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ABSTRACT

This article is concerned with the power-balanced simulation of
analog audio circuits, governed by nonlinear differential algebraic
equations (DAE). The proposed approach is to combine principles
from the port-Hamiltonian and Brayton-Moser formalisms to yield
a skew-symmetric gradient system. The practical interest is to pro-
vide a solver, using an average discrete gradient, that handles dif-
ferential and algebraic relations in a unified way, and avoids having
to pre-solve the algebraic part. This leads to a structure-preserving
method that conserves the power balance and total energy. The
proposed formulation is then applied on typical nonlinear audio
circuits to study the effectiveness of the method.

1. INTRODUCTION

The need for stable, accurate and power-balanced simulation of
nonlinear multi-physical systems is ubiquitous in the modelling of
electronic circuits or mechanical systems and the natural setting
for electronic circuits leads to Differential-Algebraic Equations.

Standard methods of solving electronic circuits are the State-
variable [1], Modified Nodal Analysis [2], Sparse Tableau Analy-
sis [3] and Wave Digital Filters (WDF) [4] according to the choice
of variables the system is solved for. More recently, in the audio
signal processing field, it has led to the Nodal DK method [5],
nonlinear state-space [6] and extension of WDF to handle multi-
port nonlinearities [7].

However, the underlying geometric structure and power-balance
are often lost in the process. Furthermore, most numerical schemes
either introduce or dissipate energy artificially, yielding unexpected,
unstable or over-damped results.

To get rid of such artefacts, a very active research is focused on
geometric numerical integration methods [8] that provide a theo-
retical framework for structure-preserving or invariant-preserving
integration of dynamical systems. Among those methods, the Port-
Hamiltonian (PHS) [9] [10] and Brayton-Moser (BM) [11] [12]
formalisms are dual representations [13] [14] generalizing the Hamil-
tonian and Lagrangian formalisms to open dynamical systems with
algebraic constraints (including dissipation).

PHS have been applied successfully to the modelling of the
wah-wah pedal [15], Fender Rhodes [16], brass instruments [17]
and loudspeaker nonlinearities [18]. Furthermore, automated gen-
eration of the PHS equations from the graph incidence matrix of a
circuit’s netlist has been investigated in [19] and leads to a skew-
symmetric DAE form.

This paper considers this formulation as a starting point and
proposes to combine the Brayton-Moser and Port-Hamiltonian view-

∗ The author acknowledges the support of the ANR-DFG (French-
German) project INFIDHEM ANR-16-CE92-0028.

points to represent all the constitutive laws as deriving from a sin-
gle potential.

The presentation is organized as follows: first, in section 2, re-
sults about power balance, passivity, and duality of flow and effort
spaces are recalled and it is shown how the power-balance can be
represented by Dirac structures. Section 3 shows how, for both dy-
namic and algebraic components, the flow and effort variables can
be derived from a single power potential involving the Hamilto-
nian and the algebraic content and co-content potentials [20] [21].
Section 4, then shows how to perform a power-balanced structure-
preserving discretization of the system using a discrete gradient
[22] [23]. Section 5 shows how to solve the resulting algebraic
system using Newton iteration. Finally the method is applied to
some example circuits in section 6 to show the effectiveness of the
approach.

2. POWER BALANCE AND DIRAC STRUCTURES

For an electronic circuit, the Tellegen theorem [24] states that the
sum of powers absorbed by all circuit elements is balanced.

P (e, f) := eTf =
∑
n

enfn = 0 (1)

where e, f are respectively the effort and flow variables of the cir-
cuit’s branch components. This is an instance of the conservation
of energy principle made famous by Lavoisier with the statement
nothing is lost, nothing is created, everything is transformed.

This principle can be formalized mathematically by Dirac struc-
tures1 that encodes the conservative power exchange in the circuit.

