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Abstract

A new Symbolic Monte Carlo (SMC) based on null-collision algorithms, allows 1/

overcoming the usually required knowledge of the optical thickness in SMC, and 2/

expressing radiative quantities as simple polynomials of the absorption and scattering

coefficients. The proposed method can be applied to complex systems such as hetero-

geneous absorbing and scattering media in complex geometry. It opens new outlooks

for the analysis and the identification of radiative properties in a wide range of radiative

transfer applications in participating media.

Keywords: Symbolic Monte Carlo (SMC), Null collisions, Polynomials, Radiative

properties, Identification

1. Introduction

The difference between Symbolic Monte Carlo (SMC) methods and standard Monte

Carlo (MC) methods lies in the fact that some parameters are retained as symbolic vari-

ables in SMC, while scalar values are affected to all the problem’s parameters in MC.

Consequently, the output of SMC simulations is a functional in which the requested pa-

rameters appear explicitly. The symbolic approach thus differs from other more usual

techniques, such as standard MC, for which scalar numerical outputs are obtained.

The SMC functional form is generally used to infer the parameters of interest, ap-

pearing as variables in the function, from measurements. Indeed, SMC makes the

resolution of inverse problems easier, which may explain why it was initially called

inverse Monte Carlo method [1]. SMC methods have been applied in various studies
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dedicated to inverse problems in remote sensing [2] or medical imaging [3, 4]. In par-

ticular, SMC have been investigated by Dunn [5] and by Subramaniam and Mengüç [6]

for inverse problems in radiative heat transfer.

It should be emphasized that SMC methods only solve the direct model, and are

completely distinct from usual MC techniques developed for solving inverse problems

such as Markov Chain Monte Carlo methods within the Bayesian framework [1, 7].

The symbolic approach can be considered as a useful preliminar step toward the de-

velopment of an efficient identification strategy. In radiative transfer problems, these

identification methods combine spectroscopic measurements with radiation models,

such as the radiative transfer equation (RTE), in order to infer parameters such as the

radiative properties, temperature or species concentrations [8]. Inverse problems for

radiation concern many applications including optical tomography in medical imag-

ing [9] or combustion diagnosis [10] among others. Inverse radiation methods have

also been implemented for the identification of radiative properties in complex het-

erogeneous media such as porous and fibrous materials [11, 12, 13, 14, 15], or foams

[16, 17]. In these approaches, the inversion is performed by using an iterative proce-

dure, where at each step, direct computations and measurements (of radiative fluxes,

intensities) are compared.

The objective of this work is to propose a SMC algorithm that allows obtaining

simple analytical forms (here polynomials) of radiative quantities as a function of ra-

diative properties, and that can be applied in complex problems related to radiative

transfer (in complex three-dimensional geometry, with absorption, scattering and/or

reflective walls, etc.). The analytical form can then be used 1/ to help in the choice

of an inverse strategy by providing physical insights about the parameters which need

to be identified, and 2/ to improve the efficiency of the inverse method. For instance,

if a minimization technique is applied, the analytical forms of the radiative quantities

are used as solution of the direct model. Consequently, the numerical resolution of

the direct model is not needed anymore at each iteration which significantly decreases

the computational cost. This is particularly true in many radiative transfer applications

where the numerical resolution of the radiative transfer equation (RTE), commonly

used as direct radiation model, is computationally expensive [8].

Using SMC, Dunn [5] identified the scattering albedo in inhomogeneous media

assuming isotropic scattering. Subramaniam and Mengüç [6] extended the approach
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to anisotropically scattering media, and identified the profile of the scattering albedo

together with the asymmetry factor of the phase function. In these studies, the analysis

is limited as it requires a precise knowledge of the optical thickness of the medium,

making impossible the identification of absorption and scattering coefficients.

In the present work, a new symbolic approach is described that allows expressing

radiative quantities (intensities, fluxes, source terms, etc.) as simple functions of the

radiative properties of the medium (more specifically its absorption and scattering co-

efficients). This approach does not require any knowledge about the optical thickness.

It opens new outlooks for the development of identification techniques of the radiative

properties of participating media since the absorption and scattering coefficients can

then be identified, which was not the case for previous SMC studies for which only the

albedo was accessible.

The paper is structured as follows. In the second section, the principle of the

method is introduced and the potential benefits for modeling and inverse analysis are

highlighted. In the third and fourth sections, details of the proposed approach are given.

It is shown to provide tractable multivariate polynomials of absorption and scattering

coefficients. The developments focus on the absorption and scattering coefficients. The

symbolic approach for the phase function parameters has already been discussed by

Subramaniam and Mengüç [6], and their approach can be integrated without additional

difficulties in the method proposed here. In the fifth section, an example of application

in a heterogeneous medium is provided.

2. Principle

The objective of the present work is to propose a method for expressing radiative

quantities as simple functions of absorption and scattering coefficients of complex par-

ticipating media. Such functions present advantages in terms of analysis - for a better

understanding of physical phenomena, experimentation design or optimization issues

- and allow performing inversion procedures with efficiency. Fig. 1, for instance, dis-

plays the functional expression of radiative intensity Iη (at the exit of a homogeneous

emitting, absorbing, and isotropically scattering slab of width L) as a function of the

scattering optical thickness τs,η = σηL.

The interest of expressing Iη as a functional is multiple. From a measured value

of the radiative intensity, it is easy to identify graphically or analytically the scatter-
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Figure 1: Radiative intensity Iη(x0,u0)/Bη(T ) versus the scattering optical thickness τs,η. x0 is located at the

exit of the slab, and u0 is the outgoing normal at x0. The absorption optical thickness is τa,η = κηL = 1 and

the medium is isothermal. Bη(T ) is the blackbody intensity at temperature T of the medium.

ing coefficient. Moreover, this figure provides another relevant information: the range

of scattering optical thickness for which the identification is likely to be accurate or

not. For τs,η < 1 and τs,η > 3, the radiative intensity depends significantly on τs,η.

Therefore, the identification of the scattering coefficient can be implemented with con-

fidence if a priori information indicates that the propagation medium is optically thin

or thick. If no a priori information on the propagation medium is available, the in-

formation about the uniqueness of the solution is provided by the functional. Indeed,

if the value of Iη(x0,u0)/Bη(T ) derived from measurements is for instance 0.68, two

scattering optical thicknesses (τs,η may be close to 0.5 or close to 4) are solutions of

the problem. For intermediate scattering optical thicknesses, i.e. τs,η ∈ [1, 3], the sen-

sitivity of the radiative intensity to the scattering coefficient is weaker which has strong

consequences for inversion. For instance, if the measured value of Iη(x0,u0)/Bη(T ) is

around 0.7 with an uncertainty of 0.02 (relative uncertainty of 3%), it is impossible to

conclude about which τs,η is solution in the interval [0.5, 4].

All the elements of analysis given by the functional expression are in fact valuable

to develop identification strategies.

