Ralf Klasing
email: ralf.klasing@labri.fr

Tobias Mömke
email: moemke@uni-bremen.de

A Modern View on Stability of Approximation ⋆

 introduced the notion of Stability of Approximation. The main idea of the stability concept is to try to split the set of all input instances into (potentially innitely many) classes with respect to the achievable approximation ratio. The crucial point in applying this concept is to nd parameters that well capture the diculty of problem instances of the particular hard problem. The concept of stability of approximation turns out to be ubiquitous in the research of approximation algorithms and is applicable beyond approximation. In the literature, however, the relation to stability of approximation has stayed implicit. The purpose of this survey is to take a broader view and to explicitly analyze algorithmic problems and their algorithms with respect to stability of approximation.

I would like to express my belief that, in order to make essential progress in algorithmics, one has to move from measuring the problem hardness in a worst-case manner to classifying the hardness of the instances of the investigated algorithmic problems.

Juraj Hromkovi£ [33]

Introduction

The study of algorithms investigates for which algorithmic problems a solution with specic properties can be obtained such that the computation does not exceed given resource constraints. The properties of the solutions are determined by the structure of the solution such as for instance the solution is a tree or the solution is a sorted list of numbers. Some common resource measures are time and space (e.g., the algorithm should run in polynomial time and/or space), but there are further reasonable measures such as the amount of randomness, advice, security, non-determinism, etc. In this survey, we are not able to cover the broad and deep eld of algorithmics as a whole. Instead, we focus our attention on optimization problems.

We therefore consider problems where the solutions are associated with a cost or prot, and we want to nd a feasible solution (complying with the specied properties) such that the cost is minimized or the prot is maximized.

For simplicity, let us for now concentrate on minimization problems. Let us consider the traveling salesman problem (TSP). We are given a complete graph G with a cost function cost : E(G) → R + . The feasible solutions are exactly the Hamiltonian cycles of G, i.e., all sets of edges such that each vertex has degree 2 and the induced subgraph of these edges is connected. The goal is to nd a feasible solution (Hamiltonian cycle) of minimum cost.

We would like to nd a solution in polynomial time. Since the (general) TSP is known to be NP-hard, unless P = NP we cannot guarantee to nd an optimal solution. We therefore naturally obtain the notion of approximation algorithms: we do not restrict our view to optimal solutions. Instead we allow a set of feasible solutions that satisfy the following quality constraints: an algorithm A is an αapproximation algorithm if all solutions computed by A are at most a factor α worse than the optimum.

It is well-known that without restricting the cost function, the TSP cannot be approximated in polynomial time.

The situation is dierent if the cost function cost is a metric (in particular, cost satises the triangle inequality, i.e., for all distinct vertices u, v, w ∈ V (G), cost(u, w) ≤ cost(u, v) + cost(v, w)). In metric graphs, the TSP can be approximated in polynomial time with an approximation ratio α = 1.5 using Christodes' algorithm [START_REF] Christodes | Worst-case analysis of a new heuristic for the travelling salesman problem[END_REF]. If we further restrict the costs such that cost(u, v) = 1 for all u, v ∈ V (G), the problem boils down to computing an arbitrary Hamiltonian cycle, which can be done in polynomial time (since G is complete).

The approximability of the TSP reveals a concept that we can see in a broader context: the hardness of a problem (here measured in the achievable approximation ratio) depends on the set of admissible instances. The more we restrict the class of instances, the easier it is to compute a solution to the problem. The dependency of admissible instances and approximation was rst formalized by Hromkovi£ et al. [START_REF] Böckenhauer | Towards the notion of stability of approximation for hard optimization tasks and the traveling salesman problem[END_REF][START_REF] Hromkovi£ | Algorithmics for Hard Problems -Introduction to Combinatorial Optimization, Randomization, Approximation, and Heuristics[END_REF], where the authors introduced the notion of Stability of Approximation.

The idea behind this concept is to nd a parameter (characteristic) of the input instances that captures the hardness of particular inputs. An approximation algorithm is called stable with respect to this parameter if its approximation ratio grows with this parameter but not with the size of the input instances.

Since the encoding of numbers contributes to the size of the instance, the approxi- mation ratio of the TSP is bounded by some function. For example, if the instance is an n-vertex graph with edge costs in the order of 2 2 n , the encoding of the instance consists of more than 2 n bits which allows for an exponential running time in n.

Since these considerations are merely an artefact of the machine model, we consider optimization problems with a super-polynomial lower bound on the approximation ratio as inapproximable.