2.1. Power space

For an n-port element, letF be an n-dimensional real vector space
and denote its dual E := F∗ (the space of linear functions on F).
We call F the space of flows f and E the space of efforts e. On the
product spaceP := F×E , power is defined by the non-degenerate
bilinear form

P (e, f) = 〈e | f〉, ∀(f , e) ∈ P = F × E (2)

where 〈e | f〉 denotes the duality product, that is the linear function
e ∈ E = F∗ acting on f ∈ F . If F is equipped with an inner
product 〈·, ·〉F , then E = F∗ can be identified with F such that
〈e | f〉 = 〈e, f〉F , for all f ∈ F , e ∈ E ∼ F . If for example, F
is the space of currents and E the space of voltages, then 〈e | f〉 =
〈e, f〉F = eTf denote the electrical power.

1The Kirchoff Current and Voltage laws are special cases of Dirac struc-
tures when all the components share either the same current (series connec-
tion) or the same voltage (parallel connection).
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2.2. Passivity and Dirac structures

In the 2n-dimensional space P , a passive linear n-port can be rep-
resented as an n-dimensional subspace S ⊂ P defined by n linear
constraints which admits the kernel representation

S = {(f , e) ∈ P | Ff + Ee = 0} (3)

with rank([F E]) = n. Furthermore, a linear subspace D ⊂ P is
said to be power-conserving if

〈e | f〉 = 0, ∀(f , e) ∈ D (4)

It becomes a (constant) Dirac structure [25] [26] if and only if it
is a maximal subspace of P with that property i.e. dim(D) =
dim(F) = dim(E) and it admits the following matrix representa-
tions.

Definition 2.1 (Kernel representation). The kernel form of a Dirac
structure is given by the subspace

D = {(f , e) ∈ P | Ff + Ee = 0, ETF + FET = 0} (5)

where F,E ∈ Rn×n satisfy rank([F E]) = n.

Definition 2.2 (Hybrid skew-symmetric representation). LetD be
given as in (5), suppose there exists a permutation of the flow and
efforts variables π : (F,E, f , e) → (F̃, Ẽ, f̃ , ẽ) such that F̃ is
invertible then

D = {(f̃ , ẽ) ∈ P | f̃ = Jẽ, J = −F̃−1Ẽ} (6)

where J = −JT is skew-symmetric.

Conversely, for any skew-symmetric matrix J, the subspaceD
is a Dirac structure and one can verify that the power balance (1)
is encoded by the skew-symmetry of J:

P (ẽ, f̃) = ẽT f̃ = ẽTJẽ = 0. (7)

The skew-symetric form (6) will be used in the rest of the article.

3. GRADIENT DESCRIPTION OF COMPONENTS

Circuits are then categorized into dynamical, and algebraic compo-
nents where algebraic components are further separated into dis-
sipative and external sources because the later have degenerated
constitutive laws. We show how the mixed effort ẽ can be uni-
formly represented as the gradient of the scalar power potential
(1).

3.1. Dynamic components: Hamiltonian potential

For dynamic components with state variable x, flow variables are
defined as the time-derivative of the state (f := ẋ) and the effort by
a constitutive law e := ê(x). It is assumed that the constitutive law
derives from the gradient of an energy storage function H(x(t))
such that by definition ê(x) := ∇H(x) and the power is

P (e, f) = eTf = ∇H(x) · ẋ =
d

dt
H(x(t)). (8)

The Hamiltonian function can then be found using the line integral.

H(x) =

∫
∇H(x)︸ ︷︷ ︸

e

· ẋ︸︷︷︸
f

dt =

∫
∇H(x) · dx (9)

This idea is illustrated with the important cases of the linear ca-
pacitor and inductor. We then show how to handle a nonlinear
component with an integrable constitutive law.

