 −
αm+2)/(βm+1 − αm+1) by (27). For i > m + 2, by induction, we have Pii(∂tui −

di∆ui) +
i−1∑

j=m+1
Pij(βj − αj)R = 0 by (122). Then, from Corollary A.3, we have

i−1∑
j=m+1

Pij(βj − αj) = −Pii(βi − αi). This yields (123) and ends the proof of “⇐”.

This concludes the proof of Proposition 3.1. �
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A.3.2. Proof of the equivalence concerning the mass condition. In this section, we
prove the equivalence (39) which leads to the equivalence between Theorem 4.1 and
Theorem 4.2.

Proof. Assume that Z0 ∈ L∞inv. Then, we have

(124) ∀m+ 2 ≤ i ≤ n,
∫

Ω

i∑
k=m+1

Pik(uk,0(x)− u∗k)dx = 0.

We prove (24) by strong induction on k ≥ m + 2. The case k = m + 2 comes from
(124) for i = m+ 2 and Pm+2,m+1/Pm+2,m+2 = −(βm+2−αm+2)/(βm+1−αm+1) by
(27). For i > m+ 2 in (124), by induction, we have∫

Ω

{
Pii(ui,0(x)− u∗i ) +

i−1∑
k=m+1

Pik
(βk − αk)(um+1,0(x)− u∗m+1)

βm+1 − αm+1

}
dx = 0.

Then, from Corollary A.3, we have
i−1∑

k=m+1

Pik(βk − αk) = −Pii(βi − αi). This yields

(24) for k = i.
Assume (24) holds. From Corollary A.3, we have that for every m+ 2 ≤ i ≤ n,∫
Ω

i∑
k=m+1

Pik(uk,0(.)− u∗k) =

∫
Ω

i∑
k=m+1

Pik
βk − αk

βm+1 − αm+1
(um+1,0(.)− u∗m+1) = 0.

This ends the proof of (39). �

A.4. Proof of an observability estimate for linear finite dimensional sys-
tems. The goal of this section is to give a self-contained proof of Lemma 5.5. By the
Hilbert Uniqueness Method (see [9, Theorem 2.44]), it suffices to show the following
null-controllability result for finite dimensional systems.

Proposition A.4. There exist C > 0, p1, p2 ∈ N such that for every τ ∈ (0, 1),
λ ≥ λ1 with λ1 the first positive eigenvalue of (−∆, H2

Ne(Ω)), y0 ∈ Rn, there exists
a control h ∈ L2(0, τ ;Rm) verifying

(125) ‖h‖2L2(0,T ;Rm) ≤ C
(

1 +
1

τp1
+ λp2

)
‖y0‖2Rn

such that the solution y ∈ L2(0, τ ;Rn) of

(126)
{
y′ = Ay +Bh, in (0, τ),
y(0) = y0 in Rn,

where A = −λDJ + AJ (see (32), (36) and (37)) and B =

(
Im
(0)

)
∈ Mn,m(R),

satisfies y(τ) = 0.

Remark A.5. We do not treat the case λ0 = 0 with initial data y0 ∈ Rm+1 ×
{0}n−m−1 because it is a simple adaptation of the following proof.

Proof. Let τ ∈ (0, 1), λ ≥ λ1, y0 ∈ Rn.
Step 1: Construction of the control h by a Brunovsky approach. We

start by defining y to be the free solution of the system (126) (take h = 0). We have
y(t) = etAy0 = et(−λDJ+AJ )y0. We easily have that for any l ≥ 0,

(127)
∥∥∥y(l)

∥∥∥
L2(0,τ ;Rn)

≤ C(1 + λl−1/2) ‖y0‖Rn .

We choose a cut-off function η ∈ C∞([0, τ ];R) such that η = 1 on [0, τ/3] and
η = 0 on [2τ/3, τ ] verifying:

(128) ∀p ∈ N, ∀t ∈ [0, τ ], |η(p)(t)| ≤ Cp
τp
.
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We start by choosing for every i ∈ {1, . . . ,m− 1, n},

(129) yi(t) := η(t)yi(t).

Then, by using the cascade form of (126), we define by reverse induction on i ∈
{n− 1, n− 2, . . . ,m+ 1},

(130) yi(t) := − 1

λ

(
y′i+1(t) + λdi+1yi+1(t)

)
.

Then, ym is defined by the equation number (m+ 1) by

(131) ym(t) :=
1

am+1,m

y′m+1(t) + λdm+1ym+1(t)−
n∑
s=1
s6=m

am+1,sys(t)

 .

Finally, we set for the control

(132) h := y′ −Ay.

By (131) and (132), h is of the form h = (h1, . . . , hm, 0, . . . , 0).
Step 2: Properties of the solution y and estimate of the control h. First,

we remark that,

(133) ∀1 ≤ i ≤ n,
{
yi = yi, in [0, τ/3],
yi = 0, in [2τ/3, τ ].