Note that the idea of the concept of approximation stability is similar to that of stability of numerical algorithms. Instead of observing the size of the change of the output value according to a small change of the input value, one looks for the size of the change of the approximation ratio according to a small change in the specication of the set of consistent input instances.

The concept of stability of approximation turns out to be ubiquitous in research on approximation algorithms and is applicable beyond approximation. In the literature, however, the relation to stability of approximation has stayed implicit. The purpose of this survey is to take a broader view and to explicitly analyze algorithmic problems and their algorithms with respect to stability of approximation.

The survey is organized as follows. In Section 2, we formally introduce the concept of stability of approximation. In Section 3, we study the concept in the context of graph problems where the edge costs form a metric. In Section 4, we investigate stability of approximation in the context of scheduling problems. In Section 5, we consider the problems of vertex coloring and maximum independent set in bounded-degree graphs. In Section 6, we study stability of approximation in the context of parameterized algorithms. In Section 7, we consider graph problems where the vertices are points in some space and the distances are measured according to the properties of the space. In particular, we consider Euclidean space and doubling spaces. In Section 8, we show that the concept of stability of approximation naturally translates to concepts such as online algorithms, by studying online scheduling and online matching. In Section 9, we draw several conclusions from our investigation of stability of approximation.

Stability of approximation

We now give the formal denition of the stability of approximation algorithms [START_REF] Böckenhauer | Towards the notion of stability of approximation for hard optimization tasks and the traveling salesman problem[END_REF][START_REF] Böckenhauer | Stability of approximation[END_REF][START_REF] Hromkovi£ | Algorithmics for Hard Problems -Introduction to Combinatorial Optimization, Randomization, Approximation, and Heuristics[END_REF][START_REF] Hromkovi£ | Stability of approximation in discrete optimization[END_REF].

In general, an optimization problem U is determined by a set of instances L I , a set of feasible solutions M with subsets M(x) for each x ∈ L I , a cost function cost : M → R + and a goal (minimization or maximization). Additionally, we distinguish between instances L I that we want to allow, and all instances L that are feasible (and thus L I ⊆ L). For instance, when considering the metric TSP, L I contains all (encodings of) edge-weighted graphs where the cost function is a metric. The denition of the TSP, however, does not depend on the cost restriction. Instead, we could use an arbitrary cost function. Then L is the set of all (encodings of) edge-weighted graphs G = (V, E) with all cost functions cost : E → R + .

Let U be an optimization problem. For every x ∈ L I , we dene Output U (x) = {y ∈ M(x) | cost(y) = goal{cost(z) | z ∈ M(x)}} as the set of optimal solutions for x and U , and Opt U (x) = cost(y) for some y ∈ Output U (x). We say that an algorithm A is a consistent algorithm for U if, for every input x ∈ L I , A For simplicity we assume instances and solutions to be encoded over the binary alphabet. computes an output A(x) ∈ M(x). We say that A solves U if, for every x ∈ L I , A computes an output A(x) from Output U (x). The time complexity of A is dened as the function T ime

A (n) = max{T ime A (x) | x ∈ L I ∩ Σ n I } from N to N, where T ime A (x)
is the length of the computation of A on x, and Σ I is an alphabet called the input alphabet of U .

Let U be an optimization problem, and let A be a consistent algorithm for U . For every x ∈ L I , the approximation ratio R A (x) of A on x is dened as

R A (x) = max { cost(A(x)) OptU (x) , OptU (x) cost(A(x))
} . For any n ∈ N, we dene the approximation ratio of

A as R A (n) = max{R A (x) | x ∈ L I ∩ Σ n I }. For any positive real δ > 1, we say that A is a δ-approximation algorithm for U if R A (x) ≤ δ for every x ∈ L I . For every function f : N → R >1 , we say that A is an f (n)-approximation algorithm for U if R A (n) ≤ f (n) for every n ∈ N.
Stability of approximation is concerned with the approximation behavior of instances in L \ L I . To this end, we consider a distance function h : L → R ≥0 that expresses how much we deviate from L I . We require h to be polynomial time computable and that h(x) = 0 for all x ∈ L I .

For each r ∈ R ≥0 , we consider the ball B r,h (L I) := {x ∈ L | h(x) ≤ r}. Let A be an algorithm that computes a feasible solution for each x ∈ L and an αapproximation for each x ∈ L I and α ≥ 1. Then A is called p-stable according to

h if for each 0 ≤ r ≤ p there is a constant α ′ r such that A is an α ′ r -approximation algorithm for each x ∈ B h,r (L I). We call A stable according to h if it is p-stable according to h for all p ∈ R ≥0 .
If in the denition we replace the constant α ′ r by a function f r : N → R ≥0 that maps the length of the encoding of the instance to a number, we call A f r -quasistable according to h.

