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A Modern View on Stability of Approximation⋆

Ralf Klasing1 and Tobias Mömke2

1 CNRS, LaBRI, University of Bordeaux, France ralf.klasing@labri.fr
2 University of Bremen, Germany moemke@uni-bremen.de

Abstract. In order to attack hard optimization problems that do not ad-
mit any polynomial-time approximation scheme (PTAS) or α-approxima-
tion algorithm for a reasonable constant α (or even with a worse approx-
imability), Hromkovi£ et al. [12, 31] introduced the notion of Stability of
Approximation. The main idea of the stability concept is to try to split
the set of all input instances into (potentially in�nitely many) classes
with respect to the achievable approximation ratio. The crucial point in
applying this concept is to �nd parameters that well capture the di�-
culty of problem instances of the particular hard problem. The concept
of stability of approximation turns out to be ubiquitous in the research
of approximation algorithms and is applicable beyond approximation. In
the literature, however, the relation to stability of approximation has
stayed implicit. The purpose of this survey is to take a broader view
and to explicitly analyze algorithmic problems and their algorithms with
respect to stability of approximation.

I would like to express my belief that, in order to make essential progress
in algorithmics, one has to move from measuring the problem hardness
in a worst-case manner to classifying the hardness of the instances of
the investigated algorithmic problems.

Juraj Hromkovi£ [33]

1 Introduction

The study of algorithms investigates for which algorithmic problems a solution
with speci�c properties can be obtained such that the computation does not
exceed given resource constraints. The properties of the solutions are determined
by the structure of the solution such as for instance �the solution is a tree� or
�the solution is a sorted list of numbers.� Some common resource measures are
time and space (e.g., the algorithm should run in polynomial time and/or space),
but there are further reasonable measures such as the amount of randomness,
advice, security, non-determinism, etc.

⋆ Research partially funded by Deutsche Forschungsgemeinschaft grant MO2889/1-1,
and by �The Investments for the Future� Programme IdEx Bordeaux - CPU (ANR-
10-IDEX-03-02).

1



In this survey, we are not able to cover the broad and deep �eld of algo-
rithmics as a whole. Instead, we focus our attention on optimization problems.
We therefore consider problems where the solutions are associated with a cost
or pro�t, and we want to �nd a feasible solution (complying with the speci�ed
properties) such that the cost is minimized or the pro�t is maximized.

For simplicity, let us for now concentrate on minimization problems. Let us
consider the traveling salesman problem (TSP). We are given a complete graph
G with a cost function cost : E(G) → R+. The feasible solutions are exactly the
Hamiltonian cycles of G, i.e., all sets of edges such that each vertex has degree
2 and the induced subgraph of these edges is connected. The goal is to �nd a
feasible solution (Hamiltonian cycle) of minimum cost.

We would like to �nd a solution in polynomial time. Since the (general) TSP
is known to be NP-hard, unless P = NP we cannot guarantee to �nd an optimal
solution. We therefore naturally obtain the notion of approximation algorithms:
we do not restrict our view to optimal solutions. Instead we allow a set of feasible
solutions that satisfy the following quality constraints: an algorithm A is an α-
approximation algorithm if all solutions computed by A are at most a factor α
worse than the optimum.

It is well-known that without restricting the cost function, the TSP cannot be
approximated in polynomial time.1 The situation is di�erent if the cost function
cost is a metric (in particular, cost satis�es the triangle inequality, i.e., for all
distinct vertices u, v, w ∈ V (G), cost(u,w) ≤ cost(u, v) + cost(v, w)). In metric
graphs, the TSP can be approximated in polynomial time with an approximation
ratio α = 1.5 using Christo�des' algorithm [21]. If we further restrict the costs
such that cost(u, v) = 1 for all u, v ∈ V (G), the problem boils down to computing
an arbitrary Hamiltonian cycle, which can be done in polynomial time (since G
is complete).

The approximability of the TSP reveals a concept that we can see in a broader
context: the hardness of a problem (here measured in the achievable approxima-
tion ratio) depends on the set of admissible instances. The more we restrict the
class of instances, the easier it is to compute a solution to the problem. The
dependency of admissible instances and approximation was �rst formalized by
Hromkovi£ et al. [12, 31], where the authors introduced the notion of Stability of
Approximation.