Indeed, the property (133) is clear for i ∈ {1, . . . ,m−1, n} by definition (129). Then,
we prove (133) by reverse induction on m ≤ i ≤ n by using (130), (131) and the
definition of y, for instance, for t ∈ [0, τ/3]:

yn−1(t) = − 1

λ

(
y′n(t) + λdnyn(t)

)
= − 1

λ

(
yn
′(t) + λdnyn(t)

)
= yn−1(t).

Now, we have by (129), (128) and (127) that for every i ∈ {1, . . . ,m− 1},

(134)
1∑
l=0

∥∥∥y(l)
i

∥∥∥
L2(0,τ ;Rn)

≤ C
(

1 +
1

τ1/2
+ λ1/2

)
‖y0‖Rn .

Then, we easily prove by reverse induction on m ≤ i ≤ n by using (127), (128),
(129), (130), (131) and (134)

i+1−m∑
l=0

∥∥∥y(l)
i

∥∥∥
L2(0,τ ;Rn)

≤ C
(

1 +
1

τn−m+1/2
+ λn−m+1/2

)
‖y0‖L2(0,τ ;Rn) .(135)

Hence, the control h and the state y satisfy (125), (126) with p1 = p2 = 2(n −
m+ 1/2) and y(τ) = 0. �

A.5. Source term method in Lr for r ∈ {2,+∞}. We use the same notations as
in the beginning of Section 6. The goal of this section is to prove Proposition 6.3
and Proposition 7.5. We have the following result.

Proposition A.6. For every S ∈ Sr and Z0 ∈ Lrinv, there exists HJ ∈ Hr, such
that the solution Z of (L+S-Z) satisfies Z ∈ Zr. Furthermore, there exists C > 0,
not depending on S and Z0, such that

(136) ‖Z/ρ0‖L∞([0,T ];Lr(Ω)n) +
∥∥HJ

∥∥
Hr ≤ CT

(
‖Z0‖Lr(Ω)n + ‖S‖Sr

)
,

where CT = CeC/T .

The proof is inspired by [6, Proposition 2.6].
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Proof. For k ≥ 0, we define Tk = T (1− q−k). On the one hand, let a0 = Z0 and, for
k ≥ 0, we define ak+1 = ZS(T−k+1, .) where ZS is the solution to

(137)


∂tZS −DJ∆ZS = AJZS + S in (0, T )× Ω,
∂ZS
∂ν = 0 on (0, T )× ∂Ω,
ZS(T+

k , .) = 0 in Ω.

From Definition-Proposition 2.1, using the estimates (16) and (12) for r = 2 or (17)
and (12) for r = +∞, we have

(138) ‖ak+1‖Lr(Ω)n ≤ ‖ZS‖L∞([Tk,Tk+1];Lr(Ω)n) ≤ C ‖S‖Lr((Tk,Tk+1);Lr(Ω)n) .

On the other hand, for k ≥ 0, we also consider the control systems

(139)


∂tZH −DJ∆ZH = AJZH +HJ1ω in (0, T )× Ω,
∂ZH
∂ν = 0 on (0, T )× ∂Ω,
ZH(T+

k , .) = ak in Ω.

Using Theorem 5.1 for r = 2 or Theorem 7.1 for r = +∞, we can define HJ
k ∈

Lr((Tk, Tk+1)×Ω)m such that ZH(T−k+1, .) = 0 and, thanks to the cost estimate (41)
for r = 2 or (68) for r = +∞ (recalling that CT ≤MeM/T ),

(140)
∥∥HJ

k

∥∥
Lr((Tk,Tk+1)×Ω)m

≤Me
M

Tk+1−Tk ‖ak‖L2(Ω)n .

In particular, for k = 0, we have

(141)
∥∥HJ

0

∥∥
Lr((T0,T1)×Ω)m

≤Me
qM

T (q−1) ‖Z0‖L2(Ω)n .

And, since ρ0 is decreasing

(142)
∥∥HJ

0 /ρ0

∥∥
Lr((T0,T1)×Ω)m

≤ ρ−1
0 (T1)Me

qM
T (q−1) ‖Z0‖L2(Ω)n .

For k ≥ 0, since ρS is decreasing, combining (138) and (140) yields

(143)
∥∥HJ

k+1

∥∥
Lr((Tk+1,Tk+2)×Ω)m

≤ CMe
M

Tk+2−Tk+1 ρS(Tk) ‖S/ρS‖Lr((Tk,Tk+1)×Ω)n .