Relaxing the metric

The original context in which stability of approximation was studied was in the context of graph problems where the edge costs form a metric [START_REF] Böckenhauer | Towards the notion of stability of approximation for hard optimization tasks and the traveling salesman problem[END_REF][START_REF] Böckenhauer | Stability of approximation[END_REF][START_REF] Hromkovi£ | Stability of approximation algorithms and the knapsack problem[END_REF][START_REF] Hromkovi£ | Algorithmics for Hard Problems -Introduction to Combinatorial Optimization, Randomization, Approximation, and Heuristics[END_REF].

A complete weighted graph G = (V, E, cost) is called ∆ β -metric, for some β ≥ 1/2, if the cost function cost(•, •) satises cost(v, v) = 0, cost(u, v) = cost(v, u),
and the β-triangle inequality, i.e., cost(u, v) ≤ β • (cost(u, x) + cost(x, v)) for all vertices u, v, x ∈ V . If β > 1 then we speak about the relaxed triangle inequality, and if β < 1 we speak about the sharpened triangle inequality.

The concept of stability of approximation has been successfully applied to several fundamental hard optimization problems. A nice example is the Traveling Salesman Problem (TSP), which does not admit any polynomial-time approximation algorithm with an approximation ratio bounded by a polynomial in the size of the input instance, but is 1. there are stable approximation algorithms for the TSP whose approximation ratio ! grows with β, and 2. for every β > 1 2 one can prove explicit lower bounds on the polynomial-time approximability growing with β.

Hence, one can partition the set of all input instances of the Traveling Salesman Problem into innitely many subclasses according to the degree of violation of the triangle inequality, and for each subclass one can guarantee upper and lower bounds on the approximation ratio (that are linear in β).

Similar studies demonstrated that the β-triangle inequality can serve as a measure of hardness of the input instances for other optimization problems as well. In particular, for the problem of constructing 2-connected spanning subgraphs of a given complete edge-weighted graph, it was proved in [START_REF] Böckenhauer | On the hardness of constructing minimal 2-connected spanning subgraphs in complete graphs with sharpened triangle inequality[END_REF] (with an explicit lower bound on the approximability) that this minimization problem is APX-hard even for graphs satisfying a sharpened triangle inequality for any β > 1 2 , i.e., even if the edge costs are from an interval [1, 1 + ε] for an arbitrarily small ε > 0. On the other hand, an upper bound of 2 3 + 1 3 • β 1-β on the approximability is achieved in [START_REF] Böckenhauer | On the hardness of constructing minimal 2-connected spanning subgraphs in complete graphs with sharpened triangle inequality[END_REF] for all inputs satisfying the sharpened triangle inequality. For the problem of nding, for a given positive integer k ≥ 2 and an edge-weighted graph G, a minimum k-edgeor k-vertex-connected spanning subgraph, a linear-time approximation algorithm was given in [START_REF] Böckenhauer | On k-connectivity problems with sharpened triangle inequality[END_REF] with approximation ratio β 1-β for any 1 2 ≤ β < 1 (which does not depend on k). Certain problems, such as the star p-hub center problem (∆ β -SpHCP) [START_REF] Chen | Approximability and inapproximability of the star p-hub center problem with parameterized triangle inequality[END_REF] and the p -hub center problem (∆ β -pHCP) [START_REF] Chen | The approximability of the p-hub center problem with parameterized triangle inequality[END_REF], exhibit a phase transition phenomenon when parameterized by the β-triangle inequality. More precisely, considering the class C β of ∆ β -metric graphs, there exists β 0 such that these problems are solvable in polynomial time when restricted to C β for any β ≤ β 0 , whereas for β > β 0 they are approximable in the class C β with upper and lower bounds on the approximation ratio depending on β.

More precisely, Chen et al. [START_REF] Chen | Approximability and inapproximability of the star p-hub center problem with parameterized triangle inequality[END_REF] showed that for an arbitrary ε > 0, to approximate ∆ β -SpHCP with a ratio g(β) -ε is NP-hard, and r(β)-approximation algorithms were given for the same problem, where g(β) and r(β) are functions of β.

If β ≤ 3- √ 3 2 , one has r(β) = g(β) = 1, i.e., ∆ β -SpHCP is polynomial-time solvable. If 3- √ 3 2 < β ≤ 2 3 , one has r(β) = g(β) = 1+2β-2β 2 4(1-β) . For 2 3 ≤ β ≤ 1, r(β) = min{ 1+2β-2β 2 4(1-β) , 1 + 4β 2 5β+1 }. Moreover, for β ≥ 1, one has r(β) = min{β + 4β 2 -2β 2+β , 2β + 1} and g(β) = β + 1 2 .
For β ≥ 2, the approximability of the problem (i.e., upper and lower bound) is linear in β.