3.1.1. Capacitor

For a capacitor, the state variable is given by the charge xC = q,
with the flow f = iC = q̇, and effort e = vC = q

C
. This gives the

Hamiltonian

H(q) =

∫
q

C
· q̇ dt =

1

C

∫
q dq =

q2

2C
(10)

3.1.2. Inductor

Similarily for an inductor, the state variable is given by the flux-
linkage xL = φ, the flow2 by its time-derivative f = φ̇ = vL and
the dual effort by e = iL = φ

L
with an Hamiltonian function

H(φ) =

∫
φ

L
· φ̇ dt =

1

L

∫
φ · dφ =

φ2

2L
(11)

3.1.3. Nonlinear dynamic component

For a nonlinear dynamic component with state variable x, flow
f = ẋ and a constitutive law e = ê(x) = tanh(x), its Hamilto-
nian storage function is given by

H(x) =

∫ t

0

ê(x) · ẋdt =

∫ x

0

ê(x̄) · dx̄ = ln(cosh(x)) (12)

3.2. Algebraic components: current and voltage potentials

If we consider the power differential dP , using the product rule,

dP (e, f) = d(e · f) = e · df + f · de. (13)

Integration over a path Γ gives the integration by parts formula

e · f
∣∣∣∣
∂Γ

=

∫
Γ

e · df +

∫
Γ

f · de. (14)

So, for components defined by algebraic constitutive laws Γ =

{(e, f) ∈ P | f = f̂(e)}, (respectively e = ê(f)), the flow and
effort potentials3 are defined by the line integrals

D(f) :=

∫ f

0

ê(f̄) · df̄ , D∗(e) :=

∫ e

0

f̂(ē) · dē. (15)

And according to (14), the instantaneous power is given, for (e, f) ∈
Γ, by (see figure 1 for a geometric interpretation and proof)

P (e, f) = e · f = D(f) +D∗(e). (16)

The flow and efforts can then be respectively obtained by partial
derivatives of the power potential as

e =
∂P

∂f
= ∇D(f), or f =

∂P

∂e
= ∇D∗(e). (17)

So in the case of a flow (resp. effort) controlled component the
power can be expressed as a function of a single variable using
either

P (e) = e · ∇D∗(e) or P (f) = ∇D(f) · f . (18)
2Note that according to the energy domain (electric, magnetic, . . . ), the

roles of flow and efforts need not necessarily be associated to the current
and voltage. The convention adopted here, is that the flow of dynamic
components is given by the time-derivative of the energy variable, while
the effort is given by the gradient of the energy potential.

3These potentials are also called the content and co-content [20] [21].
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3.2.1. Linear resistor

For a current-controlled (resp. voltage-controlled) resistor, the con-
stitutive law is v = ê(i) = Ri (resp. i = f̂(v) = v/R). By
consequence its current and voltage potentials are given by

D(i) =

∫ i

0

ê(f) df =

∫ i

0

Rf df =
Ri2

2
(19)

D∗(v) =

∫ v

0

f̂(e) de =

∫ v

0

e

R
de =

v2

2R
. (20)

Introduce function P as P (v, i) = D(i) + D∗(v), then, for all
(v, i) belonging on the characteristic curve, the power can be given
by v · i (product-type), P (v, i) (sum-type), P (v, f̂(v)) (voltage-
controlled) and P (ê(i), i) (current-controlled), that is

P (v, i) = v·i = D(i)+D∗(v) =
1

2

(
Ri2 +

v2

R

)
=
v2

R
= Ri2.

(21)
In this particular case, we have D(i) = D∗(v) = Ri2 because of
linearity (for v = Ri) but this result should not be extrapolated as
the next example will show.

3.2.2. P-N Diode

For a voltage controlled P-N diode, the constitutive law is given by

i = f̂(v) = IS

(
exp

(
v

nVT

)
− 1

)
(22)

where IS is the saturation current, n the ideality factor and VT the
thermal voltage. Its voltage potential is given by

D∗(v) =

∫ v

0

f̂(e) de = nVT IS

(
exp

(
v

nVT

)
− v

nVT
− 1

)
.

