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Abstract. A complete weighted graph G = (V,E,w) is called ∆β-
metric, for some β ≥ 1/2, if G satisfies the β-triangle inequality, i.e.,
w(u, v) ≤ β · (w(u, x) + w(x, v)) for all vertices u, v, x ∈ V . Given a
∆β-metric graph G = (V,E,w), the Single Allocation at most p-
Hub Center Routing problem is to find a spanning subgraph H∗

of G such that (i) any pair of vertices in C∗ is adjacent in H∗ where
C∗ ⊂ V and |C∗| ≤ p; (ii) any pair of vertices in V \ C∗ is not adjacent
in H∗; (iii) each v ∈ V \ C∗ is adjacent to exactly one vertex in C∗;
and (iv) the routing cost r(H∗) =

∑
u,v∈V

dH∗(u, v) is minimized where
dH∗(u, v) = w(u, f∗(u))+w(f∗(u), f∗(v))+w(v, f∗(v)) and f∗(u), f∗(v)
are the vertices in C∗ adjacent to u and v in H∗, respectively. Note that
w(v, f∗(v)) = 0 if v ∈ C∗. The vertices selected in C∗ are called hubs
and the rest of vertices are called non-hubs. In this paper, we show that
the Single Allocation at most p-Hub Center Routing problem is
NP-hard in ∆β-metric graphs for any β > 1/2. Moreover, we give 2β-
approximation algorithms running in time O(n2) for any β > 1/2 where
n is the number of vertices in the input graph.

1 Introduction

The design of hub-and-spoke networks is a key issue with applications in trans-
portation, e.g., airlines [21] and cargo delivery systems [31]. The major concern
to design a hub-and-spoke network with high quality is to connect a large amount
of origin/destination (O/D) pairs by using a small number of links. The usage
of hub facilities helps to reduce the connections between all nodes. To locate p
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hubs in hub networks in order to route the traffic between origin/destination
pairs with minimum cost is the classical hub location problem called the p-Hub
Median problem [30, 32]. Notice that the general p-hub median problem consid-
ers that each pair of origin/destination has different unit traffic (flow) cost. We
call a hub location problem multi-allocation, if a demand node can be served by
several hubs. If each demand node can be served by exactly one hub, the hub lo-
cation problem is single-allocation. The p-hub median problem is NP-hard. Many
linear programming-based and heuristic algorithms were proposed to solve the
p-hub median problem and its variants (see the survey papers [1, 14, 28]).

Another hub location problem, the Single Allocation p-Hub Center
problem, is to choose a fixed number p of vertices as hubs and to assign each non-
hub vertex to exactly one of the chosen hubs in such a way that the maximum
distance/cost between origin-destination pairs is minimized [13, 31]. Unlike the
p-Hub Median problem to minimize the total cost of all origin-destination
pairs, the Single Allocation p-Hub Center problem is to minimize the
poorest service quality. Chen et al. [15] proved that for any ǫ > 0, it is NP-
hard to approximate the Single Allocation p-Hub Center problem to a
ratio 4

3 − ǫ and gave a 5
3 -approximation algorithm running in time O(pn3) to

solve the same problem. If the input graph is ∆β-metric, it was proved that for
any ε > 0, to approximate the Single Allocation p-Hub Center problem
to a ratio g(β) − ε is NP-hard where g(β) is a function of β and a series of
r(β)-approximation algorithms were given in [18] where r(β) is a function of β.
The Star p-Hub Center problem is another hub location problem with min-
max criterion. It is to pick p nodes as hubs among the set of demand nodes
connecting with the central given hub c and to connect each of the remaining
demand nodes to exactly one of the p chosen hubs such that the longest path
in the tree structure network is minimized. Chen et al. [16] showed that for any
ǫ > 0, to approximate the Star p-Hub Center problem to a ratio 1.5−ǫ is NP-
hard and gave a 5

3 -approximation algorithms for the same problem. Moreover, for
input graphs satisfying β-triangle inequality, i.e., w(u, v) ≤ β ·(w(u, x)+w(x, v))
for all vertices u, v, x in the input graph G = (V,E,w) and β ≥ 1/2, it was shown
that for any ǫ > 0, to approximate the Star p-Hub Center problem to a ratio
g(β)− ǫ is NP-hard and r(β)-approximation algorithms were given in the same
paper where g(β) and r(β) are functions of β [17, 19].