Chen et al. [START_REF] Chen | The approximability of the p-hub center problem with parameterized triangle inequality[END_REF] proved that for an arbitrary ε > 0, to approximate ∆ β -pHCP with a ratio g(β) -ε is NP-hard, and r(β)-approximation algorithms were given for the same problem, where g(β) and r(β) are functions of β.

If β ≤ 3- √ 3 2 , one has r(β) = g(β) = 1, i.e., ∆ β -pHCP is polynomial-time solvable. If 3- √ 3 2 < β ≤ 5+ √ 5 10 , one has r(β) = g(β) = 3β-2β 2 3(1-β) . For 5+ √ 5 10 ≤ β ≤ 1,
! The currently best approximation ratio is min{4β, 3β/4 + 3β 2 /4} [START_REF] Bender | Performance guarantees for the TSP with a parameterized triangle inequality[END_REF][START_REF] Mömke | An improved approximation algorithm for the traveling salesman problem with relaxed triangle inequality[END_REF].

r(β) = min{β + β 2 , 4β 2 +5β+1 5β+1 } and g(β) = 4β 2 +3β-1 5β-1 . Moreover, for β ≥ 1, one has r(β) = 2β and g(β) = β • 4β-1
3β-1 . For β ≥ 1, the approximability of the problem (i.e., upper and lower bound) is linear in β.

Processing Time

We now turn our attention to a basic and well-studied scheduling problem. We want to minimize the ow time on multiple machines. Formally, we are given m identical machines and a set J of n jobs. Each job j has a processing time 1 ≤ p j ≤ P and release time r j . Jobs can be preempted, i.e., we can interrupt the processing of a running job and continue later without any penalties. The entire job has to be processed on the same machine and the task of the algorithm is to decide which job is scheduled on which machine.

For a given algorithm, C j denotes the completion time of a job j, and the ow time of j is dened as F j = C j -r j , i.e., the time that has passed between the release time and the completion time. Now, the goal is to minimize the total ow time ∑ j F j . Leonardi and Raz [START_REF] Leonardi | Approximating total ow time on parallel machines[END_REF][START_REF] Leonardi | Approximating total ow time on parallel machines[END_REF] showed that there is an O(log(min{ n m , P }))-approximation algorithm for this problem. At each point in time during the execution of the algorithm, it chooses those tasks that have the shortest remaining processing time (SRPT).

The parameter P leads to a natural distance function in the context of stability of approximation. We dene L as the set of all instances, without restricting the maximum processing time of a job. Then L I induces the subproblem with unit processing times, i.e., all processing times are exactly 1. For an instance x we dene h(x) = P (x) -1, where P (x) is the maximum processing time over all jobs in x. Clearly, h is computable in polynomial time and h(x) = 0 for x ∈ L I .

Since the approximation ratio increases monotonously with the distance from L I , also the conditions for B r,h are satised. We conclude that the SRPT algorithm is stable according to h. [START_REF] Garg | Minimizing average ow-time : Upper and lower bounds[END_REF] considered a generalization of the problem, where each job can only be assigned to a specic subset of machines. Formally, for each job j there is a subset S(j) of machines on which j may be scheduled. They showed that there is an O(log P)-approximation algorithm for this problem. Additionally, they showed a lower bound of Ω (log P log log P)

Garg and Kumar

, which means that the ratio is almost tight. From our analysis above, we directly obtain that also this algorithm is stable with respect to h.

Degree-bounded Graphs

We now consider degree-bounded graphs. For a graph G = (V, E), we write ∆ for the maximum degree over all vertices in V .

Coloring

The maximum degree plays an important role when we want to color the vertices of G. We would like to nd a minimum size set of colors such that each vertex is assigned a color and each edge is incident to two vertices with dierent colors.

The chromatic number of G is the minimum number of colors sucient to color all vertices of G. It is NP-hard to approximate the chromatic number of an n-vertex graph with an approximation ratio of n 1-ε [44], for an arbitrary ε > 0.