The idea behind this concept is to �nd a parameter (characteristic) of the in-
put instances that captures the hardness of particular inputs. An approximation
algorithm is called stable with respect to this parameter if its approximation
ratio grows with this parameter but not with the size of the input instances.

1 Since the encoding of numbers contributes to the size of the instance, the approxi-
mation ratio of the TSP is bounded by some function. For example, if the instance
is an n-vertex graph with edge costs in the order of 22

n

, the encoding of the instance
consists of more than 2n bits which allows for an exponential running time in n.
Since these considerations are merely an artefact of the machine model, we consider
optimization problems with a super-polynomial lower bound on the approximation
ratio as inapproximable.
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Note that the idea of the concept of approximation stability is similar to that of
stability of numerical algorithms. Instead of observing the size of the change of
the output value according to a small change of the input value, one looks for
the size of the change of the approximation ratio according to a small change in
the speci�cation of the set of consistent input instances.

The concept of stability of approximation turns out to be ubiquitous in re-
search on approximation algorithms and is applicable beyond approximation. In
the literature, however, the relation to stability of approximation has stayed im-
plicit. The purpose of this survey is to take a broader view and to explicitly
analyze algorithmic problems and their algorithms with respect to stability of
approximation.

The survey is organized as follows. In Section 2, we formally introduce the
concept of stability of approximation. In Section 3, we study the concept in the
context of graph problems where the edge costs form a metric. In Section 4, we
investigate stability of approximation in the context of scheduling problems. In
Section 5, we consider the problems of vertex coloring and maximum independent
set in bounded-degree graphs. In Section 6, we study stability of approximation
in the context of parameterized algorithms. In Section 7, we consider graph
problems where the vertices are points in some space and the distances are
measured according to the properties of the space. In particular, we consider
Euclidean space and doubling spaces. In Section 8, we show that the concept
of stability of approximation naturally translates to concepts such as online
algorithms, by studying online scheduling and online matching. In Section 9, we
draw several conclusions from our investigation of stability of approximation.

2 Stability of approximation

We now give the formal de�nition of the stability of approximation algorithms
[12, 14, 31, 32].

In general, an optimization problem U is determined by a set of instances LI ,
a set of feasible solutions M with subsets M(x) for each x ∈ LI , a cost function
cost : M → R+ and a goal (minimization or maximization).2 Additionally, we
distinguish between instances LI that we want to allow, and all instances L that
are feasible (and thus LI ⊆ L). For instance, when considering the metric TSP,
LI contains all (encodings of) edge-weighted graphs where the cost function
is a metric. The de�nition of the TSP, however, does not depend on the cost
restriction. Instead, we could use an arbitrary cost function. Then L is the set
of all (encodings of) edge-weighted graphs G = (V,E) with all cost functions
cost : E → R+.

Let U be an optimization problem. For every x ∈ LI , we de�ne OutputU (x) =
{y ∈ M(x) | cost(y) = goal{cost(z) | z ∈ M(x)}} as the set of optimal solutions
for x and U , and OptU (x) = cost(y) for some y ∈ OutputU (x). We say that
an algorithm A is a consistent algorithm for U if, for every input x ∈ LI , A

2 For simplicity we assume instances and solutions to be encoded over the binary
alphabet.
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computes an output A(x) ∈ M(x). We say that A solves U if, for every x ∈ LI ,
A computes an output A(x) from OutputU (x). The time complexity of A is
de�ned as the function TimeA(n) = max{TimeA(x) | x ∈ LI ∩ Σn

I } from N to
N, where TimeA(x) is the length of the computation of A on x, and ΣI is an
alphabet called the input alphabet of U .

Let U be an optimization problem, and let A be a consistent algorithm for
U . For every x ∈ LI , the approximation ratio RA(x) of A on x is de�ned as

RA(x) = max
{

cost(A(x))
OptU (x) , OptU (x)

cost(A(x))

}
. For any n ∈ N, we de�ne the approximation

ratio of A as RA(n) = max{RA(x) | x ∈ LI ∩Σn
I }. For any positive real δ > 1,

we say that A is a δ-approximation algorithm for U if RA(x) ≤ δ for every
x ∈ LI . For every function f : N → R>1, we say that A is an f(n)-approximation
algorithm for U if RA(n) ≤ f(n) for every n ∈ N.

