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I. INTRODUCTION

Robots localization is a challenging task which is essential
for any autonomous robot or remotely operated one. In
outdoor, GNSS signals can be used to get a quite accurate
estimate of the position. However, in GNSS denied envi-
ronment, such as indoor or underwater, localization needs
to be estimated from other sensors. In aerial and terres-
trial robotics, monocular VO (Visual Odometry), VSLAM
(Visual Simultaneous Localization And Mapping) and, more
recently, VI-SLAM (Visual-Inertial SLAM) have shown great
results [1], [2], [3], [4]. Filtered SLAM based on Extended
Kalman Filters (EKF) have been set aside to the profit of
Bundle Adjustment (BA) based SLAM [5]. These SLAM
methods, hugely relying on nonlinear optimization, have
been successfully used to estimate localization from low-
cost sensors such as cameras and MEMS-IMU (Micro-
Electro-Mechanical System - Inertial Measurement Unit).
The availability of many public terrestrial or aerial datasets
have helped a lot in the quick development of these methods.
For example, KITTI [6], EuRoC [7] and Mono-VI TUM [§]
are famous datasets dedicated to the study of VSLAM or
VI-SLAM algorithms.

In this paper, we focus on vision-based SLAM methods in
underwater environments. The use of visual information is
challenging underwater as the medium creates many visual
degradations such as turbidity, back-scattering and light
absorption. These difficulties led most works to turn to sonar
based SLAM systems [9], [10]. Nevertheless, some works
have also demonstrated the potential of cameras for under-
water localization [11], [12]. However, most of these SLAM
methods rely on the integration of expensive navigational
sensors (Doppler Velocity Logs, Fibber Optic Gyroscopes
or high-end IMUs) to provide accurate enough localization
information, using only sonars or cameras to bound the drift
[13], [14].

We believe that underwater localization from low-cost sen-
sors processed through BA based SLAM could open the
way to new localization techniques. However, the lack of
underwater datasets is a limitation to the development of
such algorithms. The only underwater dataset with visual
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Fig. 1. The Remotely Operated Vehicle (ROV) and acquisition system
used to record the dataset.

information allowing the use of VSLAM methods we are
aware of is [15] but it consists only of simulated images.
Hence, in order to open the way to deeper studies of these
SLAM techniques, we propose a new underwater dataset
that we make publicly available onlineﬂ This dataset has
been recorded in an harbor and provides several sequences
with synchronized measurements from a monocular camera,
a MEMS-IMU and a pressure sensor. To the best of our
knowledge, this is the first underwater dataset dedicated to
the study of underwater localization methods from low-cost
Sensors.

The rest of this paper is organized as follow. First, we present
the payload designed for this acquisition. Then, we give
details about the recorded dataset. Finally, we present results
of an evaluation of state-of-the-art open-source monocular
VO and VSLAM which can be used as a benchmark on
this dataset and highlights the potential of such vision based
localization methods.

II. ACQUISITION SYSTEM

The acquisition system that we designed to record the dataset
can be seen in figure 2} It consists of a watertight enclosure
containing a monochromatic camera, a pressure sensor and
an Nvidia Tegra Jeston TX2 module mounted on Auvidea
J120-IMU carrier board. Details are given in table [ The
monochromatic camera is equipped with a wide-angle lens
and records images with a resolution of 640x512 pixels at
20 Hz. The camera is set behind a dome end cap in order
to reduce distortion from the passing of light rays through
different media. The IMU provides linear acceleration and
angular velocity measurements at 200 Hz, as well as compass
measurements at 80 Hz and the pressure sensor between 5
and 10 Hz. The computing module is running Ubuntu 16.04

Thttp://www.lirmm.fr/aqualoc/
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Fig. 2. The acquisition system integrating a monocular monochromatic
camera, a pressure sensor and an IMU.

Specifications Values Description

Size 65x60x55 cm

. Mass 28 Kg
Vehicle  hrusters 8 Blue Robotics T200
Camera sensor uEye - UI-1240SE
Resolution 640x512 px
Sensor Monochromatic
Frame per second 20 Hz
Lens Kowa LM4NCL C-Mount
Focal Length 3.5mm
Field of View 131deg
Inertial Measurement Unit MEMS - MPU-9250
Payload Gyroscope frequency 200 Hz
Accelerometer frequency 200 Hz.
Compass 80 Hz
Pressure Sensor MS5837 - 30BA
Depth Range 0 - 300m
Resolution 0.2 mbar
Frequency 5-10 Hz

Embedded Computer
Computing Unit
Carrier board
Housing

Nvidia - Tegra Jetson TX2
Auvidea J120 - IMU

Enclosure 334x1l4cm 4" Blue Robotics Watertight Enclosure
Enclosure End Cap Dome 4" Blue Robotics Dome End Cap
TABLE 1

SUMMARY OF THE FEATURES OF THE ROV AND THE PAYLOAD.

and records synchronously the different sensors measure-
ments thanks to the ROS middleware. An advantage of our
payload is that it is independent of any robotic architecture
and can thus be embedded on any kind of Remotely Operated
Vehicle (ROV) or Autonomous Underwater Vehicle (AUV).
This contrasts with classical underwater robots instrumenta-
tion load which are usually integrated in the design of the
robots [16].