Functional forms of radiative quantities can be obtained with SMC as shown in [5,

6]. This method is based on the same principle as standard Monte Carlo methods. The

only difference is that parameters (such as the absorption and scattering coefficients in

our context) are retained under a symbolic form and are not used as ”simple” numbers
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(see chapter 7 from Ref. [1]). The quantities evaluated are therefore functions of the

retained parameters, while in standard MC, scalars are computed according to a given

set of parameter values. In practice, both algorithms are strictly equivalent: a large

number of optical paths are randomly generated according to the statistical laws of

radiative transfer, and radiative intensities or fluxes are then estimated from the average

of samples, under their scalar (in standard MC) or functional forms (in SMC).

Among the statistical laws of radiative transfer in participating media, Beer’s law

turns out to be critical in SMC for radiative properties identification. Indeed, Beer’s law

is an exponential of the optical thickness depending on the absorption and scattering

coefficients. Therefore, as far as absorption and scattering coefficients are involved, the

functional form obtained with SMC remains a hardly tractable average of exponential

functions (composed of as many nonlinear terms as Monte Carlo samples). It justifies

probably why SMC has not been applied in the last two decades for inverse problems

in radiative transfer.

However, in some cases, tractable functions of the absorption and scattering coeffi-

cients may be derived from radiative transfer models. For instance, let us consider the

radiative transfer equation in the simple case of a non-scattering homogeneous medium

dIη
ds

= −κηIη + κηBη (1)

and assume that there is no radiative source at location s0. The radiative intensity at

location s j = s0 + j∆s can be approximated, using finite differences with constant mesh

size ∆s, as:

Iη(s j) = κη∆sBη + κη∆s
(
1 − κη∆s

)
Bη + · · · + κη∆s

(
1 − κη∆s

) j−1
Bη (2)

This equation provides a polynomial function of the absorption coefficient and can be

rewritten in a more compact form as:

Iη(s j) =

j−1∑
i=0

aiκ
i
η (3)

Obviously in this simple case, the radiative intensity is known analytically and the

polynomial expression has no real interest. Nevertheless, in more complex situations

(with scattering, real geometries, heterogeneous media), such analytical solutions are

no longer available and tractable expressions such as the polynomial Eq. 3 may be

useful for analysis and identification.
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In order to avoid dealing with functional forms based on averages of exponentials,

it is proposed here to combine SMC with the null-collision concept. This approach,

recently introduced for radiative transfer applications in [18, 19, 20], is known to cir-

cumvent without approximation the problems generally due to the nonlinearity of the

exponential term of extinction (Beer’s law). In a non-scattering medium1, it consists in

rewriting Eq. 1 by simply adding and subtracting a term γηIη as:

dIη
ds

= −β̂ηIη + κηBη + γηIη (4)

where β̂η = κη + γη is a new extinction coefficient and γη is an arbitrary coefficient

referred to as the null-collision coefficient. The new source term γηIη can be interpreted

as a particular kind of scattering term corresponding to a pure-forward scattering event,

as shown in [18]. A direct consequence of this reformulation is that the new extinction

coefficient β̂η, which appears in the Beer’s exponential law, can be defined arbitrarily.

Accordingly, the exponentials do not depend anymore on the real radiative properties

and difficulties related to nonlinearities vanish. As detailed in the next sections, Eq. 4

combined with SMC technique provide polynomial functions of the radiative quantities

of interest very similar to the one given in Eq. 3.

3. Radiative quantities as functions of absorption coefficients

3.1. SMC algorithm

The method based on the principles described previously is detailed in this section

to represent the radiative intensity as a polynomial function of its absorption coefficient

κη.

Let us consider again the case of a non-scattering uniform medium (not necessarily

isothermal). The radiative intensity Iη(x0,u0) at the exit of a participating medium (at

location x0 and in direction u0) results from the intensities emitted locally all along the

optical path in direction u0 (see Fig. 2) and transmitted up to x0 according to Beer’s

law.

A Monte Carlo algorithm for the estimation of Iη(x0,u0) consists in reconstructing

statistically all elementary emission events that contribute to Iη(x0,u0) by the random

1Only pure absorbing/emitting medium is considered in this section for didactic purposes, but the concept

of null-collision remains strictly unchanged with scattering [18].
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Figure 2: Example of an optical path which can be generated with the Monte Carlo algorithm. x1,i, x2,i and

x3,i are the successive positions generated by the free-path sampling of the i-th optical path.

sampling of a large number N of optical paths. For each of them, the contribution to

radiative intensity noted wi, for i ∈ {1,N}, is calculated. The radiative intensity is then

approximated by averaging all the N contributions as:

Iη(x0,u0) ≈ 1
N

N∑
i=1

wi (5)

In standard reverse Monte Carlo algorithms [21], starting from location x0, the

generation of the i-th optical path consists in sampling a free-path l1,i according to the

free-path probability density pL(l1,i) = κη exp(−κηl1,i). An emission location x1,i =

x0 − l1,iu0 is then obtained. The value of wi is in this case the value of the Planck

function Bη(x1,i) at location x1,i. For more details on such algorithms, one may refer

to [22] where the contributions wi are rigorously derived from integral formulations of

the radiative transfer equation.

When null-collision approaches are applied, pure-forward scattering events which

have no effect on radiative transfer modify the algorithm similarly as if scattering

were considered. The following steps are required to generate randomly the i-th op-

tical path. The location x1,i = x0 − l1,iu0 is generated randomly according to the

free-path probability density which now depends on the new extinction coefficient β̂η:

p̂(l1,i) = β̂η exp
(
−β̂ηl1,i

)
. At this location, two radiative sources have to be considered:

true emission and pure-forward scattering events - or null-collisions - (see the positive

source terms in the second member of Eq. 4). As with scattering events, null-collisions

means that no emission occurs at location x1,i. This compensates the overestimated

extinction coefficient β̂η - linked to a decrease of the mean free-paths - which is higher

than the real extinction coefficient given by κη in non-scattering cases. From an algo-

rithmic point of view, two situations can be considered at location x1,i:

• In the most usual approach, a step is required to statistically determine which

type of event occurs: a null-collision (with a probability given by the following
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albedo ωη =
γη

β̂η
=

β̂η−κη
β̂η

) or an emission (with probability 1 − ωη =
κη

β̂η
).

• In the second case, usually referred to as Energy Partitioning [19, 23], both events

are deterministically considered and the contribution of each of them is weighted

by the albedo ωη for null-collision and 1 − ωη for the emission.

As the objective of the present method is to retain the absorption coefficient under its

symbolic form, the second approach was chosen. Indeed, in the first choice, absorption

coefficient is involved in the probabilities used to determine the type of event, which

leads to unnecessary methodological difficulties (which are discussed in Sec. 4.1 and

in Appendix B).