Stability of approximation is concerned with the approximation behavior of
instances in L \ LI . To this end, we consider a distance function h : L → R≥0

that expresses how much we deviate from LI . We require h to be polynomial
time computable and that h(x) = 0 for all x ∈ LI .

For each r ∈ R≥0, we consider the ball Br,h(LI) := {x ∈ L | h(x) ≤ r}. Let
A be an algorithm that computes a feasible solution for each x ∈ L and an α-
approximation for each x ∈ LI and α ≥ 1. Then A is called p-stable according to
h if for each 0 ≤ r ≤ p there is a constant α′

r such that A is an α′
r-approximation

algorithm for each x ∈ Bh,r(LI). We call A stable according to h if it is p-stable
according to h for all p ∈ R≥0.

If in the de�nition we replace the constant α′
r by a function fr : N → R≥0

that maps the length of the encoding of the instance to a number, we call A
fr-quasistable according to h.

3 Relaxing the metric

The original context in which stability of approximation was studied was in the
context of graph problems where the edge costs form a metric [12, 14, 30, 31].

A complete weighted graphG = (V,E, cost) is called∆β-metric, for some β ≥
1/2, if the cost function cost(·, ·) satis�es cost(v, v) = 0, cost(u, v) = cost(v, u),
and the β-triangle inequality, i.e., cost(u, v) ≤ β · (cost(u, x) + cost(x, v)) for all
vertices u, v, x ∈ V . If β > 1 then we speak about the relaxed triangle inequality,
and if β < 1 we speak about the sharpened triangle inequality.

The concept of stability of approximation has been successfully applied to sev-
eral fundamental hard optimization problems. A nice example is the Traveling
Salesman Problem (TSP), which does not admit any polynomial-time approxi-
mation algorithm with an approximation ratio bounded by a polynomial in the
size of the input instance, but is 3

2 -approximable for metric input instances. Here,
one can characterize the input instances by their �distance� to metric instances.
This can be expressed by the β-triangle inequality for any β ≥ 1.

In a sequence of papers [1, 2, 7, 10�13, 39], it was shown that
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1. there are stable approximation algorithms for the TSP whose approximation
ratio3 grows with β, and

2. for every β > 1
2 one can prove explicit lower bounds on the polynomial-time

approximability growing with β.

Hence, one can partition the set of all input instances of the Traveling Salesman
Problem into in�nitely many subclasses according to the degree of violation of
the triangle inequality, and for each subclass one can guarantee upper and lower
bounds on the approximation ratio (that are linear in β).

Similar studies demonstrated that the β-triangle inequality can serve as a
measure of hardness of the input instances for other optimization problems as
well. In particular, for the problem of constructing 2-connected spanning sub-
graphs of a given complete edge-weighted graph, it was proved in [8] (with an
explicit lower bound on the approximability) that this minimization problem
is APX-hard even for graphs satisfying a sharpened triangle inequality for any
β > 1

2 , i.e., even if the edge costs are from an interval [1, 1 + ε] for an arbi-

trarily small ε > 0. On the other hand, an upper bound of 2
3 + 1

3 · β
1−β on the

approximability is achieved in [8] for all inputs satisfying the sharpened triangle
inequality. For the problem of �nding, for a given positive integer k ≥ 2 and
an edge-weighted graph G, a minimum k-edge- or k-vertex-connected spanning
subgraph, a linear-time approximation algorithm was given in [9] with approxi-
mation ratio β

1−β for any 1
2 ≤ β < 1 (which does not depend on k).

Certain problems, such as the star p-hub center problem (∆β-SpHCP) [19]
and the p -hub center problem (∆β-pHCP) [20], exhibit a phase transition phe-
nomenon when parameterized by the β-triangle inequality. More precisely, con-
sidering the class Cβ of ∆β-metric graphs, there exists β0 such that these prob-
lems are solvable in polynomial time when restricted to Cβ for any β ≤ β0,
whereas for β > β0 they are approximable in the class Cβ with upper and lower
bounds on the approximation ratio depending on β.