There is a basic and well-known result on graph coloring: one can color each graph with ∆+1 colors. We simply color the graph greedily. We iteratively choose uncolored vertices and color them with the rst color c from {1, 2, . . . , ∆ + 1} such that no neighbor is colored c. The color c exists because of the degree bound: there are at most ∆ colors with which neighbors can be colored. In particular, the algorithm directly gives a (∆ + 1)-approximation algorithm. We can improve the approximation ratio by observing that one can check in polynomial time if a graph is bipartite (cf. [START_REF] Thomas | Introduction to Algorithms[END_REF]), which is equivalent to being 2-colorable. If the graph is bipartite, we can eciently determine a 2-coloring. We can therefore either compute an optimal solution or we can assume that the optimum is at least 3.

The modied algorithm has an approximation ratio of (∆ + 1)/3.

The degree of G determines a useful distance function. We dene L as the set of all instances, without restricting the degree. Then L I induces the subproblem with ∆ = 3, i.e., the rst number such that graph coloring is NP-hard. For an instance x we dene h(x) = max{0, ∆ -3}. The value of h is easy to compute and h(x) = 0 for x ∈ L I .

Since the approximation ratio increases monotonously with ∆, we conclude that the coloring algorithm is stable according to h.

Independent Set

We continue with the maximum independent set problem in bounded-degree graphs. We would like to nd a maximum-size set of vertices S such that they are pairwise non-adjacent.

A well-known result of Halldórsson and Radhakrishnan [START_REF] Magnús | Greed is good: Approximating independent sets in sparse and bounded-degree graphs[END_REF] states that there is a (∆ + 2)/3 -approximation algorithm for this problem. The approximation ratio follows from a sophisticated analysis which includes the use of a generalization of Turán's bound.

As for coloring, nding a maximum independent set is easy for degree-2bounded graphs (we cannot do better than to take every other vertex on each path or cycle). Therefore, the same sets of problem instances and the same distance function as for coloring also apply for maximum independent set. The algorithm is therefore stable according to h.

Parameterization

Stability of approximation also appears in the context of parameterized algorithms. As an example, let us again consider graph coloring.

While graph coloring is NP-hard to approximate in general (see Section 5.1), for restricted graph classes the situation is much better. For instance, coloring a perfect graph is polynomially solvable [START_REF] Grötschel | Geometric Algorithms and Combinatorial Optimization[END_REF].

Here, we focus on a class of graphs determined by their pathwidth. The pathwidth expresses the similarity of a graph to a simple path. In fact, the graphs of pathwidth 1 are exactly {K 3 , K * 1,3 }-free graphs (or, equivalently, disjoint unions of caterpillar trees), where K * 1,3 is the graph obtained from K 1,3 by subdividing each edge exactly once [START_REF] Ding | On 3-connected graphs of path-width at most three[END_REF]. Since here we only use this parameter indirectly, we refer the reader to the book of Downey and Fellows [START_REF] Downey | Fundamentals of Parameterized Complexity[END_REF] for a formal denition.

A graph has pathwidth zero if and only if it is a single vertex. For pathwidths k ≥ 2, we have the following result.

Theorem 1. (Kierstead and Trotter [34]) For graphs of pathwidth k there is a (3k -2)-approximation algorithm for graph coloring.

Therefore, the pathwidth determines a natural distance function. We set L I to be the set of all graphs of pathwidth zero. Then the distance function h is simply specied by h(x) = k if the given instance x is a graph of pathwidth k.

We claim that the algorithm of Kierstead and Trotter is k-stable for each constant k. Since the dependence of the approximation ratio on k is monotonous, there is a constant α r for each r < k such that for all instances in B r,h (L I) the algorithm is an α r -approximation. It is left to show that h is polynomially computable. This is the point where we have to use that k is a constant: computing the pathwidth is a hard problem. For constant k, however, there is a polynomial time algorithm that computes the pathwidth (in the language of parameterized algorithms, computing the pathwidth is xed-parameter tractable) [START_REF] Hans | A linear-time algorithm for nding tree-decompositions of small treewidth[END_REF][START_REF] Hans | Ecient and constructive algorithms for the pathwidth and treewidth of graphs[END_REF].

For non-constant k, the problem of computing the pathwidth is NP-hard to approximate [START_REF] Hans | Approximating treewidth, pathwidth, frontsize, and shortest elimination tree[END_REF]. We therefore conclude that even though the algorithm of Kierstead and Trotter is k-stable for each constant k, it is neither stable nor quasi-stable.

Dimensionality

Graph problems usually have a natural version of the problem where the vertices are points in some space and the distances are measured according to the properties of the space. For instance, we can consider the TSP where the vertices are points in the Euclidean plane. Then a vertex u is a point (u 1 , u 2) and the distance between two vertices u and v is the Euclidean distance ((

u 1 -v 1) 2 +(u 2 -v 2) 2) 1/2 .
One of the important factors inuencing the hardness of a problem is the dimension of the considered space. Generally speaking, a higher dimension increases the freedom to choose instances and therefore leads to harder problems.