Consequently, at location x1,i, emission is (1 − ωη)Bη(x1,i) and the contribution of

a null-collision must be considered. Again, a free-path l2,i is sampled according to

p̂L(l2,i) and a second location x2,i = x1,i − l2,iu0 is determined. The contribution of

emission at x2,i becomes ωη(1 − ωη)Bη(x2,i) where ωη indicates that a null-collision

event was considered at x1,i. Now, if we assume for instance that the third location

sampled according to the free-path density probability is out of the system, then the

total contribution wi of this optical path with 2 collisions (as depicted in Fig. 2) is:

wi = (1 − ωη)Bη(x1,i) + ωη(1 − ωη)Bη(x2,i) (6)

For an optical path with Mi event locations (emissions/null-collisions) inside the medium,

the general formula for wi becomes:

wi =

Mi∑
j=1

ω
j−1
η (1 − ωη)Bη(x j,i) =

Mi∑
j=1

 β̂η − κη
β̂η

 j−1  κη
β̂η

 Bη(x j,i) (7)

It is as a polynomial with respect to the absorption coefficient κη:

wi =

Mi∑
j=1

a j,iκ
j
η (8)

Following Eq. 5, the intensity at location x0 in the direction u0 can then be evaluated:

Iη(x0,u0) ≈ 1
N

N∑
i=1

Mi∑
j=1

a j,iκ
j
η (9)

Finally, let Mmax be the maximum number of events encountered during the N random

generations of optical paths and let us assume that a j,i = 0 as soon as j > Mi. Eq. 9 can

be reformulated to give:

Iη(x0,u0) ≈
Mmax∑
j=1

 1
N

N∑
i=1

a j,i

 κ j
η =

Mmax∑
j=1

a jκ
j
η (10)
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The strength of null-collisions concept can thus be observed directly in Eq. 10. The

expression of the radiative intensity is a function of κη and takes a simple polynomial

form (this is due to the fact that the average of polynomial functions is also polynomial).

Coefficients a j are the average of the same-degree coefficients of the N Monte Carlo

samples: a j = 1
N

∑N
i=1 a j,i. Accordingly, instead of computing for each optical path

(indexed i) a simple scalar sample wi, as in standard MC approaches, Mmax samples

a j,i are calculated in SMC and averaged. The outputs of the SMC are in this case the

coefficients of the polynomial expansion of the radiative intensity with respect to the

absorption coefficient of the medium.

In non-uniform media, the principle of the method remains the same, only Eq. 7 is

modified to account for the heterogeneities of the spatial absorption coefficient. This

provides:

wi =

Mi∑
j=1

 j−1∏
k=1

ω(xk,i)

 (1 − ω(x j,i))Bη(x j,i) =

Mi∑
j=1

 j−1∏
k=1

β̂η − κη(xk,i)

β̂η

 κη(x j,i)

β̂η

 Bη(x j,i)

(11)

If the radiative properties are given in a spatial grid, it is therefore possible to identify

- as shown later in this paper - several absorption coefficients, or if a parametric profile

for κη is assumed, the approach can be used to retrieve its parameters (origin and slope

if a linear profile is assumed for instance).

3.2. Test case 1: non-scattering uniform medium

The particular case of a non-scattering uniform and isothermal medium (of tem-

perature T ) is addressed here. Results obtained by the symbolic approach are depicted

in Fig. 3 (solid line) and are compared to analytical values, represented by cross sym-

bols. In order to treat dimensionless quantities, the ratio of the radiative intensity to the

Planck blackbody intensity Iη(x0,u0)/Bη(T ) is considered. It is defined as a function

of the absorption optical thickness τa,η = κηL, where L is the maximum path length in

the medium in the direction u0 (see Fig. 2).

For this case, the arbitrary extinction coefficient β̂η was set to obtain a global ex-

tinction thickness τ̂η = β̂ηL = 10. This choice has to be made in agreement with the

considered case:

• as introduced in [18, 19] some convergence issues can be encountered if β̂η < κη

(or alternatively if the null-collision coefficient γη is negative). Therefore the
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Figure 3: Iη(x0,u0)/Bη(T ) computed with SMC (solid line) as a function of the absorption optical thickness

τa,η = κηL for a non-scattering uniform and isothermal medium. Location x0, direction u0 and length L are

described in Fig. 2, and τ̂η = β̂ηL = 10. Comparison with analytical values (in cross symbols) are provided.

value of β̂η determines the upper-bound of values of κη over which the functional

expression will be defined. Consequently, β̂η must be large enough to cover the

full range of absorption coefficient expected in the studied case.

• on the other hand, the higher β̂η, the higher the number of null-collisions, and

the higher the degree Mmax of the polynomial expression of Iη. High degree

polynomials may be encountered for large values of τ̂η and can lead to compli-

cated numerical issues (requiring for instance quadruple precision numbers, or

the definition of criteria to restrict the orders of the polynomials, etc.)

Accordingly, we suggest defining the arbitrary optical thickness τ̂η as the maximum

value of τη defined by the upper bound of the retained parameter space. Here, with

τ̂η = 10, and N = 104 independent optical paths, the symbolic algorithm returns the

following polynomial expression:

Iη(x0,u0)
Bη

≈ 0.9965τa,η−0.495392τ2
a,η+0.1638227τ3

a,η−0.04052081τ4
a,η+· · ·−10−28τ24

a,η

(12)

It is fully compliant with the exact analytical solution Iη(x0,u0)
Bη

= (1 − exp(−κηL)) (see

Fig. 3) and is a good term-to-term approximation of its series expansion.

Finally, as for all standard Monte Carlo, the intensity can be estimated together with

a confidence interval given by the standard deviation. With symbolic MC, the standard

deviation is itself a function of the unknown variables: here a polynomial of degree
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2 × Mmax of the absorption optical thickness. Full details about its computation are

provided in Appendix A. In the particular case of Fig. 3, the relative standard deviation

is always lower than 0.12% for N = 104 Monte Carlo samples.

All the previous developments can be extended without any additional method-

ological difficulties to account for scattering events, real geometries or for the study

of others radiative quantities (such as radiative fluxes). Moreover, several unknown

properties can also be identified using a single symbolic algorithm. In this case, multi-

variate polynomial expansions of the radiative intensity will be produced by the present

technique. Examples are described in the two following test cases.

3.3. Test cases in non-uniform scattering media

For the two following test cases, isotropic scattering events are now considered.

The objective of these cases is to show that the main interest of the considered approach

is to be perfectly suited to complex configurations for which no analytical solution

is available. The algorithm is slightly modified to account for these new collisions:

for each Monte Carlo sample, a multiple-scattering path is first generated according

to a given scattering coefficient, then the radiative computation leading to wi (which

involves emissions and null-collisions) is applied along the curvilinear path exactly in

the same way as before. The considered medium is now non-uniform and made of

two infinite and parallel slabs M1 and M2 as depicted in Fig. 4. For each layer the

scattering optical thickness is set to τs,η = ση,1L1 = ση,2L2 = 0.5.

x

y

z
u0 •x0
u45o

•x2

M1

(T1, κη,1, ση,1)
M2

(T2, κη,2, ση,2)

L1 L2

Figure 4: Medium composed of two homogeneous columns M1 and M2 of respective widths L1 and L2,

temperatures T1 and T2, absorption coefficients κη,1 and κη,2, and scattering coefficients ση,1 and ση,2.