More precisely, Chen et al. [19] showed that for an arbitrary ε > 0, to ap-
proximate ∆β-SpHCP with a ratio g(β)−ε is NP-hard, and r(β)-approximation
algorithms were given for the same problem, where g(β) and r(β) are functions

of β. If β ≤ 3−
√
3

2 , one has r(β) = g(β) = 1, i.e., ∆β-SpHCP is polynomial-time

solvable. If 3−
√
3

2 < β ≤ 2
3 , one has r(β) = g(β) = 1+2β−2β2

4(1−β) . For 2
3 ≤ β ≤ 1,

r(β) = min{1+2β−2β2

4(1−β) , 1 + 4β2

5β+1}. Moreover, for β ≥ 1, one has r(β) = min{β +
4β2−2β
2+β , 2β+1} and g(β) = β+ 1

2 . For β ≥ 2, the approximability of the problem

(i.e., upper and lower bound) is linear in β.
Chen et al. [20] proved that for an arbitrary ε > 0, to approximate ∆β-

pHCP with a ratio g̃(β) − ε is NP-hard, and r̃(β)-approximation algorithms
were given for the same problem, where g̃(β) and r̃(β) are functions of β. If

β ≤ 3−
√
3

2 , one has r̃(β) = g̃(β) = 1, i.e., ∆β-pHCP is polynomial-time solvable.

If 3−
√
3

2 < β ≤ 5+
√
5

10 , one has r̃(β) = g̃(β) = 3β−2β2

3(1−β) . For
5+

√
5

10 ≤ β ≤ 1,

3 The currently best approximation ratio is min{4β, 3β/4 + 3β2/4} [7, 39].
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r̃(β) = min{β + β2, 4β2+5β+1
5β+1 } and g̃(β) = 4β2+3β−1

5β−1 . Moreover, for β ≥ 1, one

has r̃(β) = 2β and g̃(β) = β · 4β−1
3β−1 . For β ≥ 1, the approximability of the

problem (i.e., upper and lower bound) is linear in β.

4 Processing Time

We now turn our attention to a basic and well-studied scheduling problem. We
want to minimize the �ow time on multiple machines. Formally, we are given
m identical machines and a set J of n jobs. Each job j has a processing time
1 ≤ pj ≤ P and release time rj . Jobs can be preempted, i.e., we can interrupt
the processing of a running job and continue later without any penalties. The
entire job has to be processed on the same machine and the task of the algorithm
is to decide which job is scheduled on which machine.

For a given algorithm, Cj denotes the completion time of a job j, and the
�ow time of j is de�ned as Fj = Cj − rj , i.e., the time that has passed between
the release time and the completion time. Now, the goal is to minimize the total
�ow time

∑
j Fj .

Leonardi and Raz [37, 38] showed that there is an O(log(min{ n
m , P}))-appro-

ximation algorithm for this problem. At each point in time during the execution
of the algorithm, it chooses those tasks that have the shortest remaining process-
ing time (SRPT).

The parameter P leads to a natural distance function in the context of stabil-
ity of approximation. We de�ne L as the set of all instances, without restricting
the maximum processing time of a job. Then LI induces the subproblem with
unit processing times, i.e., all processing times are exactly 1. For an instance x
we de�ne h(x) = P (x)− 1, where P (x) is the maximum processing time over all
jobs in x. Clearly, h is computable in polynomial time and h(x) = 0 for x ∈ LI .

Since the approximation ratio increases monotonously with the distance from
LI , also the conditions for Br,h are satis�ed. We conclude that the SRPT algo-
rithm is stable according to h.

Garg and Kumar [26] considered a generalization of the problem, where each
job can only be assigned to a speci�c subset of machines. Formally, for each job
j there is a subset S(j) of machines on which j may be scheduled. They showed
that there is an O(logP )-approximation algorithm for this problem. Additionally,
they showed a lower bound of Ω

(
logP

log logP

)
, which means that the ratio is almost

tight. From our analysis above, we directly obtain that also this algorithm is
stable with respect to h.