Despite numerous research results on solving various hub location problems
in the past twenty-five years [14, 20], the design of approximation algorithms for
hub location problems only made very little progress in the past two decades,
especially for the p-Hub Median problem [25, 26]. In this paper, we consider a
variant of the p-Hub Median problem in which each pair of origin/destination
has the same unit traffic (flow) cost called the Single Allocation at most
p-Hub Center Routing problem. The Single Allocation at most p-Hub
Center Routing problem is to choose at most p vertices as hubs and to as-
sign each remaining vertex (called non-hub) to exactly one of the chosen hubs
in such a way that the sum of distance/cost between all origin-destination pairs
is minimized, i.e., the routing cost is minimized. There are some routing cost



optimization problems on finding a spanning subtrees or a spanning tree satis-
fying certain properties of the input graph such that the routing cost is mini-
mized [27, 33, 34]. Some of these minimum routing cost spanning tree problems
admit polynomial-time approximation schemes [33, 34].

Our study uses the well-known concept of stability of approximation for hard
optimization problems [9, 11, 22, 23]. The idea of this concept is similar to that
of the stability of numerical algorithms. But instead of observing the size of
the change in the output value according to a small change of the input value,
one is interested in the size of the change of the approximation ratio according
to a small change in the specification (some parameters, characteristics) of the
set of problem instances considered. If the change of the approximation ratio is
small for every small change in the set of problem instances, then the algorithm
is called stable. The concept of stability of approximation has been successfully
applied to several fundamental hard optimization problems. E.g. in [2–4, 8–10,
12, 29] it was shown that one can partition the set of all input instances of
the Traveling Salesman Problem into infinitely many subclasses according to
the degree of violation of the triangle inequality, and for each subclass one can
guarantee upper and lower bounds on the approximation ratio. Similar studies
demonstrated that the β-triangle inequality can serve as a measure of hardness
of the input instances for other problems as well, in particular for the problem of
constructing 2-connected spanning subgraphs of a given complete edge-weighted
graph [5], and for the problem of finding, for a given positive integer k ≥ 2 and
an edge-weighted graph G, a minimum k-edge- or k-vertex-connected spanning
subgraph [6, 7].

In this paper, we consider a graph G = (V,E,w) with a distance function
w(·, ·) being a ∆β-metric graph on V such that w(v, v) = 0, w(u, v) = w(v, u),
and w(u, v) ≤ β ·(w(u, x)+w(x, v)) for all u, v, x ∈ V . Given a positive integer p,
let H∗ be a spanning subgraph of G satisfying the conditions that vertices (hubs)
in C∗ ⊂ V form a clique of size at most p inH∗, vertices (non-hubs) in V \C∗ form
an independent set in H∗, and each non-hub v ∈ V \ C∗ is adjacent to exactly
one hub in C∗. Define dH∗(u, v) = w(u, f∗(u)) + w(f∗(u), f∗(v)) + w(v, f∗(v))
where f∗(u) and f∗(v) are hubs adjacent to u and v in H∗ respectively. Notice
that if u is a hub in H∗ then w(u, f∗(u)) = 0. Let r(H∗) =

∑

u,v∈V dH∗(u, v) be
the routing cost of H∗. We list the formal definition of the Single Allocation
at most p-Hub Center Routing problem in the following.

Single Allocation at most p-Hub Center Routing (∆β-SApHCR)
Input: A ∆β-metric graph G = (V,E,w) and a positive integer p.
Output: A spanning subgraph H∗ of G satisfying the following conditions

(i) any pair of vertices (hubs) in C∗ is adjacent in H∗ where C∗ ⊂ V
and |C∗| ≤ p; (ii) any pair of vertices (non-hubs) in V \ C∗ is not
adjacent in H∗; (iii) each non-hub v ∈ V \ C∗ is adjacent to exactly
one hub in C∗ such that r(H∗) is minimized.

In Fig. 1, we give an example of the Single Allocation at most p-Hub
Center Routing problem that can be applied in the design of post mail net-
works for which hubs are major post offices and non-hubs are small post offices.



Fig. 1. An example of a single allocation at most p-hub center routing network where
the four hubs are the major post offices and the non-hubs are the other small post
offices.

In this paper, we investigate the approximability of the Single Allocation
at most p-Hub Center Routing problem in ∆β-metric graphs. The paper is
organized as follows: In Section 2, we prove that the Single Allocation at
most p-Hub Center Routing problem is NP-hard in ∆β-metric graphs for
any β > 1/2. In Section 3, for any β > 1/2, we give 2β-approximation algorithms
running in time O(n2) for the Single Allocation at most p-Hub Center
Routing problem.