(23)
Direct integration for the current potential does not lead to an eas-
ily integrable primitive, however because of bijectivity, we can
evaluate it indirectly by using the inverse map

v = ê(i) = f̂−1(i) = nVT ln

(
1 +

i

IS

)
, i > −IS (24)

and the Legendre transform D(i) =
[
vi−D∗(v)

]
v=f̂−1(i)

:

D(i) = nVT IS

((
1 +

i

IS

)
ln

(
1 +

i

IS

)
− i

IS

)
(25)

Using the above definitions, the current and voltage potentials be-
ing known, the component can be used as being either flow or
effort-driven according to the constraints imposed by the circuit
interconnections.

3.3. External sources

For external voltage (resp. current) sources, the constitutive laws
v = ê(i) = V , (resp. i = f̂(v) = I) are independent of the
current (resp. voltage) variables and not bijective, with V (resp. I)
being the source parameter. This gives the powers

PV (v, i) = V i = D(i), PI(v, i) = vI = D∗(v). (26)

f̂(v) = IS

(
exp

(
v

nVT

)
− 1

)

P (v, i) = vi = D(i) +D∗(v)

D∗(v)

D(i)

(v, i)

v

i

Figure 1: The areas occupied by the diode power P (v, i) and the
current and voltage potentials D(i) and D∗(v) are shown in the
(v, i) plane for IS = 1, nVT = 1. It is geometrically clear that the
current and voltage potentials are complimentary and their sum
equals the power vi. It is also clear that in the nonlinear case
D(i) 6= D∗(v).

By consequence, for voltage (resp. current) sources, the voltage
potential D∗(v) (resp. current potential D(i)) is degenerate and
null.

3.4. Summary

Using an appropriate permutation π (cf definition 2.2), the mixed
flow f̃ and its dual ẽ can be parametrized by a state variable x ∈
Rn, a dissipative variable w ∈ Rp and an output y ∈ Rm, where
the potential Z(w) (resp. S(y)) is an appropriate choice among
the dissipative (resp. external) current and voltage potentials im-
posed by the permutation π. (Please refer to [19] for more details.)

f̃ := [ẋ,w,y]T (27)

ẽ := [∇H(x),∇Z(w),∇S(y)]T (28)

The power potential4 (1) can then be expressed as

P (ẽ, f̃) = ẽT f̃ = ∇H(x)Tẋ︸ ︷︷ ︸
Pc

+∇Z(w)Tw︸ ︷︷ ︸
Pd

+∇S(y)Ty︸ ︷︷ ︸
Pe

. (29)

Combining the definitions (27) and (28), with the Dirac structure
(6), leads to the skew-symmetric gradient form of Differential-
Algebraic Port-Hamiltonian equations as ẋw

y


︸ ︷︷ ︸

f̃

= J

∇H(x)
∇Z(w)
∇S(y)


︸ ︷︷ ︸

ẽ

⇐⇒ ∂P

∂ẽ
= J

∂P

∂ f̃
(30)

4 Note that because of the uniform usage of the receiver convention for
each component (including sources), the power potentials represent the ab-
sorbed power by each component. This means that dissipative components
will absorb positive power, while sources will, on average, absorb negative
power to compensate for losses (but can temporarily receive power).
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Integrating (29) over a time interval [t0, t1] combined with the
power balance (7), leads to the conservation of the total energy

∆E = H(x)

∣∣∣∣t1
t0

+

∫ t1

t0

Pd(t) dt+

∫ t1

t0

Pe(t) dt = 0. (31)

4. STRUCTURE-PRESERVING INTEGRATION SCHEME

The main objective of the numerical scheme is first and foremost,
to provide a structure-preserving method that conserves the invari-
ant (31) in discrete-time over each time-step. This offers the strong
guarantee that no artificial energy is either consumed or created by
the numerical scheme.To achieve this goal, thanks to the unified
representation of DAE circuits as gradient systems introduced in
section 3, it is now possible to generalize the usage of discrete
gradient methods [22] [23] for both dynamic and algebraic com-
ponents.