5 Degree-bounded Graphs

We now consider degree-bounded graphs. For a graph G = (V,E), we write ∆
for the maximum degree over all vertices in V .
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5.1 Coloring

The maximum degree plays an important role when we want to color the vertices
of G. We would like to �nd a minimum size set of colors such that each vertex
is assigned a color and each edge is incident to two vertices with di�erent colors.
The chromatic number of G is the minimum number of colors su�cient to color
all vertices of G. It is NP-hard to approximate the chromatic number of an
n-vertex graph with an approximation ratio of n1−ε [44], for an arbitrary ε > 0.

There is a basic and well-known result on graph coloring: one can color each
graph with∆+1 colors. We simply color the graph greedily. We iteratively choose
uncolored vertices and color them with the �rst color c from {1, 2, . . . ,∆ + 1}
such that no neighbor is colored c. The color c exists because of the degree bound:
there are at most ∆ colors with which neighbors can be colored. In particular,
the algorithm directly gives a (∆+1)-approximation algorithm. We can improve
the approximation ratio by observing that one can check in polynomial time if a
graph is bipartite (cf. [23]), which is equivalent to being 2-colorable. If the graph
is bipartite, we can e�ciently determine a 2-coloring. We can therefore either
compute an optimal solution or we can assume that the optimum is at least 3.
The modi�ed algorithm has an approximation ratio of (∆+ 1)/3.

The degree of G determines a useful distance function. We de�ne L as the set
of all instances, without restricting the degree. Then LI induces the subproblem
with ∆ = 3, i.e., the �rst number such that graph coloring is NP-hard. For an
instance x we de�ne h(x) = max{0,∆ − 3}. The value of h is easy to compute
and h(x) = 0 for x ∈ LI .

Since the approximation ratio increases monotonously with ∆, we conclude
that the coloring algorithm is stable according to h.

5.2 Independent Set

We continue with the maximum independent set problem in bounded-degree
graphs. We would like to �nd a maximum-size set of vertices S such that they
are pairwise non-adjacent.

A well-known result of Halldórsson and Radhakrishnan [29] states that there
is a (∆ + 2)/3 -approximation algorithm for this problem. The approximation
ratio follows from a sophisticated analysis which includes the use of a general-
ization of Turán's bound.

As for coloring, �nding a maximum independent set is easy for degree-2-
bounded graphs (we cannot do better than to take every other vertex on each
path or cycle). Therefore, the same sets of problem instances and the same
distance function as for coloring also apply for maximum independent set. The
algorithm is therefore stable according to h.

6 Parameterization

Stability of approximation also appears in the context of parameterized algo-
rithms. As an example, let us again consider graph coloring.
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While graph coloring is NP-hard to approximate in general (see Section 5.1),
for restricted graph classes the situation is much better. For instance, coloring a
perfect graph is polynomially solvable [27].

Here, we focus on a class of graphs determined by their pathwidth. The path-
width expresses the similarity of a graph to a simple path. In fact, the graphs of
pathwidth 1 are exactly {K3,K

∗
1,3}-free graphs (or, equivalently, disjoint unions

of caterpillar trees), where K∗
1,3 is the graph obtained from K1,3 by subdividing

each edge exactly once [24]. Since here we only use this parameter indirectly, we
refer the reader to the book of Downey and Fellows [25] for a formal de�nition.

A graph has pathwidth zero if and only if it is a single vertex. For pathwidths
k ≥ 2, we have the following result.

Theorem 1. (Kierstead and Trotter [34]) For graphs of pathwidth k there is a
(3k − 2)-approximation algorithm for graph coloring.

Therefore, the pathwidth determines a natural distance function. We set LI

to be the set of all graphs of pathwidth zero. Then the distance function h is
simply speci�ed by h(x) = k if the given instance x is a graph of pathwidth k.

We claim that the algorithm of Kierstead and Trotter is k-stable for each con-
stant k. Since the dependence of the approximation ratio on k is monotonous,
there is a constant αr for each r < k such that for all instances in Br,h(LI) the
algorithm is an αr-approximation. It is left to show that h is polynomially com-
putable. This is the point where we have to use that k is a constant: computing
the pathwidth is a hard problem. For constant k, however, there is a polynomial
time algorithm that computes the pathwidth (in the language of parameterized
algorithms, computing the pathwidth is �xed-parameter tractable) [15, 17].

For non-constant k, the problem of computing the pathwidth is NP-hard
to approximate [16]. We therefore conclude that even though the algorithm of
Kierstead and Trotter is k-stable for each constant k, it is neither stable nor
quasi-stable.