3.3.1. Test case 2: radiative intensity as a function of two absorption coefficients

In this case, the temperatures of the slabs were set in such a way that the Planck

blackbody functions inM2 is 10 times higher than inM1. Both absorption coefficients

11



κη,1 and κη,2 are supposed to be unknown. Under these considerations, only two values

of absorption coefficients are considered, and the polynomial expression of the sample

wi - directly derived from Eq. 11 - can be expressed as a bivariate polynomial:

wi =

M1,i∑
p=0

M2,i∑
q=0

bp,q,iκ
p
η,1κ

q
η,2 (13)

where M1,i and M2,i are the number of collisions that occur, for the i-th optical path,

in slabs M1 and M2 respectively. Coefficients bp,q,i are numerical values computed

during the simulation. The ratio Iη(x0,u0)/Bη(T2) calculated as the average of the N

functional samples wi is also a bivariate polynomial. It is shown in Fig. 5. In this plot,

τa,η,1

τ a
,η
,2

Iη(x0,u0)
Bη(T2)

0.7
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Figure 5: Iη(x0,u0)/Bη(T2) as a function of absorption optical thicknesses τa,η,1 = κη,1L1 and τa,η,2 = κη,2L2

for a scattering medium composed of two parallel and infinite slabs (see Fig. 4). Results obtained with SMC

(solid lines) and standard MC results (cross symbols) are presented. τ̂η is set to 10.

each isoline represents the infinity of couples (τa,η,1, τa,η,2) which leads to the same

ratio Iη(x0,u0)/Bη(T2). Consequently, every couples (τa,η,1, τa,η,2) on these isolines do

not have necessarily a physical meaning. They only represent one possible solution of

the RTE for a given value of Iη(x0,u0)/Bη(T2).

This figure can be used in an identification context. If no prior information is

available, several experimental values Imeas
η are required to identify a single couple of

absorption coefficients. For instance, if we have at our disposal experimental values

for several locations and directions, it is possible to plot multiple curves in the same

figure, as shown in Fig. 6, and to use the coordinates at which the curves intercept to

find the solution.

Indeed, the three curves corresponding to the isolines of the experimental values
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(b) with 5% of experimental uncertainties

Figure 6: Iη(x0,u0)/Bη(T2), Iη(x0,u45o )/Bη(T2) and Iη(x2,−u0)/Bη(T2) as function of absorption optical

thicknesses τa,η,1 = κη,1L1 and τa,η,2 = κη,2L2. Only isolines corresponding to the pseudo-measured intensi-

ties are represented for each function. The locations x0 and x2, and the directions u0 and u45o are described

in Fig. 4. τ̂η is set to 10.

for three intensities intersect in Fig. 6a at a point which corresponds to the unknown

couple of properties τa,η,1, τa,η,2 (τa,η,1 = 1, τa,η,2 = 2 in this case). In practice these

curves overlap over a small region that encompasses the intersection point because

of the stochastic nature of Monte Carlo algorithms. However, this small region can

be readily determined by the respective confidence intervals of each curve (estimated

through the computation of standard deviations, see Appendix A). If necessary, the

accuracy of the retrieved values of τa,η,1 and τa,η,2 can be improved by increasing the

number N of independent samples.

In figure 6b, it is assumed that the pseudo-measurements are subject to 5% ex-

perimental uncertainties. Therefore, for each pseudo-measured radiative intensity, two

isolines corresponding to 0.95Iη/Bη(T2) et 1.05Iη/Bη(T2) are displayed. In this case,

the SMC polynomial gives the region covering the couples of properties that are po-

tential solutions of the inverse problem. In this particular case, a second measurement

at location x2 in the direction −u0 will give more additional information than at x0

in a 45o direction. Indeed the region of potential solutions is much smaller when

Iη(x0,u0)/Bη(T2) is considered together with Iη(x2,−u0)/Bη(T2). The experimental

values of Iη(x0,u45o ) are very close to Iη(x0,u0), and consequently do not bring new

relevant information for the identification of the radiative properties.

Fig. 6 shows that the functional expressions of Iη can be of great interest for exper-

imental design or to gather information for inversion purposes.
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3.3.2. Test case 3: radiative intensity as a function of absorption coefficient and tem-

perature

It is also possible to express the radiative intensity as a function of absorption co-

efficients and temperatures. We consider now - keeping the same configuration as in

Fig. 4 - that the absorption optical thickness τa,η,1 = κη,1L1 of the first slab is known

as well as its temperature T1. The absorption coefficient κη,2 and the temperature T2 of

the mediumM2 are unknown. The sample wi given by Eq. 11 can be expressed under

the polynomial form:

wi = ci +

M2,i∑
q=1

[
dq,iκ

q
η,2Bη(T2)

]
(14)

where M2,i is the number of collisions that occurred, for the i-th sampling, in slabM2,

and ci and dq,i are numerical coefficients derived from Eq. 11.

Fig. 7 represents isolines for the infinity of couples (τa,η,2,T2) that provide - ac-

cording to the radiative transfer equation - a given value of Iη(x0,u0)/Bη(T1). Again,
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Figure 7: Iη(x0,u0)/Bη(T1) as function of absorption optical thickness τa,η,2 = κη,2L1 and temperature T2

for a scattering medium composed of two parallel and infinite slabs (see Fig. 4). Results obtained with SMC

(solid lines) can be assessed against standard MC results (cross symbols). τ̂η,2 is set to 6.

all points on these isolines do not have necessarily a true physical meaning. If a prior

knowledge about the temperature-dependence of the absorption coefficient is available

with respect to the case study, both the temperature and the absorption coefficient can

be retrieved from one or several experimental measurements (it depends on whether the

solution is unique or not). For instance, in a gaseous medium, line-by-line calculations

may provide the evolution of the absorption coefficient with temperature. Similarly to

the curves presented in Fig. 6, the intersection between the SMC and the line-by-line
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curves may provide the solution (τa,η,2,T2). In the same logic, from a single symbolic

simulation, such results can be also used to indirectly identify some intrinsic properties

of the considered participating medium (such as mole fractions for gaseous mixtures).

The proposed SMC algorithm is therefore very promising for problems related to the

identification of temperature and molecular species concentrations in gaseous systems.

4. Radiative quantities as functions of scattering coefficients

In the previous section, the scattering coefficient ση was supposed to be known.

It was therefore possible to divide each sampling of the MC algorithm in two steps:

a multiple-scattering path was first generated according to ση, and then the radiative

transfer computation was performed along this path. However, if the scattering coef-

ficient is unknown, or aimed to be kept under a symbolic formalism, the first stage of

curvilinear path generation is no longer feasible. The three sources of radiation, emis-

sion, scattering and null-collision, must be simultaneously taken into account during

the radiative transfer computation. Handling this kind of situation is the object of the

next paragraphs, devoted to the extension of SMC technique to radiative intensities as

functions of scattering coefficients or as functions of both scattering and absorption

coefficients.