4.1. Discrete Gradients

Given a scalar potential H : Rn 7→ R, a point x ∈ Rn and
a variation δx ∈ Rn, a necessary and sufficient condition for a
function ∇H(x, δx) : Rn × Rn 7→ Rn to be a discrete gradient
is given by

∇H(x, δx) · δx = H(x + δx)−H(x) (32)

∇H(x, 0) = ∇H(x) (33)

Definition 4.1 (Average Discrete Gradient). Let x, δx ∈ Rn, and
H : Rn 7→ R be a scalar potential. The average discrete gradient
is defined for an affine trajectory model x̂(τ) = x + τδx by

∇H(x, δx) :=

∫ 1

0

∇H(x + τδx) dτ (34)

Furthermore, using the gradient theorem, for separable poten-
tials of the form

H(x) =

N∑
i=1

Hi(xi), (35)

the discrete gradient can be computed exactly by finite differences
on each scalar potential. It is given component-wise by

[∇H(x, δx)]i :=


Hi(xi + δxi)−Hi(xi)

δxi
δxi 6= 0

∂Hi
∂xi

(xi) δxi = 0

(36)

Finally, and only in the case of quadratic potentials of the form
H(x) = 1

2
xTWx with W = WT � 0, does the discrete gradi-

ent correspond to evaluation of the gradient at the mid-point.

∇H(x, δx) = ∇H
(
x +

1

2
δx

)
= W

(
x +

1

2
δx

)
(37)

The following result will also be exploited in the next section.

Property 4.1. Given a separable potential H : Rn 7→ R, as in
(35) of class C2, a point x ∈ Rn, a variation ν ∈ Rn and its
discrete gradient ∇H(x,ν) defined as (36), the derivative of the

discrete gradient with respect to the variation ν is the diagonal
matrix ∂ν∇H : (x,ν) ∈ Rn × Rn → Rn×n with entries

[
∂ν∇H

]
i,i

=


∇Hi(xi + νi)−∇Hi(xi, νi)

νi
νi 6= 0

1

2

∂2Hi
∂x2

i

(xi) νi = 0

(38)

Proof. see Appendix A.

4.2. Averaged System

Assuming over each time step Ωn = [tn, tn + h], an affine trajec-
tory model

z(tn + hτ) = zn + τδzn (39)

where z = [x,w,y]T , and integrating (30) over Ωn, we obtain
the discrete structure-preserving systemδxn/hw̄n

ȳn

 = J

∇H(xn, δxn)
∇Z(wn, δwn)
∇S(yn, δyn)

 (40)

where w̄n = wn + δwn/2, ȳn = yn + δyn/2. The DAE system
(30) has been converted to an algebraic system that needs to be to
solved for the average variation δzn = [δxn, δwn, δyn]T.

5. NEWTON ITERATION

Denote the variation ν = δzn, solving the discrete algebraic sys-
tem (40) can be rewritten as the root-finding problem

F (ν∗) = 0 (41)

where ν∗ is the looked for solution and F is defined by

F (ν) := D0zn + D1ν − J∇f̃P (zn,ν), (42)

with D0 =

0 0 0
0 Ip 0
0 0 Im

, D1 =

In/h 0 0
0 Ip/2 0
0 0 Im/2

, where

In denote the n×n identity matrix and∇f̃P = [∇H,∇Z,∇S]T.