2 NP-hardness

In this section, we show that for any β > 1/2, the Single Allocation at
most p-Hub Center Routing problem is NP-hard.

Theorem 1. For any β > 1/2, the Single Allocation at most p-Hub Cen-
ter Routing problem in ∆β-metric graphs is NP-hard.

Proof. We prove that the Single Allocation at most p-Hub Center Rout-
ing problem is at least as hard as the well-known NP-hard problem Maximum
Clique [24].

Maximum Clique Problem [24]
Input: A simple undirected graph G = (V,E) and a positive integer k.
Output: Whether there is a clique S ⊆ V of size k in G.

Notice that if G has a universal vertex v, i.e., degG(v) = |V |−1, then we can
simply select v in S and ask whether there exists a size k−1 clique in G[V \{v}].
Thus, we may assume that G has no universal vertex. To show such a statement,
we reduce the input G = (V,E) of theMaximum Clique problem to the Single
Allocation at most p-Hub Center Routing problem where p = k + 1.
According to G, we construct an input ∆β-metric graph G′ = (V ′, E′, w) where
V ′ = V ∪ {x}, E′ = {(u, v) | u, v ∈ V ′}, and assign the cost of each edge in E′

as follows.



– w(u, v) = 1 if (u, v) is an edge in G.
– w(u, v) = 1 + ǫ if (u, v) is a non-edge in G where 0 < ǫ < 1.
– w(x, v) = 1 for all v ∈ V .

It is not hard to see that G′ is a∆β-metric graph for any β ≥ 1+ǫ
2 . Notice that for

any constant β, it defines a ∆β-metric graph class and this graph class contains
all ∆β′-metric graphs for β′ ≤ β. If one can prove for any 1/2 < β < 1 the
Single Allocation at most p-Hub Center Routing problem is NP-hard,
then it implies for any β > 1/2 this problem is NP-hard. In the following proof,
we may assume that 1/2 < β < 1.

Let H∗ be an optimal solution of the Single Allocation at most p-Hub
Center Routing problem. Let S∗ be a size k clique in G. We then obtain
a solution H of the Single Allocation at most p-Hub Center Routing
problem by letting all vertices C = S∗ ∪ {x} be the set of hubs in H and letting
all the remaining vertices in V \ S∗ be non-hubs adjacent to x. We obtain the
following facts.

– For two non-hubs y, z, distH(y, z) = 2.
– For a hub v ∈ C \ {x} and a non-hub y, distH(v, y) = 2.
– For two hubs u, v ∈ C, distH(u, v) = w(u, v).
– For any vertex v ∈ V , distH(v, x) = w(v, x) = 1.

We see that the routing cost of H is r(H) = 2 ·
(

n
2

)

−
(

k
2

)

+ n = n2 −
(

k
2

)

where n = |V |.
Since H∗ is an optimal solution of the Single Allocation at most p-Hub

Center Routing problem in G′, we have r(H∗) ≤ n2 −
(

k
2

)

.

Claim 1. All non-hubs in H∗ must be adjacent to the same hub.

Proof. Suppose that there are at least two hubs adjacent to non-hubs. Then the
routing cost between any two non-hubs which are adjacent to different hubs is at
least 3. This will imply that r(H∗) ≥ (3−ρ

2 ) ·n2−
(

k
2

)

> n2−
(

k
2

)

where 0 < ρ < 1,
a contradiction to the assumption that H∗ is an optimal solution of the Single
Allocation at most p-Hub Center Routing. �

Claim 2. The number of hubs in H∗ is p.

Proof. If the number of hubs is less than p, i.e., |C∗| < p, then we may obtain
another solution H ′ by selecting p− |C∗| non-hubs in H∗ and let them be hubs
in H ′. Since all hubs are pairwise adjacent and β < 1, it is not hard to see that
r(H ′) < r(H∗). It contradicts the assumption that H∗ is an optimal solution of
the Single Allocation at most p-Hub Center Routing. This shows that
the number of hubs in H∗ must be p. �

Claim 3. The vertex x must be a hub in H∗.