4.1. SMC algorithm

Let us consider a uniform emitting, absorbing and scattering medium of finite di-

mensions. The intensity Iη(x0,u0) at location x0, in the direction u0 results from inten-

sities emitted along multiple-scattering paths. Here again, the Monte Carlo algorithm

consists in reconstructing statistically all these contributions along the optical path.

Standard reverse Monte Carlo algorithms (without null-collisions) perform a large

number N of independent realizations (indexed i): each of them is composed of succes-

sive samplings of free-paths with respect to the probability density pL(l) = βη exp(−βηl),
where βη = κη + ση is the extinction coefficient [21]. Along the i-th optical path, the

type of event occurring at each source location x j,i may be determined in a stochastic

way. The probabilities of emission Pe = κη/βη and scattering Ps = 1 − Pe = ση/βη

are then used to determine if emission or scattering occurs. If a scattering event is ran-

domly generated, a new direction is sampled according to the phase function, and a new
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source location x j+1,i is sampled according to pL(l). If it is an emission, the contribution

to Iη(x0,u0) is defined as the local blackbody Planck function: wi = Bη(x j,i).

However, as explained in Sec. 2 and 3, such standard approaches can hardly be

used within a symbolic context because the exponential extinction depends on both

ση and κη and leads to intractable functional expressions for the radiative quantities.

Again, null-collisions can be introduced to overcome this difficulty. The algorithm is

then slightly modified to include null-collisions, as detailed in [18]: the probability

density of free paths is now p̂L(l) = β̂η exp(−β̂ηl) where the new extinction coefficient

is β̂η = κη +ση + γη. This quantity includes henceforth the null-collision coefficient γη.

Once again, two choices are possible from an algorithmic point of view:

• In the first choice, three types of events can be stochastically determined at

each source location x j,i: absorption or scattering - as in standard algorithm -

or null-collisions with respective probabilities Pe = κη/β̂η, Ps = ση/β̂η and

Pn = 1 − Pe − Ps =
βη−κη−ση

β̂η
. If a null-collision occurs, the considered direc-

tion remains unchanged and a new source location x j+1,i is sampled according to

p̂L(l). The optical path is then generated until an emission occurs, or until it exits

the medium.

• In the second choice, an energy partitioning approach can be alternatively em-

ployed as proposed in [19]. It means that, for each source location, a weighted

emission contribution (κη/β̂η)Bη(x j,i) is taken into account for the estimation of

Iη. Then, the type of scattering: real scattering or null-collision, is stochastically

identified with respective probabilities P̃s =
ση

β̂η−κη =
ση

ση+γη
and P̃n = 1 − P̃s =

βη−κη−ση
β̂η−κη =

γη
ση+γη

. The optical path generation ends at the exit of the system.

In the symbolic approach, where the scattering coefficient is unknown, the energy

partitioning approach is a better option for similar reasons as in Sec. 3. Probabilities

Pe, Ps and Pn = 1 − Ps − Pa are unknown at x j,i, which means that two probabilities

(P̃e and P̃s; P̃n = 1 − P̃e − P̃s is then deduced) must be chosen arbitrarily if the first

method is used. The arbitrary probabilities are introduced using the same approach

as in importance sampling techniques [1] frequently used to optimize, without bias,

Monte Carlo algorithms. In the second method (energy partitioning), only one arbitrary

probability (P̃s; P̃n = 1 − P̃s is then deduced) is required to determine the type of

scattering event. The influence of the choice of P̃s is discussed in Appendix B. In the
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following results, P̃s and P̃n were fixed to 0.5, i.e., real scattering and null-collisions

are assumed equiprobable.

x0
• x1,i•

x2,i
•

x3,i
•

x4,i•

x5,i•

x6,i•

x7,i•

u0

u1,i

u2,i = u1,i

u3,i

u4,i

u5,i

u6,i = u5,i

Figure 8: Example of optical path in a medium where scattering and null-collision events are considered.

Starting from x0, a multiple-scattering path is generated through the sampling of free-path according to

p̂L(l j,i). These paths define source locations where a type of scattering event must be defined: a null collision

(as in x2,i and x6,i, where no change of direction is applied) or a real scattering event (as in x1,i, x3,i, x4,i

and x5,i, where the optical path direction is modified according to the phase function). x7,i is outside of the

considered system, and the i-th optical path random generation is therefore stopped.

In order to express the radiative intensity Iη(x0,u0) as a function of ση and κη, the

SMC algorithm consists in generating stochastically a large number N of optical paths

from location x0 in the direction −u0. Each location x j,i along the i-th optical path at

which a collision occurs is sampled according to the probability density of free-paths

p̂(l) (independent on κη and ση). The fraction of emission at x j,i that is added to the

ith optical path contribution is κη

β̂η
Bη(x j,i). Then the type of scattering event is sampled

according to P̃s and P̃n. If a real scattering event is sampled, its contribution is
ση

β̂ηP̃s
.

If a null-collision occurs, it is
β̂η − κη − ση

β̂ηP̃n
. The optical path is generated with its

multiple scattering events until it exits the medium (see figure 8).

The total contribution of an optical path i with Mnc,i null-collisions and Ms,i scat-

tering events is then:

wi =

Mnc,i+Ms,i∑
j=1

κη

β̂η
Bη(x j,i)

 β̂η − κη − ση
β̂ηP̃n

Nnc, j,i  ση

β̂ηP̃s

Ns, j,i

(15)

where Nnc, j,i and Ns, j,i are the number of null-collisions and true scattering events which

have respectively occurred before the jth collision along the ith optical path (Nnc, j,i +

Ns, j,i = j − 1).
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In non-uniform media, the principle remains the same. Only Eq. 15 is modified

to account for the absorption and scattering coefficients heterogeneities (similarly to

Eq. 11 in Sec 3):

wi =

Mnc,i+Ms,i∑
j=1

κη(x j,i)

β̂η
Bη(x j,i)

 j−1∏
k=1

{(
1 − S(xk,i)

) β̂η − κη(xk,i) − ση(xk,i)

β̂ηP̃n
+ S(xk,i)

ση(xk,i)

β̂ηP̃s

} (16)

where S(xk,i) = 1 if a real scattering event occurs at location xk,i, and S(xk,i) = 0 if it

is a null-collision. Starting from Eq. 16, several values of scattering and/or absorption

coefficients may be identified with the SMC.

Eqs. 15 and 16 can be rigorously demonstrated from integral formulations of the

RTE. More details about such approaches where Monte Carlo algorithms are derived

from integrals can be found in [18, 22].