5.1. Newton update

For an estimate νk and a perturbation ∆νk, the true solution ν∗ of
(41) can be written as ν∗ = νk + ∆νk. Taylor series expansion
of F around νk, with ‖∆νk‖ sufficiently small yields

0 = F (νk + ∆νk) = F (νk) + [F ′(νk)](∆νk) +O(‖∆νk‖2).
(43)

If the Jacobian F ′ is invertible, neglecting high-order terms and
solving for ∆ν leads to the Newton update

∆νk := −F ′(νk)−1F (νk), νk+1 := νk + ∆νk, (44)

where the Jacobian of F is given by

F ′(ν) = D1 − J
(
∂ν∇f̃P (zn,ν)

)
. (45)

For a separable potential P , using property (4.1), ∂ν∇f̃P is a di-
agonal matrix that can be computed from the knowledge of the
gradient, Hessian and discrete gradient of the potential.
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5.2. Convergence and stiffness

If the eigenvalues of the matrix A = D−1
1 J

(
∂ν∇f̃P (zn,ν)

)
are such that‖A‖2 = max(|λi|) < 1, the fixed-point induced by
(40) is contracting. The Banach fixed-point theorem guarantees
existence and unicity of the solution. It is then possible to approx-
imate the inverse of the Jacobian with the Neumann series identity

(I−A)−1 =

∞∑
k=0

Ak ≈ I + A + A2 + . . . (46)

to get the first (or any higher) order approximation

F ′(ν)−1 ≈
(
I + D−1

1 J
(
∂ν∇f̃P (zn,ν)

))
D−1

1 (47)

If max |λi| ≥ 1, the system is said to be stiff, the series (46) is di-
vergent, and the approximation (47) is no longer valid. Solving the
system then requires a matrix inversion for each iteration. Using
the Newton-Kantorovich theorem, for a starting point ν0, if there
exists positive constants β0, γ, h0, such that ‖F ′(ν0)−1‖ ≤ β0,
F ′(ν) is locally γ-Lipschitz and h0 := ‖∆ν0‖β0γ < 1/2, then
the sequence {νk} converges quadratically to some unique ν∗

such that F (ν∗) = 0. Please refer to [27] for more details.

6. CIRCUIT EXAMPLES

6.1. Envelope Follower

We consider the envelope follower circuit shown in figure 3 with
parameters C = 100 pF, IS = 2.52 nA, VT = 23 mV and n =
1.96. Kirchoff laws leads to the following Dirac structure:iCvD

iS


︸ ︷︷ ︸

f̃

=

 0 1 0
−1 0 1
0 −1 0


︸ ︷︷ ︸

J

vCiD
vS


︸ ︷︷ ︸

ẽ

. (48)

For this circuit we have x = [q], w = [vD], y = [iS ], f̃ =
[q̇, vD, iS ]T and the following potentials

H(q) =
q2

2C
, (49)

Z(vD) = nVT IS

(
exp

(
vD
nVT

)
− 1

)
− vDIS , (50)

S(iS) = V iS . (51)

Taking their gradients gives the right-hand side vector

ẽ =

vCiD
vS

 =

 ∇H(q)
∇Z(vD)
∇S(iS)

 =


q/C

IS

(
exp

(
vD
nVT

)
− 1

)
V

 (52)

and the product ẽT f̃ gives the power balance potential

P (ẽ, f̃) = ∇H(q)q̇︸ ︷︷ ︸
PC(q)

+∇Z(vD)vD︸ ︷︷ ︸
PD(vD)

+∇S(iS)iS︸ ︷︷ ︸
PS(iS)

. (53)

For the capacitor and voltage source, we obtain the discrete gradi-
ents

∇H(q, δq) =
1

C

(
q +

δq

2

)
, ∇S(i, δi) = V, (54)

and after some algebraic manipulations (see appendix B), the dis-
crete gradient of the diode potential can be expressed as

∇Z(v, δv) = IS

(
exp

(
v + δv/2

nVT

)
sinhc

(
δv

2nVT

)
− 1

)
.

(55)
where the sinhc term (sinhc := sinh(x)/x) acts as a correction
compared to evaluation of the gradient at the mid-point.

6.2. Diode Clipper

We consider the diode clipper circuit shown in figure 5 with pa-
rameters R = 1 kΩ, C = 100 nF, IS = 2.52 fA, VT = 23 mV
and n = 1. For the two diodes, with vD := vD1 and the diodes
current iD := iD1 − iD2 , the constitutive law is

iD = f̂(vD) = 2IS sinh

(
vD
nVT

)
. (56)

Its integration gives the voltage potential

D∗D(vD) =

∫ vD

0

f̂(v)dv = 2nVT IS

(
cosh

(
vD
nVT

)
− 1

)
.