Euclidean space

We now consider the Euclidean space more thoroughly. Many of the well-studied problems that are APX-hard in general metric spaces allow for a PTAS in the Euclidean plane R 2 . This is the case for the traveling salesman problem [START_REF] Arora | Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems[END_REF][START_REF] Arora | Approximation schemes for NP-hard geometric optimization problems: a survey[END_REF], the Steiner tree problem [START_REF] Arora | Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems[END_REF][START_REF] Arora | Approximation schemes for NP-hard geometric optimization problems: a survey[END_REF], the Steiner forest problem [START_REF] Borradaile | A polynomial-time approximation scheme for Euclidean Steiner forest[END_REF], the k-median problem [START_REF] Arora | Approximation schemes for Euclidean k-medians and related problems[END_REF][START_REF] Kolliopoulos | A nearly linear-time approximation scheme for the Euclidean k-median problem[END_REF], and many related problems.

The hardness of these problems, however, crucially depends on the dimension of the Euclidean space. For log n dimensions, Trevisan showed that the TSP is APX-hard [START_REF] Trevisan | When Hamming meets Euclid: The approximability of geometric TSP and steiner tree[END_REF]. This forces us to focus on spaces R d for small values of d (either constant, or in some cases in the order of log log n).

The running time of the (1 + ε)-approximation algorithms also depends on ε to be a xed constant. Since (1 + ε) is a factor, the absolute error increases with the input size n, and it is therefore desirable to have an ε that decreases with increasing n. We are interested in how small ε can be (depending on n) such that the algorithm still runs in polynomial time.

To this end, we again take the TSP as a showcase problem. Arora [START_REF] Arora | Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems[END_REF] showed

how to obtain a randomized (1+1/c)-approximation in time O(n(log n) (O(√ d)•c) d-1). By choosing β ∈ O(√ d) d-1 , we obtain the running time O(n(log n) β•c d-1
), and we want the time to be polynomial, i.e.,

n(log n) β•c d-1 = n O(1)
which implies

β • c d-1 = log log n n O(1) = O(log n) log log n and thus c = (O(log n) O(√ d) d-1 log log n) 1/(d-1)
.

We can formulate this in terms of stability of approximation by choosing L I to be all 1-dimensional instances, L all d-dimensional instances for d ≥ 1 and specifying the distance function h as follows. Let d(x) be the number of dimensions used in instance x. Then h(x) = d(x) -1. We conclude that the Euclidean TSP is f (r)-quasistable according to h with

f (r) = 1 + 1/ (O(log n) O(√ ⌊r + 1⌋) ⌊r+1⌋-1 log log n
) 1/(⌊r+1⌋-1) .

Doubling spaces

In the previous section, the only reason to restrict our view to the Euclidean space was that Arora's algorithm uses its properties. The dimensionality behaves orthogonally to the restrictions imposed by the Euclidean space. To this end, we now focus on a more general setting. Given an arbitrary metric space M with a distance function dist, let B ℓ denote a ball in this space with radius ℓ according to dist. " Then the doubling dimension of M is the minimal number d such that for every ℓ, every ball B ℓ can be covered by

2 d balls B ℓ/2 of radius ℓ/2.
Such a metric space is called a doubling space of dimension d. As an example, the doubling dimension of a 2-dimensional space with ℓ 1 -norm is 2, since each " Note that here we do not talk about the relaxation of a class of instances, but about the standard notation of balls in a metric space.

square can be covered by 2 2 = 4 squares of half the radius. Doubling spaces of dimension O(d) generalize the Euclidean space with d dimensions, and are signicantly more general (cf. [START_REF] Bartal | The traveling salesman problem: Low-dimensionality implies a polynomial time approximation scheme[END_REF][START_REF] Kenneth | Nearest neighbor queries in metric spaces[END_REF][START_REF] Gupta | Bounded geometries, fractals, and low-distortion embeddings[END_REF][START_REF] Talwar | Bypassing the embedding: Algorithms for low dimensional metrics[END_REF] and references therein).

As an example of a stability result according to the dimension of a doubling space we use the Maximum Scatter TSP (MSTSP). In the MSTSP, we are given a TSP instance. Now, the goal is to nd a tour such that the smallest cost over all edges in the tour is maximized. In other words, the objective is to only use long jumps. The idea is that the order of points visited is scattered as much as possible within the considered graph. A solution to the MSTSP is required, for instance, when drilling holes and the work piece is heated up in the process.