4.2. Test case 4: Radiative intensity as a function of the scattering coefficient in homo-

geneous media

If the absorption coefficient κη is known, Eq.15 is a polynomial function with re-

spect to ση:

wi =

Mnc,i+Ms,i−1∑
j=0

a j,iσ
j
η (17)

and the radiative intensity is:

Iη(x0,u0) ≈
Mmax−1∑

j=0

a jσ
j
η (18)

where a j = 1
N

∑N
i=1 a j,i, and Mmax is the maximum number of collisions (including

scattering and null-collisions) encountered during the N random generations of optical

paths, and assuming that a j,i = 0 if j > (Mnc,i + Ms,i − 1).

Figure 9 displays the radiative intensity at the exit of an absorbing and scattering

slab versus the scattering optical thickness τs,η = σηL. Comparisons with standard

computation are also provided. Each cross symbol corresponds to one standard MC

simulation, while only one symbolic calculation is required to obtain the SMC curve.

The relative standard deviations are very weak between τs,η = 1 and τs,η = 3.5

(smaller than 0.11%). Beyond these values, variances slightly increase (until 0.27%)

because of the choice of P̃s = 0.5 as discussed in Appendix B. Furthermore, as already

mentioned in Sec. 2, the polynomial function provided by the SMC is a useful tool for

designing experimental devices and defining an identification strategy. For instance, in
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Figure 9: Iη(x0,u0)/Bη(T ) as function of the scattering optical thickness τs,η = σηL in a uniform and

isothermal medium. The SMC curve (solid line) is given with its confidence interval (dotted lines) for

N = 106 samples of optical paths. Standard MC results are also displayed (cross symbols). A Henyey-

Greenstein phase function has been used with an asymmetry factor g = 0.3. The absorption optical thickness

τa,η = κηL is fixed to 1, and the total optical thickness (including null-collision) τ̂η = β̂ηL is set to 20.

P̃s = P̃n = 0.5.

the case of figure 9, if the measured intensity Imeas
η (x0,u0)/Bη(T ) is lower than 0.7, the

scattering coefficient can be readily identified using the polynomial, and with strong

confidence since the SMC curve indicates that the solution is unique for this intensity.

4.3. Test case 5: radiative intensity as a function of the absorption and scattering

coefficients in homogeneous media

When more than one parameter has to be kept under a symbolic form, the SMC

algorithm proposed in Sec. 4.2 leads to multivariate polynomial expansions of the ra-

diative quantities. If both κη and ση are unknown, a multivariate polynomial expression

can be derived from Eq.15 :

wi =

Mnc,i+Ms,i−1∑
j=0

Mnc,i∑
k=0

b j,k,iσ
j
ηκ

k
η (19)

where b j,k,i is computed numerically with the SMC. The radiative intensity is then

obtained, following the same steps as described in section 3:

Iη(x0,u0) ≈
Mnc,max+Ms,max−1∑

j=0

Mnc,max∑
k=0

b j,kσ
j
ηκ

k
η (20)

where b j,k = 1
N

∑N
i=1 b j,k,i, Mnc,max and Ms,max are the maximum number of null-collision

and scattering events encountered during the N random generations of optical paths,
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and assuming that b j,k,i = 0 when j > (Mnc,i + Ms,i − 1) or k > Mnc,i.
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Figure 10: Iη(x0,u0)/Bη(T ) as a function of the absorption and scattering optical thickness τa,η = κηL and

τs,η = σηL in a uniform and isothermal medium. τ̂η is set to β̂ηL = 10 and P̃s = P̃n = 0.5. SMC curves (for

N = 106) are depicted in solid line. Standard MC results are displayed in cross symbols.

An example of results is provided in figure 10 where a uniform absorbing and

scattering slab is considered. The Henyey-Greenstein phase function with an asym-

metry factor g = 0.3 was used. Fig. 10 represents isolines for the infinity of couples

(τa,η, τs,η) that lead - according to the RTE - to a given value of Iη(x0,u0)/Bη(T ). Com-

parisons with standard MC show that SMC accurately predicts the isolines. The aver-

age of the absolute difference between SMC and MC computations of Iη(x0,u0)/Bη(T )

is 1.9 × 10−3. The maximum absolute difference is 0.019.

The isolines depicted in Fig. 10 show the difficulty to obtain relevant information

about the scattering coefficient if the measured intensity is lower than 0.8. On the other

hand, the absorption coefficient can be identified easily, especially if Imeas
η (x0,u0)/Bη(T )

is lower than 0.5, i.e., if the medium is optically thin in terms of absorption. Obviously,

only one measurement of the radiative intensity is not sufficient in this case to identify

two parameters. A priori information or measurements of other radiative quantities

(in other directions or at distinct locations, or for other wavenumbers) are therefore

required to ensure the feasibility of the identification process.
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5. Application to the identification of absorption and scattering coefficients in

multi-layered heterogeneous media

Complex heterogeneous media such as porous materials (ceramic or metallic foams,

or fibrous structures) are generally made of a semi-transparent or opaque structures

with pores filled with transparent or semi-transparent gazes. In those complex two-

phase media, identifying the radiative properties of the solid structure and/or the gas in

the pore remains a challenging task [11]. Eventually, models based on homogenized

properties have been proposed [24, 25] to allow the characterization of this kind of

media treated in the limit of geometric optics.

The aim of the present section is to show that SMC can be used in heterogeneous

media. Here, an academic problem, representative of the difficulty imposed by the

heterogeneous nature of porous media, is investigated. The objective is to express the

radiative intensity as a function of the absorption and scattering coefficients of a semi-

transparent medium (for instance the solid part of the porous structure), assuming that

the radiative properties of the gases in the pores are known.

A multi-layered slab (with 20 layers of random widths) made of two absorbing and

scattering media is considered (see figure 11). A Henyey-Greenstein phase function

with an asymmetry factor g = 0.3 is retained.

κη,0
ση,0

κη
ση

u0 •
x0

Figure 11: Scheme of the multi-layered slab with random layer’s widths. κη,0 and ση,0 are supposed to be

known, and the SMC algorithm is used to express the radiative intensity as a function of κη and ση. The

sizes (in mm) of the layers are (starting from the left boundary) : L1 = 0.768, L2 = 0.584, L3 = 0.0935,

L4 = 0.292, L5 = 0.139, L6 = 0.178, L7 = 0.273, L8 = 1, 86, L9 = 0.0244, L10 = 0.491, L11 = 0.805,

L12 = 0.622, L13 = 0.175 ,L14 = 1.11, L15 = 0.954, L16 = 0.918, L17 = 0.0882, L18 = 0.270, L19 = 0.264,

L20 = 0.0921.