(57)
Application of Kirchoff laws leads to the following Dirac struc-
ture: 

iC
vR
vD
iS


︸ ︷︷ ︸

f̃

=


0 1 −1 0
−1 0 0 1
1 0 0 0
0 −1 0 0


︸ ︷︷ ︸

J


vC
iR
iD
vS


︸ ︷︷ ︸

ẽ

. (58)

For this circuit, x = [q], w = [vR, vD]T, y = [iS ], f̃ = [q̇, vR, vD, iS ]T

and the potentials are

H(q) =
q2

2C
, Z(vR, vD) =

v2
R

2R
+D∗D(vD), S(iS) = V iS .

(59)

Their gradients regenerates the mixed effort

ẽ =


vC
iR
iD
vS

 =


∇H
∇ZR
∇ZD
∇S

 =


q/C
vR/R

2IS sinh
(
vD
nVT

)
V

 (60)

and the product ẽT f̃ gives the power balance potential

P (ẽ, f̃) = ∇H(q)q̇︸ ︷︷ ︸
PC(q)

+∇ZR(vR)vR︸ ︷︷ ︸
PR(vR)

+∇ZD(vD)vD︸ ︷︷ ︸
PD(vD)

+∇S(iS)iS︸ ︷︷ ︸
PS(iS)

.

(61)
Similarily as in the envelope follower case, we have the discrete
gradients (54) for the capacitor and voltage source, with

∇ZR(v, δv) =
1

R

(
v +

δv

2

)
(62)

for the resistor, and after some algebraic manipulations, the dis-
crete gradient of the diodes potential can be expressed as

∇ZD(v, δv) = 2IS sinh

(
v + δv/2

nVT

)
sinhc

(
δv

2nVT

)
. (63)
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Figure 2: Envelope follower circuit driven by a 1V sinusoidal input
with fundamental frequency f = 40 Hz, fs = 4 kHz.
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Figure 4: Diode clipper circuit driven by a 1V sinusoidal input
with fundamental frequency f = 400 Hz, fs = 44.1 kHz.
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Figure 5: Diode Clipper circuit

DAFX-6



Proceedings of the 21st International Conference on Digital Audio Effects (DAFx-18), Aveiro, Portugal, September 4–8, 2018

6.3. Analysis

Simulation results for both circuits are shown in figure 2 and fig-
ure 4 with respective sampling frequencies 4 kHz and 44.1 kHz.
We remark that in both cases, the power balance is satisfied with
high precision. The relative error is of the order of the machine
epsilon (ε = 2−53 ≈ 1.11 · 10−16). This results in a vanishing
total energy variation.

For dissipative components, the absorbed power is always pos-
itive; the dissipated energy is thus monotonously increasing. For
dynamic components and sources, the power is alternatively ab-
sorbed and released, the difference being that sources have a de-
creasing average energy trend to compensate for losses in the dis-
sipative components.

Existence and uniqueness of the fixed points are guaranteed if
h < C/γD for the envelope follower and if h < C/max(γD, γR)
for the diode clipper (proof is ommited) where γK stands for the
local Lipschitz constants γK = maxν |∂ν∇ZK(vK0 , ν)| of the
diode and resistor components in a neighborhood around ν0.

For the diode clipper circuit, the fixed-point does not converge,
but the Newton iteration does. We can remark that each time the
diodes are saturating, the precision of the power balance is slightly
deteriorated. This can be explained by two facts: the dissipated
power is also increasing during saturation and the system becomes
stiff, thus the numerical conditioning of the Jacobian in the Newton
iteration gets worse.