Then one should rst process parts of the work piece far away from the last hole in order to prevent overheating.

Kozma and Mömke [START_REF] Kozma | Maximum scatter TSP in doubling metrics[END_REF] showed that there is a PTAS for the MSTSP in doubling spaces of dimension d at most O(log log n), where n is the number of vertices. More precisely, the result is a (1 + ε)-approximation algorithm running in time 1) .

Õ(n 3 + 2 O(K log K)) , where K ≤ (13
ε) d . We want to determine ε such that Õ(n 3 + 2 O(K log K)) = log c n • (n 3 + 2 O(K log K)) = n O(
(

The factor log c n and the term n 3 can be hidden in the exponent O(1) of the right-hand side of (1). We obtain 2 O(K log K) = n O (1) . We further simplify the equation and obtain

K log K = (13/ε) d log(13/ε) d = O(log n) .
For suciently small ε then 1/ε d-1/2 < log n and therefore

ε > (log n) -1/(d-1/2) .
The remaining steps are analogous to our analysis of the Euclidean space. It is sensible to dene L I to be the one-dimensional instances and to use the distance function h(x) = d(x) -1. Then the algorithm is f (r)-quasistable according to h with f (r) = 1 + (log n) -1/(⌊r+1⌋-1/2) .

Online Algorithms

The concept of stability of approximation is not restricted to approximation algorithms. It naturally translates to concepts such as online algorithms.

The source of hardness in online algorithms comes from incomplete knowledge rather than from time restrictions: we (i.e., the algorithm) have to take decisions before knowing the entire instance.

Formally, an online problem U is dened as follows. An instance of U is given as a sequence of requests r 1 , r 2 , An online algorithm A for U has to provide a sequence of answers a 1 , a 2 , The answer a i depends on the requests r 1 , r 2 , . . . , r i and the answers a 1 , a 2 , . . . , a i-1 .

In order to focus on the essence of the problem, the algorithm does not have a time restriction. It is sucient to provide a computable function that determines the answers.

There are several models of online computation. One of the most used and most reasonable models is to assume an oblivious adversary. This model provides a measure of worst-case complexity because we assume an adversary that knows our algorithm and tries to provide a worst possible request sequence for it. The adversary, however, is oblivious which means that he has to x the request upfront, without knowing the algorithm's answers. (This does not change anything for deterministic online algorithms, but it provides a huge advantage for randomized online algorithms.)

Online problems are typically optimization problems and as approximation algorithms, we would like to have a guaranteed quality of the computed solution.

Unlike in approximation algorithms, however, the need to compromise quality in online algorithms is unconditional: we do not depend on conjectures such as P ̸ = NP. The analog to the approximation ratio in online algorithms is called competitive ratio.

An algorithm is c-competitive, if there is a constant α > 0 such that for each sequence of requests with cost opt of an optimal oine solution, the cost alg of the solution computed by the algorithm is at most α + c • opt.

We dene stability for online algorithms analogous to Section 2, but we replace the approximation ratio by the competitive ratio. We note that unless we require the online algorithm to run in polynomial time, the requirement of the distance function h to be polynomial time computable is not essential for online algorithms. We therefore only require h to be a computable function.

Online Scheduling

We continue with the online view on the problems that we analyzed in Section 4.

Again, we want to minimize the ow-time on multiple machines. We have formally dened the oine version of this problem in Section 4. The dierence to the oine version is that now, the jobs arrive in an online fashion. Let j 1 , j 2 , . . . , j n be the jobs of a problem instance. We then order the jobs by increasing release time. The i-th request reveals the i-th job j i . Before a new job j i+1 (or the end of the input) is revealed, the algorithm has to x the machine on which j i will be processed.

Leonardi and Raz [START_REF] Leonardi | Approximating total ow time on parallel machines[END_REF][START_REF] Leonardi | Approximating total ow time on parallel machines[END_REF] showed a tight bound Θ(log P) on the competitive ratio of this problem. Recall that P is the maximal processing time of a single job. Note that the upper bound matches the oine upper bound. For online algorithms, however, the lower bound has changed.

Again, P leads to a natural distance function in the context of stability of approximation. Recall that the set L contains all instances, without restricting the maximum processing time of a job and that L I induces the subproblem with unit processing times. For an instance x we dene h(x) = P (x) -1, where P (x) is the maximum processing time over all jobs in x.

Since the competitive ratio increases monotonously with the distance from L I , also the conditions for B r,h are satised. We conclude that the SRPT algorithm is stable according to h.