7 Dimensionality

Graph problems usually have a natural version of the problem where the vertices
are points in some space and the distances are measured according to the prop-
erties of the space. For instance, we can consider the TSP where the vertices are
points in the Euclidean plane. Then a vertex u is a point (u1, u2) and the distance
between two vertices u and v is the Euclidean distance ((u1−v1)

2+(u2−v2)
2)1/2.

One of the important factors in�uencing the hardness of a problem is the
dimension of the considered space. Generally speaking, a higher dimension in-
creases the freedom to choose instances and therefore leads to harder problems.

7.1 Euclidean space

We now consider the Euclidean space more thoroughly. Many of the well-studied
problems that are APX-hard in general metric spaces allow for a PTAS in the
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Euclidean plane R2. This is the case for the traveling salesman problem [3, 4],
the Steiner tree problem [3, 4], the Steiner forest problem [18], the k-median
problem [5, 35], and many related problems.

The hardness of these problems, however, crucially depends on the dimension
of the Euclidean space. For log n dimensions, Trevisan showed that the TSP is
APX-hard [43]. This forces us to focus on spaces Rd for small values of d (either
constant, or in some cases in the order of log log n).

The running time of the (1+ ε)-approximation algorithms also depends on ε
to be a �xed constant. Since (1+ ε) is a factor, the absolute error increases with
the input size n, and it is therefore desirable to have an ε that decreases with
increasing n. We are interested in how small ε can be (depending on n) such
that the algorithm still runs in polynomial time.

To this end, we again take the TSP as a showcase problem. Arora [3] showed

how to obtain a randomized (1+1/c)-approximation in timeO(n(log n)(O(
√
d)·c)d−1

).

By choosing β ∈ O(
√
d)d−1, we obtain the running time O(n(log n)β·c

d−1

), and
we want the time to be polynomial, i.e.,

n(log n)β·c
d−1

= nO(1) which implies

β · cd−1 = loglogn n
O(1) =

O(log n)

log log n
and thus

c =
( O(log n)

O(
√
d)d−1 log log n

)1/(d−1)

.

We can formulate this in terms of stability of approximation by choosing
LI to be all 1-dimensional instances, L all d-dimensional instances for d ≥ 1
and specifying the distance function h as follows. Let d(x) be the number of
dimensions used in instance x. Then h(x) = d(x) − 1. We conclude that the
Euclidean TSP is f(r)-quasistable according to h with

f(r) = 1 + 1/
( O(log n)

O(
√

⌊r + 1⌋)⌊r+1⌋−1 log log n

)1/(⌊r+1⌋−1)

.

7.2 Doubling spaces

In the previous section, the only reason to restrict our view to the Euclidean
space was that Arora's algorithm uses its properties. The dimensionality behaves
orthogonally to the restrictions imposed by the Euclidean space. To this end,
we now focus on a more general setting. Given an arbitrary metric space M
with a distance function dist, let Bℓ denote a ball in this space with radius ℓ
according to dist.4 Then the doubling dimension of M is the minimal number d
such that for every ℓ, every ball Bℓ can be covered by 2d balls Bℓ/2 of radius ℓ/2.
Such a metric space is called a doubling space of dimension d. As an example,
the doubling dimension of a 2-dimensional space with ℓ1-norm is 2, since each

4 Note that here we do not talk about the relaxation of a class of instances, but about
the standard notation of balls in a metric space.
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square can be covered by 22 = 4 squares of half the radius. Doubling spaces
of dimension O(d) generalize the Euclidean space with d dimensions, and are
signi�cantly more general (cf. [6, 22, 28, 42] and references therein).

As an example of a stability result according to the dimension of a doubling
space we use the Maximum Scatter TSP (MSTSP). In the MSTSP, we are given
a TSP instance. Now, the goal is to �nd a tour such that the smallest cost over
all edges in the tour is maximized. In other words, the objective is to only use
long jumps. The idea is that the order of points visited is scattered as much
as possible within the considered graph. A solution to the MSTSP is required,
for instance, when drilling holes and the work piece is heated up in the process.
Then one should �rst process parts of the work piece far away from the last hole
in order to prevent overheating.