Proof. Suppose that x is not a hub. Since G has no universal vertex, in H∗ the
hub which is adjacent to all non-hubs must be incident to some edges with edge
cost 1 + ǫ. We see that r(H∗) ≥ (2+ǫ′

2 ) · n2 −
(

k
2

)

> n2 −
(

k
2

)

= r(H) where
ǫ′ > 0, a contradiction to the assumption that H∗ is an optimal solution of the



Single Allocation at most p-Hub Center Routing. This completes the
proof that x must be a hub in H∗. �

Claim 4. If the Single Allocation at most p-Hub Center Routing has

an optimal solution H∗ with r(H∗) = n2 −
(

k
2

)

and C∗ is the set of hubs in H∗,

then C∗ \ {x} is a clique of size k in G where k = p− 1.

Proof. According to Claims 1–3 that all non-hubs are adjacent to x and |C∗| =
p = k + 1, we have the routing cost between vertices in C∗ is

r(C∗) = r(H∗)− r(V ′ \ C∗)− r(V ′ \C∗, C∗)

=

(

n2 −

(

k

2

))

− 2 ·

(

n− k

2

)

− ((n− k) + 2 · k(n− k)) =

(

k + 1

2

)

.

Notice that w(x, v) = 1 for v ∈ V , w(u, v) = 1 if (u, v) ∈ E, otherwise
w(u, v) = 1 + ǫ. Since r(C∗) =

∑

u,v∈C∗ w(u, v) =
(

k+1
2

)

, we see that for u, v ∈
C∗ \ {x}, w(u, v) = 1 and C∗ \ {x} forms a clique in G. �

According to Claim 4, if there exists a polynomial time algorithm that solves
Single Allocation at most p-Hub Center Routing with routing cost
n2 −

(

k
2

)

where k = p− 1, then the Maximum Clique problem can be solved in
polynomial time. However, Maximum Clique is a well-known NP-hard prob-
lem [24]. By the fact Maximum Clique is an NP-hard problem, this implies
that Single Allocation at most p-Hub Center Routing is also an NP-
hard problem. ⊓⊔

3 New approximation algorithms

We have shown the NP-hardness of the Single Allocation at most p-Hub
Center Routing problem by reducing from the maximum clique problem. It
is well-known that the maximum clique is hard to approximate. In this section,
we give approximation algorithms for the Single Allocation at most p-Hub
Center Routing problem.

We first state a property of ∆β-metric graphs in the following lemma.

Lemma 1 ([8]). Let G = (V,E) be a ∆β-metric graph for 1
2 ≤ β < 1. For any

two edges (u, x), (v, x) with a common endvertex x in G, w(u, x) ≤ β
1−β

·w(v, x).

Theorem 2. For any 1/2 ≤ β ≤ 1, there is a 2β-approximation algorithm for

the Single Allocation at most p-Hub Center Routing problem.

Proof. It is easy to see that in time O(n2), Algorithm 1 returns a feasible solu-
tion of the Single Allocation at most p-Hub Center Routing problem.
We now prove that the solution H returned by Algorithm 1 satisfies the approx-
imation ratio 2β. Let G = (V,E,w) be the input graph of the Single Allo-
cation at most p-Hub Center Routing problem. Let H∗ be an optimal
solution of the Single Allocation at most p-Hub Center Routing prob-
lem. Let C∗ denote the set of hubs in H∗. Define w(H∗) =

∑

(u,v)∈E(H∗) w(u, v).



Algorithm 1: Approximation algorithm for ∆β-SApHCR for 1/2 ≤ β ≤ 1

Let U := V . Initially, C = ∅. Construct a spanning subgraph H of G by the following
steps.

Step 1: Find z = argminv∈V

∑

u∈V

w(u, v) as a hub in H .

Step 2: Pick p − 1 vertices {v1, . . . , vp−1} farthest to z from U . Let C := C ∪
{z, v1, . . . , vp−1} be the set of hubs in H and U := U \ {z, v1, . . . , vp−1}.

Step 3: Connect all vertices in U to z as non-hubs in H .
Step 4: Return H .

Construct a weighted complete graph G∗ = (V,E,w∗) according to H∗ where
w∗(u, v) = distH∗(u, v). Define

w∗(G∗) =
∑

u,v∈V

w∗(u, v) =
∑

u,v∈V

distH∗(u, v) = r(H∗).

Let H be the solution returned by Algorithm 1 with z being the only hub in
H that is adjacent to non-hubs. Let Sz be the spanning star of G with center
z satisfying z = argminv∈V

∑

u∈V w(u, v). We use f∗(z) to denote the hub
adjacent to z in H∗. Note that f∗(z) = z if z is a hub in H∗. Let Sv be the
spanning star of G∗ with center v and w∗(Sv) =

∑

(u,v)∈E(Sv)
w∗(u, v).