Unlike in the case of oine algorithms, however, this result does not translate to the version of the problem where each job can only be assigned to a specic subset of machines. Garg and Kumar [START_REF] Garg | Minimizing average ow-time : Upper and lower bounds[END_REF] showed that in this case, the competitive ratio is unbounded, independent of P . Therefore, for this version of the problem there is no algorithm that is stable according to h.

Online Matching

The k-server problem is one of the central problems studied in online computation. We are given a metric space M and a set S of k servers placed on various locations in M. The initial positions of the servers are known. The online requests are points in M and have to be answered with a server from S, which then has to move to the requested point. The cost of moving a server equals the distance in M and the goal is to minimize the overall distance traveled by servers.

The k-server problem formalizes natural problems such as for instance real time delivery: the servers are delivery cars and the metric space is determined by clients within a street network. In such a network, it is natural to consider a capacitated version of the k-server problem. We assign a capacity to the servers: each delivery car can serve at most ℓ dierent clients. If ℓ = 1, the capacitated k-server problem boils down to a bipartite matching between the servers and the clients: each server is matched to at most one client and each client is served by exactly one server. The resulting problem is known as online bipartite matching.

Raghvendra [START_REF] Raghvendra | A robust and optimal online algorithm for minimum metric bipartite matching[END_REF] presented an algorithm for online bipartite matching which in the following we call RM-algorithm (for robust matching, following the notation of the authors). Nayyar and Raghvendra [START_REF] Nayyar | An input sensitive online algorithm for the metric bipartite matching problem[END_REF] afterwards obtained a better analysis based on the parameter µ M (S) which is dened as the maximum ratio of the traveling salesman tour and the diameter over all subsets of S (or, more precisely, the graphs induced by S). To use the parameter, we rely on our relaxation of stability for online algorithms in which we dened the distance function to be only computable and did not require polynomial time. The meaning of the parameter µ M (S) becomes clear when we consider concrete classes of metric spaces M. If M is the space determined by the shortest path metric of a line, µ M (S) = 2. If M is a doubling space of dimension d, µ M (S) = O(n 1-1/d).

The result of Nayyar and Raghvendra is that the RM-algorithm has a competitive ratio of O(µ M (S) log 2 n), while every algorithm has a competitive ratio of Ω(µ M (S)). To analyze the stability of the RM-algorithm, we now x the needed parameters.

We set L to the set of all feasible instances independent of the value of µ M (S).

One can check that for an arbitrary metric space on three points the value of µ M (S) is at least 2, matching the value for a shortest path metric of a line. Since the latter class of instances is non-trivial, it is natural to set L I to be all instances with µ M (S) ≤ 2. Let S x be the set of servers located in the metric space M x for an instance x ∈ L. We then dene h(x) = max{0, µ Mx (S x) -2}, which satises all required conditions. Since the upper bound on the competitive ratio is non-constant, we do not have an analysis that states that the algorithm is stable according to h. However, we can claim that it is f -quasistable according to h for the function f with f (n) = O(µ M (S) log 2 n).

Conclusion

We have seen that stability of approximation is a natural concept that appears in many circumstances. We can draw several conclusions from our investigation.

(i) Stability of approximation can be seen as a parameterized version of approximation algorithms. If the approximation ratio monotonously increases with a given parameter, this parameter is a natural base for a stability distance function. Conversely, for stability of approximation results, we could also state the algorithms as algorithms for general problem instances parameterized on the distance function.

(ii) Stability of approximation has similarities with the study of time complexity. The relation becomes clear when considering polynomial time approximation schemes. In this survey, we determined the impact of stability on the error ε. An alternative way to handle a PTAS would be to x a specic running time and to determine the error ε depending on the stability distance function.

We can see the situation as a pareto curve with the stability distance on one axis and the running time on another axis.

(iii) The concept of stability is not restricted to approximation algorithms.

For example, it directly translates to stability of competitiveness in online algorithms. This insight motivates to further investigate the scope of stability in further contexts.

To summarize, we observe that classifying the hardness of the instances of the investigated algorithmic problems is a successful approach that is important in modern algorithmic research.

⋆

 Research partially funded by Deutsche Forschungsgemeinschaft grant MO2889/1-1, and by The Investments for the Future Programme IdEx Bordeaux -CPU (ANR-10-IDEX-03-02).

1

 1

-approximable for metric input instances. Here, one can characterize the input instances by their distance to metric instances. This can be expressed by the β-triangle inequality for any β ≥ 1.In a sequence of papers[1, 2, 7, 1013,

39], it was shown that

Acknowledgment. We thank the anonymous referees for their careful reading and valuable comments, which helped to improve the presentation of the paper.