Kozma and Mömke [36] showed that there is a PTAS for the MSTSP in
doubling spaces of dimension d at most O(log log n), where n is the number of
vertices. More precisely, the result is a (1+ ε)-approximation algorithm running

in time Õ
(
n3 + 2O(K logK)

)
, where K ≤

(
13
ε

)d
. We want to determine ε such

that
Õ
(
n3 + 2O(K logK)

)
= logc n ·

(
n3 + 2O(K logK)

)
= nO(1) . (1)

The factor logc n and the term n3 can be hidden in the exponent O(1) of the
right-hand side of (1). We obtain 2O(K logK) = nO(1). We further simplify the
equation and obtain

K logK = (13/ε)d log(13/ε)d = O(log n) .

For su�ciently small ε then 1/εd−1/2 < log n and therefore

ε > (log n)−1/(d−1/2) .

The remaining steps are analogous to our analysis of the Euclidean space. It is
sensible to de�ne LI to be the one-dimensional instances and to use the distance
function h(x) = d(x)− 1. Then the algorithm is f(r)-quasistable according to h
with

f(r) = 1 + (log n)−1/(⌊r+1⌋−1/2) .

8 Online Algorithms

The concept of stability of approximation is not restricted to approximation
algorithms. It naturally translates to concepts such as online algorithms.

The source of hardness in online algorithms comes from incomplete knowledge
rather than from time restrictions: we (i.e., the algorithm) have to take decisions
before knowing the entire instance.

Formally, an online problem U is de�ned as follows. An instance of U is
given as a sequence of requests r1, r2, . . . . An online algorithm A for U has to
provide a sequence of answers a1, a2, . . . . The answer ai depends on the requests
r1, r2, . . . , ri and the answers a1, a2, . . . , ai−1.
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In order to focus on the essence of the problem, the algorithm does not have a
time restriction. It is su�cient to provide a computable function that determines
the answers.

There are several models of online computation. One of the most used and
most reasonable models is to assume an oblivious adversary. This model pro-
vides a measure of worst-case complexity because we assume an adversary that
knows our algorithm and tries to provide a worst possible request sequence for
it. The adversary, however, is oblivious which means that he has to �x the re-
quest upfront, without knowing the algorithm's answers. (This does not change
anything for deterministic online algorithms, but it provides a huge advantage
for randomized online algorithms.)

Online problems are typically optimization problems and as in approximation
algorithms, we would like to have a guaranteed quality of the computed solution.
Unlike in approximation algorithms, however, the need to compromise quality
in online algorithms is unconditional: we do not depend on conjectures such as
P ̸= NP. The analog to the approximation ratio in online algorithms is called
competitive ratio.

An algorithm is c-competitive, if there is a constant α > 0 such that for each
sequence of requests with cost opt of an optimal o�ine solution, the cost alg of
the solution computed by the algorithm is at most α+ c · opt.

We de�ne stability for online algorithms analogous to Section 2, but we re-
place the approximation ratio by the competitive ratio. We note that unless we
require the online algorithm to run in polynomial time, the requirement of the
distance function h to be polynomial time computable is not essential for online
algorithms. We therefore only require h to be a computable function.

8.1 Online Scheduling

We continue with the online view on the problems that we analyzed in Section 4.
Again, we want to minimize the �ow-time on multiple machines. We have for-
mally de�ned the o�ine version of this problem in Section 4. The di�erence to the
o�ine version is that now, the jobs arrive in an online fashion. Let j1, j2, . . . , jn
be the jobs of a problem instance. We then order the jobs by increasing release
time. The i-th request reveals the i-th job ji. Before a new job ji+1 (or the end
of the input) is revealed, the algorithm has to �x the machine on which ji will
be processed.

Leonardi and Raz [37, 38] showed a tight bound Θ(logP ) on the competitive
ratio of this problem. Recall that P is the maximal processing time of a single
job. Note that the upper bound matches the o�ine upper bound. For online
algorithms, however, the lower bound has changed.

Again, P leads to a natural distance function in the context of stability of
approximation. Recall that the set L contains all instances, without restricting
the maximum processing time of a job and that LI induces the subproblem with
unit processing times. For an instance x we de�ne h(x) = P (x)− 1, where P (x)
is the maximum processing time over all jobs in x.