Claim 1. r(H) ≤ r(Sz)− (1− β) ·
∑

u,v∈C\{z}(w(z, u) + w(z, v))

Proof. According to the β-triangle inequality for u, v ∈ V , w(u, v) ≤ β(w(z, u)+
w(z, v)). We obtain that

r(H) = r(Sz)−
∑

u,v∈C\{z}

(w(z, u) + w(z, v)− w(u, v))

≤ r(Sz)− (1− β) ·
∑

u,v∈C\{z}

(w(z, u) + w(z, v)).

This completes the proof. �

Claim 2.
∑

u,v∈C∗\{f∗(z)} w(u, v) ≤
∑

u,v∈C\{z}(w(z, u) + w(z, v))

Proof. We obtain that
∑

u,v∈C∗\{f∗(z)}

w(u, v) ≤
∑

u,v∈C∗\{f∗(z)}

β · (w(z, u) + w(z, v))

≤
∑

u,v∈C\{z}

β · (w(z, u) + w(z, v))

(since the selection of hubs in Algorithm 1)

≤
∑

u,v∈C\{z}

(w(z, u) + w(z, v)).



This completes the proof. �

Now we prove r(H) ≤ 2β · r(H∗) in the following.

r(H∗) = w∗(G∗) =
1

2
·
∑

v∈V

w∗(Sv)

≥
1

2β
·
∑

v∈V

w(Sv)−

(

1− β

2β

)

·
∑

(u,v)∈E(H∗)

w∗(u, v)

=
1

2β
·
∑

v∈V

w(Sv)−

(

1− β

2β

)

·
∑

(u,v)∈E(H∗)

w(u, v)

=
1

2β
·
∑

v∈V

w(Sv)−

(

1− β

2β

)

·





∑

u∈V \C∗

w(u, f∗(u)) +
∑

u∈C∗\{f∗(z)}

w(u, f∗(z)) +
∑

u,v∈C∗\{f∗(z)}

w(u, v)





≥
1

2β
·
∑

v∈V

w(Sv)−
1

2
·





∑

u∈V \C∗

w(u, z) +
∑

u∈C∗\{f∗(z)}

w(u, z)



−

(

1− β

2β

)

·
∑

u,v∈C∗\{f∗(z)}

w(u, v)

(by Lemma 1, w(u, f∗(u)) ≤ β
1−β

· w(u, z))

=
1

2β
·
∑

v∈V

w(Sv)−
1

2
· w(Sz)−

(

1− β

2β

)

·
∑

u,v∈C∗\{f∗(z)}

w(u, v)

≥

(

n

2β

)

· w(Sz)−
1

2β
· w(Sz)−

(

1− β

2β

)

·
∑

u,v∈C∗\{f∗(z)}

w(u, v)

(since β ≤ 1)

=

(

n− 1

2β

)

· w(Sz)−

(

1− β

2β

)

·
∑

u,v∈C∗\{f∗(z)}

w(u, v)

=
r(Sz)

2β
−

(

1− β

2β

)

·
∑

u,v∈C∗\{f∗(z)}

w(u, v)

(since r(Sz) = (n− 1) · w(Sz))

≥
r(Sz)

2β
−

(

1− β

2β

)

·
∑

u,v∈C\{z}

(w(z, u) + w(z, v)) (by Claim 2)

≥
r(H)

2β
(by Claim 1).

This shows that r(H) ≤ 2β · r(H∗), and the proof is completed. ⊓⊔



Algorithm 2: Approximation algorithm for ∆β-SApHCR for β ≥ 1

Let U := V . Initially, C = ∅. Construct a spanning subgraph H of G by the following
steps.

Step 1: Find z = argminv∈V

∑

u∈V

w(u, v) as the hub in H .

Step 2: Connect all vertices in U \ {z} to z as non-hubs in H .
Step 3: Return H .

Theorem 3. For any β ≥ 1, there is a 2β-approximation algorithm for the

Single Allocation at most p-Hub Center Routing problem.

Proof. It is easy to see that in time O(n2), Algorithm 2 returns a feasible solu-
tion of the Single Allocation at most p-Hub Center Routing problem.
We now prove that the solution H returned by Algorithm 2 satisfies the ap-
proximation ratio 2β. Let G = (V,E,w) be the input graph of the Single
Allocation at most p-Hub Center Routing problem. Let H∗ be an op-
timal solution of the Single Allocation at most p-Hub Center Rout-
ing problem and C∗ be the set of hubs in H∗. Construct a weighted complete
graph G∗ = (V,E,w∗) according to H∗ where w∗(u, v) = distH∗(u, v). Let
w(G∗) =

∑

u,v w
∗(u, v) = r(H∗).