7. CONCLUSION

The main contribution of this paper consists in a) using the power-
balance as the core object from which all quantities in the system
are derived, b) generalizing the usage of potentials and their gra-
dients to represent the flow and effort variables for both dynamic
an algebraic components, c) keeping the sparse skew-symmetric
structure matrix J until numerical simulation, d) integration of the
system using the average discrete gradient. This leads to a consis-
tent structure-preserving approximation that conserves the form of
the original system in discrete-time.

It is also shown that the Jacobian of the Newton iteration has a
special structure that only involves diagonal and skew-symmetric
matrices. It can be computed only from the knowledge of the po-
tentials associated with each component and stiffness can be in-
ferred by inspection of the derivatives of the discrete gradient. Fur-
thermore the structure-preserving approach offers a valuable tool
to monitor the quality of our approximations with respect to the
power balance.

The main drawback of the approach is a direct consequence
from its strength. Indeed, the preservation of the power balance,
prevents the use of L-stable integrators (which limit the stiffness by
introducing artificial numerical dissipation) such as the Backward
Difference Formulas or Radau IIa methods [28] [29]. This imposes
some restrictions on the step size or the use of adaptive strategies.
However, since the average integration of the system can be in-
terpreted as a lowpass projector and first-order anti-aliasing filter
[30], parasitic oscillations at the Nyquist frequency which are typ-
ical of stiff systems are attenuated during the simulation.

Further perspectives include the use of higher-order trajectory
models, exponential integrators [31] which have shown to be effec-
tive in the simulation of stiff systems and more generally Lie-group
integrators [32] [33] whose trajectories belong, by construction, to
the system manifold.
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A. DISCRETE GRADIENT DERIVATIVE

Proof. To prove property 4.1 forH(x) a scalar potential, when the
variation ν 6= 0, using a) the quotient rule, b) the chain rule and c)
identification with the discrete gradient definition (36), we obtain

∂∇H
∂ν

a
=

[ ∂
∂ν

(H(x+ ν)−H(x))]ν − [H(x+ ν)−H(x)] ∂ν
∂ν

ν2

b
=

1

ν

(
∂H

∂x
(x+ ν)

∂(x+ ν)

∂v
− H(x+ ν)−H(x)

ν

)
c
=
∇H(x+ ν)−∇H(x, ν)

ν
.

When ν → 0, using a) the definition of the discrete gradient (36)
with b) Taylor series expansion about x and neglecting high order
terms when passing to the limit leads to

∂∇H
∂ν

(x, 0) := lim
ν→0

∇H(x+ ν)−∇H(x, ν)

ν

a
= lim
ν→0

∇H(x+ ν)

ν
− H(x+ ν)−H(x)

ν2

b
= lim
ν→0

H ′(x) +H ′′ν

ν
− H ′(x)ν +H ′′(x)ν2/2!

ν2

=
1

2

∂2H

∂x2
(x)

B. DISCRETE GRADIENT OF THE DIODE POTENTIAL

Proof. Using a) the definition of the discrete gradient (36), b) the
definition of the diode potential (23) followed by c) factorization of
the mid-point exponential term, then d) identification of the sinh
and e) sinhc functions, the discrete gradient of the diode voltage
potential can be expressed as

∇D∗(v, δv)
a

:=
D∗D(v + δv)−D∗D(v)

δv

b
=
nVT IS
δv

(
exp

(
v + δv

nVT

)
− exp

(
v

nVT

)
− δv

nVT

)
c
= IS

(
nVT
δv

exp

(
v + δv/2

nVT

)(
e

δv
2nVT − e−

δv
2nVT

)
− 1

)
d
= IS

(
2nVT
δv

exp

(
v + δv/2

nVT

)
sinh

(
δv

2nVT

)
− 1

)
e
= IS

(
exp

(
v + δv/2

nVT

)
sinhc

(
δv

2nVT

)
− 1

)

and since sinhc(0) = 1, ∇D∗(v, 0) = ∇D∗(v) satisfies eq (33).
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