11



Since the competitive ratio increases monotonously with the distance from LI ,
also the conditions for Br,h are satis�ed. We conclude that the SRPT algorithm
is stable according to h.

Unlike in the case of o�ine algorithms, however, this result does not trans-
late to the version of the problem where each job can only be assigned to a
speci�c subset of machines. Garg and Kumar [26] showed that in this case, the
competitive ratio is unbounded, independent of P . Therefore, for this version of
the problem there is no algorithm that is stable according to h.

8.2 Online Matching

The k-server problem is one of the central problems studied in online computa-
tion. We are given a metric space M and a set S of k servers placed on various
locations inM. The initial positions of the servers are known. The online requests
are points in M and have to be answered with a server from S, which then has
to move to the requested point. The cost of moving a server equals the distance
in M and the goal is to minimize the overall distance traveled by servers.

The k-server problem formalizes natural problems such as for instance real
time delivery: the servers are delivery cars and the metric space is determined
by clients within a street network. In such a network, it is natural to consider a
capacitated version of the k-server problem. We assign a capacity to the servers:
each delivery car can serve at most ℓ di�erent clients.

If ℓ = 1, the capacitated k-server problem boils down to a bipartite matching
between the servers and the clients: each server is matched to at most one client
and each client is served by exactly one server. The resulting problem is known
as online bipartite matching.

Raghvendra [41] presented an algorithm for online bipartite matching which
in the following we call RM-algorithm (for �robust matching,� following the no-
tation of the authors). Nayyar and Raghvendra [40] afterwards obtained a better
analysis based on the parameter µM(S) which is de�ned as the maximum ratio
of the traveling salesman tour and the diameter over all subsets of S (or, more
precisely, the graphs induced by S). To use the parameter, we rely on our relax-
ation of stability for online algorithms in which we de�ned the distance function
to be only computable and did not require polynomial time. The meaning of
the parameter µM(S) becomes clear when we consider concrete classes of metric
spaces M. If M is the space determined by the shortest path metric of a line,
µM(S) = 2. If M is a doubling space of dimension d, µM(S) = O(n1−1/d).

The result of Nayyar and Raghvendra is that the RM-algorithm has a compet-
itive ratio of O(µM(S) log

2 n), while every algorithm has a competitive ratio of
Ω(µM(S)). To analyze the stability of the RM-algorithm, we now �x the needed
parameters.

We set L to the set of all feasible instances independent of the value of µM(S).
One can check that for an arbitrary metric space on three points the value of
µM(S) is at least 2, matching the value for a shortest path metric of a line.
Since the latter class of instances is non-trivial, it is natural to set LI to be all
instances with µM(S) ≤ 2. Let Sx be the set of servers located in the metric
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space Mx for an instance x ∈ L. We then de�ne h(x) = max{0, µMx(Sx) − 2},
which satis�es all required conditions. Since the upper bound on the competitive
ratio is non-constant, we do not have an analysis that states that the algorithm
is stable according to h. However, we can claim that it is f -quasistable according
to h for the function f with f(n) = O(µM(S) log

2 n).

9 Conclusion

We have seen that stability of approximation is a natural concept that appears
in many circumstances. We can draw several conclusions from our investigation.

(i) Stability of approximation can be seen as a parameterized version of
approximation algorithms. If the approximation ratio monotonously increases
with a given parameter, this parameter is a natural base for a stability distance
function. Conversely, for stability of approximation results, we could also state
the algorithms as algorithms for general problem instances parameterized on the
distance function.

(ii) Stability of approximation has similarities with the study of time com-
plexity. The relation becomes clear when considering polynomial time approx-
imation schemes. In this survey, we determined the impact of stability on the
error ε. An alternative way to handle a PTAS would be to �x a speci�c running
time and to determine the error ε depending on the stability distance function.
We can see the situation as a pareto curve with the stability distance on one axis
and the running time on another axis.

(iii) The concept of stability is not restricted to approximation algorithms.
For example, it directly translates to stability of competitiveness in online al-
gorithms. This insight motivates to further investigate the scope of stability in
further contexts.

To summarize, we observe that classifying the hardness of the instances of
the investigated algorithmic problems is a successful approach that is important
in modern algorithmic research.
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