The heterogeneous nature of the porous medium is taken into account by the multi-

layered configuration, since a multi-scattering optical path will cross the two different

media in the same way as if a real 3D heterogeneous medium was considered. Re-

fraction and reflection at the interface between the two media are not taken into ac-

count here, but can also be added in the generation of optical paths without additional

methodological difficulties.
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Figure 12 displays the isolines of Iη(x0,u0)/Bη(T ) versus the absorption and scatter-

ing coefficients κη and ση for the considered multi-layered slab of 1cm width. The de-

grees of the SMC bivariate polynomials is 92×52, i.e., Iη(x0,u0) ≈ ∑92
j=0

∑52
k=0 b j,kσ

j
ηκ

k
η.
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Figure 12: Iη(x0,u0)/Bη(T ) as a function of the absorption and scattering coefficients κη and ση. SMC

(solid lines) and standard Monte Carlo (cross symbols) simulations are displayed. The extinction optical

thickness is set to β̂ηL = 10 and P̃s = P̃n = 0.5. The known absorption and scattering coefficients are set as

κη,0 = ση,0 = 0.2cm−1.

Comparison with standard MC shows that the SMC polynomial provides an accu-

rate fit of the isolines. The average of the absolute difference between SMC and MC

computations of Iη(x0,u0)/Bη(T ) is 1.7 × 10−3. The maximum absolute difference is

0.021. The ratio of the computational times between one SMC and one standard MC

simulations varies between tS MC/tMC = 4.3 (when tMC is considered for the maximum

values of ση and κη) and 88.4 (for the minimum values of ση and κη). In average, this

ratio is about 7.8. For a single simulation, tS MC is higher than tMC for two reasons : 1/

the introduction of null-collisions increases the computational cost [18] and 2/ numer-

ous polynomial coefficients are estimated with SMC (including the coefficients needed

for the standard deviation), while only two scalar values (one for the intensity plus one

for the standard deviation) are estimated with standard MC. However, only one sin-

gle SMC simulation is needed to solve the RTE over the whole parameter space, here

[0, 5] × [0, 5]. Using standard MC, 50 × 50 simulations were carried out to cover the

same parameter space, resulting in a computational cost 322 times higher than SMC.

Similarly to the results presented in section 4.3, measuring Iη(x0,u0) does not allow

obtaining significant information on scattering, but if the medium is optically thin in
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absorption, the absorption coefficient can be identified without difficulty.

A remarkable feature of the SMC polynomials is to enable a straightforward de-

velopment of sensitivity analysis. Indeed, the polynomials can be easily derived to

calculate any order sensitivity or cross-sensitivity, without additional computational

cost, which may be relevant for inversion, or to get physical insight about the influence

of the considered parameters.
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Figure 13: Sensitivities ∂Iη(x0 ,u0)/Bη(T )
∂κη

(a) and ∂Iη(x0 ,u0)/Bη(T )
∂ση

as a function of κη and ση.

For illustration, figure 13 depicts the isolines for sensitivity of Iη(x0,u0)/Bη(T ) to

the absorption coefficient (figure 13a), and to the scattering coefficient (figure 13b),

versus the absorption and scattering coefficients κη and ση. The sensitivity to κη de-

creases with the absorption coefficient, which means that the identification of κη turns

out to be more uncertain if the medium is optically thick. The sensitivity to ση is much

smaller than the sensitivity to κη which suggests that the identification of ση will be

subject, in this case, to significant uncertainties.

The ability of the proposed SMC algorithm to deal with complex heterogeneous

media is therefore very promising for high-temperature applications in gaseous or

porous media. First of all, this technique can be used to get useful information about the

feasibility of the radiative properties identification from measured radiative quantities.

For instance, as shown in figure 13, the Jacobian matrix of sensitivities can be directly

derived from the polynomials. If the identification of a parameter appears to be uncer-

tain according to the analysis based on the SMC simulation, (such as the identification

of ση in the considered test case), two possibilities are offered:

• First, additional measurements of the radiative intensity (at other locations or/and

directions) may provide better information about ση, and make the inverse pro-
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cedure feasible (as discussed in Sec 3.2, and illustrated in Fig 6). It is therefore

possible to check in advance which measurements are the most relevant using

the SMC simulations.

• Second, if others measurements are not available, the polynomial shows that the

RTE may not be suitable for the identification. In this case, another model, which

ensures that the inverse problem can be solved with a better accuracy, must be

chosen. Only the RTE was considered as radiative transfer direct model in this

work. Others models [26, 27] can be investigated if the identification procedure

is not feasible with the RTE.

For situations where the inverse problem can be solved, the symbolic approach can

improve significantly the efficiency of the inverse procedure. Indeed, only one single

SMC run is needed to obtain the polynomial expansion. If an iterative procedure is

considered, it is not necessary to solve the direct model at each iteration since the poly-

nomial expansions can be directly used to estimate the radiative quantity considered.

Therefore, the resolution of the RTE is needed only once. This feature of SMC is all the

more exploitable so as the RTE resolution is more computationally demanding, such

as in three-dimensional problems and/or in complex media.

All the Monte Carlo advances developed for radiative transfer, such as those re-

viewed in [22], benefits also to the SMC. Therefore, the symbolic approach proposed

in this work can be extended without additionnal difficulties to more realistic problems

(complex geometries, heterogeneous media with different structure, with reflection and

refraction at the interface, etc.), in the same manner as for any standard MC methods.

However, as the number of unknown parameters increases, the symbolic Monte

Carlo approach can become hardly tractable since it outputs high dimensional multi-

variate polynomials. In these cases, the symbolic approach proposed in this work may

help to gather physical insight on some parameters. But, if reducing the dimension of

the model (as it would decrease the number of unknown parameters) is not possible,

SMC seems to be hardly recommendable for the identification.

6. Conclusion

The SMC approach described in this work allows for the first time expressing ra-

diative quantities as polynomials of absorption and scattering coefficients, using the
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null-collision algorithm. All the radiative properties, including the absorption and scat-

tering coefficients, can now be retained as symbolic variables without any knowledge

of the optical thickness.

It opens new prospects for the identification of radiative properties of complex me-

dia since the SMC simulations appear to be very useful in various steps of the iden-

tification procedure. Firstly, they allow determining which measurements are more

relevant for the considered problem. Secondly, they give significant information about

the uniqueness of the solution. Thirdly, they can be directly used to develop efficient

sensitivity analysis. This information is valuable to determine if the identification of the

radiative properties is feasible. Moreover, the polynomials can also be used to improve

the efficiency of an inverse method and decrease the computational cost. Indeed, these

functional expressions may be used as a direct model in the inverse method, which

avoid the costly resolution of the RTE at each iteration.

SMC benefits from all the advantages inherent in standard MC methods. Therefore

it can be applied to complex three-dimensional problems. As shown in this work,

problems such as the identification of radiative properties of two-phase media (such

as porous materials), or the identification of temperature and absorption coefficients

in combustion systems can be solved using the proposed technique. In future works,

SMC will be applied to real porous media, and compared with experimental data.

Two numerical difficulties related to the use of polynomials can however be no-

ticed. The first one is due to the so-called curse of dimensionality that occurs if the

number of unknown parameters is important. Indeed, it becomes quickly difficult to

deal with high dimensional multivariate polynomials. The second difficulty is related

to cases where the order of polynomials becomes large, which occurs for large values of

optical thicknesses. In these cases, machine precision issues can be encountered. This

difficulty may be handled by mathematical developments on the polynomial forms. It

will be the subject of future works.