In particular, by using Me
M

Tk+2−Tk+1 ρS(Tk) = ρ0(Tk+2) (see (59) and (60)), we have∥∥HJ
k+1

∥∥
Lr((Tk+1,Tk+2)×Ω)m

≤ Cρ0(Tk+2) ‖S/ρS‖Lr((Tk,Tk+1)×Ω)n .(144)

Then, from (144), by using the fact that ρ0 is decreasing,

(145)
∥∥HJ

k+1/ρ0

∥∥
Lr((Tk+1,Tk+2)×Ω)m

≤ C ‖S/ρS‖Lr((Tk,Tk+1)×Ω)n .

As in the original proof, we can paste the controls HJ
k for k ≥ 0 together by defining

(146) HJ :=
∑
k≥0

HJ
k .

We have the estimate from (142) and (145)

(147)
∥∥HJ

∥∥
Hr ≤ C ‖S‖Sr + Cρ−1

0 (T1)Me
qM

T (q−1) ‖Z0‖L2(Ω)n .

The state Z can also be reconstructed by concatenation of ZS + ZH , which are
continuous at each junction Tk thanks to the construction. Then, we estimate the
state. We use the energy estimate (16) for r = 2 or (17) for r = +∞ from Definition-
Proposition 2.1 on each time interval (Tk, Tk+1):

(148) ‖ZS‖L∞(Tk,Tk+1;Lr(Ω)n) ≤ C ‖S‖Lr((Tk,Tk+1)×Ω)n ,

and

(149) ‖ZH‖L∞(Tk,Tk+1;Lr(Ω)n) ≤ C
(
‖ak‖Lr(Ω)n +

∥∥HJ
k

∥∥
Lr((Tk,Tk+1)×Ω)m

)
.
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Proceeding similarly as for the estimate on the control, we obtain respectively

(150) ‖ZS/ρ0‖L∞(Tk,Tk+1;Lr(Ω)n) ≤ CM
−1 ‖S‖Sr ,

and

(151) ‖ZH/ρ0‖L∞(Tk,Tk+1;Lr(Ω)n) ≤ CM
−1 ‖S‖Sr +Cρ−1

0 (T1)Me
qM

T (q−1) ‖Z0‖L∞(Ω)n .

Therefore, for an appropriate choice of constant C > 0, Z and HJ satisfy (136).
This concludes the proof of Proposition A.6. �

A.6. Proof of a strong observability inequality. We take the same notations
as in the beginning of Section 6. The goal of this section is to prove Corollary 6.4.

Proof. We define F1 : (Z0, S) ∈ L2
inv × S2 7→ Z(T, .) ∈ L2

inv, where Z is the solution
of (L+S-Z) with HJ = 0 and F2 : HJ ∈ H2 7→ Z(T, .) ∈ L2

inv is the solution
of (L+S-Z) with (Z0, S) = (0, 0). It is easy to see that the null-controllability of
(L+S-Z) is equivalent to Range(F1) ⊂ Range(F2).

From [9, Lemma 2.48], we have that Range(F1) ⊂ Range(F2) is equivalent to the
observability inequality

(152) ∃CT > 0, ∀ϕT ∈ L2
inv, ‖F∗1 (ϕT )‖L2

inv×S2
≤ CT ‖F∗2 (ϕT )‖H2

.

Consequently, by using the null-controllability result for (L+S-Z): Proposition 6.3,
we have that (152) holds true. Moreover, the constant CT in (152) can be chosen
such that CT ≤ CeC/T by using the cost estimate (65) (see the proof of [9, Theorem
2.44] for more details between the constant of cost estimate and the constant of
observability inequality).

Duality arguments between Z, the solution of (L+S-Z), and ϕ, the solution of
(66), lead to:∫

Ω
F1(Z0, S)(x).ϕT (x)dx =

∫
Ω
Z0(x).ϕ(0, x)dx+

∫ ∫
(0,T )×Ω

S.ϕ,

((Z0, S),F∗1 (ϕT ))L2(Ω)n×S2 =

∫
Ω
Z0(x).ϕ(0, x)dx+

∫ ∫
(0,T )×Ω

S.ϕρ2
Sρ
−2
S ,

∫
Ω
F2(HJ)(x).ϕT (x)dx =

∫ ∫
(0,T )×ω

HJ .ϕ,

(HJ ,F∗2 (ϕT ))H2 =
m∑
i=1

∫ ∫
(0,T )×Ω

hi.ϕiρ
2
01ωρ

−2
0 .

Consequently, by identification, we find

(153) F∗1 (ϕT ) = (ϕ(0, .), ϕρ2
S) ∈ L2(Ω)n × S2, F∗2 (ϕT ) = (ϕiρ

2
01ω)1≤i≤m ∈ H2.

Finally, by putting (153) in (152), we exactly obtain (67) with CT = CeC/T . This
ends the proof of Corollary 6.4. �
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