III. DATASET

In order to record the dataset, the acquisition system is set
to face downward on the ROV as shown in figure [} An
aprilgrid is used both for the calibration of the system and as
a marker for navigation. In fact, in each sequence, the ROV
starts from the aprilgrid (visible), navigates away from it (no-
more visible), and finally comes back to it (visible again).
Intrinsic calibration of the camera is done in situ while
calibration of the extrinsic parameters between the IMU and
the camera is performed in-air in order to make fast motions,
required to estimate these parameters. These calibration steps
are computed using Kalibr [17]. As the camera is equipped
with a wide-angle camera, we used the equidistant distortion

Fig. 3. Equidistant distortion effects and removal from Kalibr calibration.
Left: raw image. Right: undistorted image.

model of Kalibr. Results of the calibration can be seen figure
Bl

All the measurements have been recorded with the ROS
middleware and they are hence all synchronized in ROS
bags. In the online repository of the dataset, we provide both
the data in a ROS bag format and as plain files. For the
plain files, the IMU, pressure and compass measurements
are given in independent files with a timestamp linked to
every measure. The distorted and undistorted version of the
images are also given as png images and the timestamp of
each image is written in a separate file.

A total of seven sequences have been recorded using this
setup. The sequences were recorded in an harbor in collab-
oration with the DRASSNEI The sequences expose different
levels of difficulty with sometimes parts where vision be-
comes unusable. Details about each sequence are given in
Fig[p. Obtaining a ground-truth is very difficult in underwa-
ter environments and often requires the use of external infras-
tructures. However, Structure-from-Motion methods are able
to compute very accurate 3D reconstruction from sequence of
images by means of extensive full batch Bundle Adjustment
run offline. In order to compute such a reconstruction we
have used the state-of-the-art library Colmap [18]. Setting
very low the features detection threshold, Colmap has been
able to produce very accurate reconstruction (Figh). As
the poses of every image is computed by Colmap in order
to produce the 3D reconstructions, we have extracted the
estimated cameras’ trajectories to use it as a ground-truth. We
further scaled these trajectories using depth measurements to
get metric trajectories.

IV. BENCHMARK

As a benchmark, we have run experiments using state-
of-the-art monocular VO and VSLAM algorithms on each
sequences. We compare ORB-SLAM [1], SVO-2 [2] and
DSO [19]. ORB-SLAM is a feature-based SLAM algorithm
extracting ORB [20] features for tracking and for loop
closure detections. It makes use of keyframes, connected
to each others from their feature matches, and efficiently
optimize the built graph through Bundle Adjustment. SVO-2
is a semi-direct sparse odometry method. Direct methods do
not rely on matched features as a mean of tracking and pose
estimation but instead directly track photometric patches in
the images. SVO-2 is semi-direct in the sense that FAST
features [21] are detected in each new keyframe and then
image-alignment is performed using photometric patches
around the features to estimate the pose. DSO is a pure

2DRASSM: French Department of Underwater Archaeological Research



Absolute Translation Error (m)

Sequence  Duration  Length Specifications

ORB-SLAM  DSO  SVO-2
#1 3’49~ 52.6m  Some back-scattering 0.52 X 0.49
#2 647" 74.7m  Some back-scattering 0.50 0.63 0.56
#3 47177 23.6m - 0.45 0.251 0.26!
#4 3726”7 51.1m Low vision parts X X X
45 sy 2gsm  Some back-scattering 0.24 067 X

and low vision parts
#6 2'06™ 19.5m - 0.51 0.24 0.02
#7 1'53” 32.9m Low vision parts X X X
TABLE II
(a) (b)

Fig. 4.

(a) Sequence #3 Colmap 3D reconstruction. (b) Evaluation of state-of-the-arts monocular VSLAM methods on the recorded dataset (/: Results

obtained starting the sequence 15s later otherwise the methods failed to initialize).

direct odometry algorithm. It performs pose estimation from
the minimization of photometric errors across several images
by tracking photometric patches of areas with high intensity
gradients. As the tracking is direct, the algorithm takes into
account illumination changes in the energy minimization
step, thus relaxing the constant brightness assumption of
many direct methods.

The results for each method are given in Figfp. As any
monocular systems, trajectories are estimated up to scale.
In order to compute an absolute translation error for every
sequence, the monocular trajectories are first scaled by apply-
ing the similarity transformation that best fit the ground-truth.
ORB-SLAM is the most stable algorithm on this dataset as it
manages to run on five out of the seven sequences while DSO
and SVO-2 run only on four sequences each. Interestingly,
ORB-SLAM does not manage to detect any loop closure in
the sequences, thus asking the question of the relevance of
its loop detection mechanism for underwater environments.
These results highlight the potential of vision based local-
ization methods for underwater environments. While not all
the sequences can be processed, the result are promising.
Both the direct and feature-based paradigms seem to work
but their seem to be a compromise between stability and
accuracy. A feature-based SLAM algorithm combined to a
direct tracking of the features could be a good balance for
underwater localization.

V. CONCLUSION

In this paper, we have presented a new underwater dataset
focusing on vision-based localization methods and including
IMU and pressure measurements. We made publicly avail-
able this dataset to the benefit of the community. The de-
signed acquisition system as well as the recorded sequences
were then presented in detail. Finally, we gave the results
in terms of localization drift for VO and VSLAM state-
of-the-art methods on each sequence. These results gave a
short overview of what can be achieved using pure visual
information and could be used as a benchmark on this
dataset. There is room for improvement as the evaluated
methods were originally developed for terrestrial and aerial
applications. Therefore, methods specifically dedicated to
underwater visual degradations and the integration of the

IMU and pressure measurements are expected to give very
interesting results. In future work, we will investigate the use
of such SLAM methods.
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