Appendix A. Symbolic standard deviation

As for standard Monte Carlo algorithms, the standard deviation can be estimated

with SMC (it is referred to as sample standard deviation [1]). This quantity - given

here under a functional form - provides an estimate of the uncertainty in the estimated

expected value. Using SMC, the radiative intensity is expressed as the expectation of a
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polynomial function and this appendix is dedicated to express standard deviations for

such polynomials.

Let us first consider the case where a single variable x is kept under a symbolic

form, leading to a monovariate polynomial :

p(x) =

∞∑
n=0

anxn (A.1)

where an are random variables. The expected value of this random polynomial is ap-

proximated by SMC according to:

E
(
p(x)

) ≈ p(x) =
1
N

N∑
i=1

∞∑
n=0

ai,nxn =

∞∑
n=0

anxn (A.2)

where N is the number of samples of the coefficients ai,n and wn = 1
N

∑N
i=1 wi,n.

The sample standard deviation is given by:

s(p(x)) =

√
N

N − 1

(
p2(x) − p(x)

2
)

(A.3)

where p2(x) is estimated by:

p2(x) ≈ 1
N

N∑
i=1

 ∞∑
n=0

ai,nxn

2

=

∞∑
u=0

∞∑
v=0

 N∑
i=1

1
N

ai,uai,vxu+v

 =

∞∑
u=0

∞∑
v=0

auavxu+v (A.4)

and

p(x)
2

=

 ∞∑
n=0

anxn

2

=

 ∞∑
u=0

auxu

  ∞∑
v=0

avxv

 =

∞∑
u=0

∞∑
v=0

au avxu+v (A.5)

with auav =
1
N

∑N
i=1 ai,uai,v, au =

1
N

∑N
i=1 ai,u and av =

1
N

∑N
i=1 ai,v.

The sample standard deviation s(p(x)) can therefore be expressed as :

s(p(x)) =

√√
N

N − 1

∞∑
u=0

∞∑
v=0

(auav − au av) xu+v (A.6)

Following the same developments, the standard deviation can also be estimated in

the case of a multivariate polynomial. For instance, considering the bivariate polyno-

mial (i.e. characteristic of test cases where two parameters are unknown):

p(x, y) =

∞∑
m=0

∞∑
n=0

am,nxmyn (A.7)

s(p(x, y)) is given by :

s(p(x, y)) =

√√
N

N − 1

∞∑
m=0

∞∑
n=0

∞∑
m′=0

∞∑
n′=0

(
am,nam′,n′ − am,n am′,n′

)
xm+m′yn+n′ (A.8)
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with am,nam′,n′ =
1
N

∑N
i=1 ai,m,nai,m′,n′ , am,n =

1
N

∑N
i=1 ai,m,n and am′,n′ =

1
N

∑N
i=1 ai,m′,n′ .

Under pure statistical considerations, such functional expressions of standard devi-

ations present a valuable advantage: the evolution of the uncertainty with the consid-

ered parameters is explicit, and may provide relevant information on the definition of

arbitrary probabilities, as in importance sampling techniques (see Appendix B).

Appendix B. Consequences of the arbitrary choice of scattering probability

In the algorithm described in Sec 4.1, the scattering coefficient ση is unknown and

arbitrary probabilities of scattering P̃s and null-collision P̃n = 1 − P̃s are required.

Even if the definition of such probabilities does not create any bias (an infinity of

Monte Carlo samples would lead to the exact solution), some convergence issues can

be encountered according to the given value of these probabilities. To be consistent

with the statistics of the considered physics, P̃s and P̃n should be close to the ratios

of the number of scattering events or null-collision events over the whole number of

collisions:

P̃s ≈
ση

ση + γη
=

ση

β̂η − κη
(B.1)

and

P̃n ≈
γη

ση + γη
=

γη

β̂η − κη
(B.2)

However in SMC, the scattering coefficient is not defined and is considered as a vari-

able. Therefore, a choice has to be done to define P̃s and P̃n.

The influence of this choice is illustrated in Figs. B.14 where comparisons with

standard Monte Carlo calculations are provided for a scattering, homogeneous and

isothermal 1D medium of width L. The modified extinction optical thickness is fixed

to τ̂η = β̂ηL = 5 while the absorption optical thickness is τa,η = κηL = 1. A Henyey-

Greenstein phase function with an asymmetry factor g = 0.3 is considered. In those

figures, the intensity Iη(x0,u0)/B(T ) is displayed as a function of the scattering optical

thickness τs,η = σηL for different scattering probabilities P̃s. The functional standard

deviations (considered as confidence intervals) are also depicted in each figure.

In Fig. B.14a the scattering probability is set as P̃s = 0.1 (P̃n = 0.9). According to

Eqs. B.1 and B.2, P̃s should be consistent with scattering optical thicknesses close to

0.4. As highlighted in this figure the polynomial remains accurate (by comparison with

the standard Monte Carlo estimations) until τs,η = 2, and lose accuracy beyond this
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(b) P̃s = 0.5
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(c) P̃s = 0.9

Figure B.14: Iη(x0,u0)/Bη(T ) versus τs,η obtained with SMC with τ̂η = 5, τa,η = 1 and N = 106 for three

different scattering probabilities : P̂s = 0.1, 0.5 and 0.9. Reference results estimated by standard Monte

Carlo method are also displayed.
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value as far as τs,η increases. Indeed, the number of scattering events is underestimated

for high values of τs,η and much more samples would be required to get accurate esti-

mates. The confidence intervals are minimal for τs,η = 0.4 and significantly increase

for ση > 2 which confirms the comparisons with standard MC. Such a behavior indi-

cates that the choice of P̃s = 0.1 (and P̃n = 0.9) could lead to convergence issues for

the identification of large values of τs,η. In the case where P̃s = P̃n = 0.5, displayed

in figure B.14b, the polynomial remains accurate for all τs,η ∈ [0, 4] considered. Even

if this choice of probability is relevant for τs,η values close to 2 (see Eqs. B.1 and

B.2), the confidence interval remains small for the whole range of τs,η: no important

underestimation or overestimation of scattering events is done. In the third case dis-

played in figure B.14c, the probability of scattering is set as P̃s = 0.9 (P̃n = 0.1). These

probabilities are a good choice when τs,η is around 3.6. Under this value, the number

of scattering events is overestimated, and an increase of confidence intervals is noticed,

leading to wrong estimations of radiative intensities for small τs,η.

For all cases described in this article, scattering probability about 0.5 have led to

satisfying convergence behaviors. Nevertheless, good convergences are not guaranteed

with this probability and we suggest to systematically compute the functional standard

deviations in order to prevent some pathological behavior such as those discussed in

Chapter 4, Sec. 4.2.1 of [1] or in Sec. 6 of [20].
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