We use Sv to denote the spanning star of G with center v and w(Sv) =
∑

u∈V w(u, v). Let x = argminv∈C∗{w(Sv)}. Define w∗(Sv) =
∑

u∈V w∗(u, v)
where w∗(u, v) = distH∗(u, v). Let f∗(x) denote the hub adjacent to x in H∗.
Note that if x is a hub in H∗, then f∗(x) = x.

Claim 1. w∗(Sx) = (n− 2) · w(x, f∗(x)) + w∗(Sf∗(x)).

Proof. If x is a hub in H∗, we have f∗(x) = x and the equation holds directly.
Suppose that x is not a hub. We obtain that

w∗(Sx) =
∑

v∈V

w∗(x, v) =
∑

v∈V \{x}

w(x, f∗(x)) + w(f∗(x), f∗(v)) + w(f∗(v), v)

= (n− 1) · w(x, f∗(x)) +





∑

v∈V \{x}

w(f∗(x), f∗(v)) + w(f∗(v), v)





= (n− 2) · w(x, f∗(x)) +

(

∑

v∈V

w(f∗(x), f∗(v)) + w(f∗(v), v)

)

= (n− 2) · w(x, f∗(x)) +

(

∑

v∈V

w∗(f∗(x), v)

)

= (n− 2) · w(x, f∗(x)) + w∗(Sf∗(x)).

This completes the proof. �

Claim 2. For any hub y ∈ C∗, w∗(Sy) ≥
1
β
· w(Sy).



Proof. According to the β-triangle inequality, we see that w(u, y) ≤ β ·(w(u, y)+
w(f∗(u), y)). We obtain that for u ∈ V , w∗(u, y) = w(u, f∗(u)) + w(f∗(u), y) ≥
1
β
· w(u, y). Thus

w∗(Sy) =
∑

u∈V

w∗(u, y) ≥
∑

u∈V

1

β
· w(u, y) =

1

β
·
∑

u∈V

w(u, y) =
1

β
· w(Sy).

This completes the proof. �

Now we prove r(H) ≤ 2β · r(H∗) in the following.

r(H∗) = w∗(G∗) =
1

2
·
∑

v∈V

w∗(Sv)

=
1

2
·

(

∑

v∈V

(

w∗(Sf∗(v)) + (n− 2) · w(v, f∗(v))
)

)

(by Claim 1)

≥
1

2
·
∑

v∈V

w∗(Sf∗(v)) ≥
1

2β
·
∑

v∈V

w(Sf∗(v)) (by Claim 2)

≥
1

2β
· n · w(Sx) (since x = argminv∈C∗{w(Sv)})

≥
1

2β
· (n− 1) · w(Sz) (since z = argminv∈V {w(Sv)}) =

1

2β
· r(H).

This shows r(H) ≤ 2β · r(H∗). Thus Algorithm 2 returns a solution with
approximation ratio 2β. ⊓⊔

4 Concluding remarks

In this paper, we have proved that the Single Allocation at most p-Hub
Center Routing problem is NP-hard in ∆β-metric graphs for any β > 1

2 .
For any β > 1

2 , we have given 2β-approximation algorithms. In future work,
it is of interest to design approximation algorithms with better approximation
ratios. Besides, it is still open whether the Single Allocation at most p-Hub
Center Routing problem is APX-hard or not. If the Single Allocation at
most p-Hub Center Routing problem is APX-hard, one must prove that
for any ǫ > 0, it is NP-hard to approximate Single Allocation at most
p-Hub Center Routing to a factor c − ǫ for some constant c > 1. The other
possibility is that there exists a polynomial-time approximation scheme (PTAS)
for Single Allocation at most p-Hub Center Routing. We conjecture
that there exists a PTAS for the Single Allocation at most p-Hub Center
Routing problem.
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W. Unger: On k-Edge-Connectivity Problems with Sharpened Triangle Inequality.
In: R. Petreschi, G. Persiano, R. Silvestri (eds.), Algorithms and Complexity, Proc.
5th Italian Conference, CIAC 2003, LNCS 2653, Springer 2003, pp. 189–200.
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28. N. Mladenović, J. Brimberg, P. Hansen, J.A. Moreno-Pérez, The p-median prob-
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