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We examine the connection between the singularities or quasisingularities in the solutions of the incompressible
Navier-Stokes equation (INSE) and the local energy transfer and dissipation, in order to explore in detail how the
former contributes to the phenomenon of intermittency. We do so by analyzing the velocity fields (a) measured in
the experiments on the turbulent von Kármán swirling flow at high Reynolds numbers and (b) obtained from the
direct numerical simulations of the INSE at a moderate resolution. To compute the local interscale energy transfer
and viscous dissipation in experimental and supporting numerical data, we use the weak solution formulation
generalization of the Kármán-Howarth-Monin equation. In the presence of a singularity in the velocity field, this
formulation yields a nonzero dissipation (inertial dissipation) in the limit of an infinite resolution. Moreover, at
finite resolutions, it provides an expression for local interscale energy transfers down to the scale where the energy
is dissipated by viscosity. In the presence of a quasisingularity that is regularized by viscosity, the formulation
provides the contribution to the viscous dissipation due to the presence of the quasisingularity. Therefore, our
formulation provides a concrete support to the general multifractal description of the intermittency. We present
the maps and statistics of the interscale energy transfer and show that the extreme events of this transfer govern
the intermittency corrections and are compatible with a refined similarity hypothesis based on this transfer. We
characterize the probability distribution functions of these extreme events via generalized Pareto distribution
analysis and find that the widths of the tails are compatible with a similarity of the second kind. Finally, we make
a connection between the topological and the statistical properties of the extreme events of the interscale energy
transfer field and its multifractal properties.

DOI: 10.1103/PhysRevE.97.053101

I. INTRODUCTION

A defining feature of any turbulent field is the existence of
fluctuations varying across a wide range of spatial and temporal
scales. The shape of the energy spectrum of these fluctuations
has been derived by Kolmogorov for a stationary, isotropic, ho-
mogeneous, and mirror-symmetric turbulence [1]. The starting
point is the incompressible Navier-Stokes equations (INSE):

∂tui + uj∂jui = − 1

ρ
∂ip + ν∂j ∂jui + fi, (1a)

∂juj = 0, (1b)

where ui is the d-dimensional velocity field, p the kinematic
pressure, ρ the density (which we set to 1), fi a d-dimensional
forcing, and ν the molecular viscosity. The second moment
of the INSE with the local homogeneity (HH) assumption
gives the classical Kármán-Howarth-Monin equation (here-
after KHM):

1
2∂tE(�) − ε = 1

4∇� · 〈δu(δu)2〉 + ν∇2
� E,

where 〈 〉 denotes the statistical average, ε = 〈u · [ f (r +
�) + f (r − �)]〉/2 is a measure of the mean energy injection

*Corresponding author: berengere.dubrulle@cea.fr

rate, δu = u(x + �) − u(x) is the velocity increments over a
distance �, and E(�) = 〈u(x) · u(x + �)〉 = 〈u2〉 − 〈(δu)2〉/2
is a measure of the kinetic energy at scale �. Assuming isotropy
and looking for stationary self-similar solutions in the iner-
tial range ν3/4ε−1/4 � � � L, Kolmogorov obtained 〈δu2〉 =
Cε2/3�2/3, or equivalently E(k) = CKε2/3k−5/3, where CK is
the Kolmogorov constant, k is the wave number, and 〈(δu ·
�/�)3〉 = −4ε�/5.

The resulting standard phenomenological description (K41)
is that of a cascade process, in which the energy driving the
flow, injected at the large length scales � ∼ L comparable to the
system size, is transferred to the smaller scales in a self-similar
manner down to the Kolmogorov length scale η = ν3/4ε−1/4,
where it is dissipated by the viscous processes. In a steady state,
the mean rate of energy injection equals the inter-length-scale
energy transfer rate at each scale down to the Kolmogorov
scale, where it becomes the viscous energy dissipation ε. This
self-similar picture was challenged by Landau, as one of the
basic assumptions of the K41, namely that ε is constant, is
flawed. Measurements show that it exhibits short bursts in the
time series or intense fluctuations over localized regions. The
breaking of exact self-similarity was subsequently confirmed
by the scaling properties of the velocity structure functions
Sp = 〈[δu(x,�)]p〉, which deviate from the self-similar law
Sp ∼ �p/3. This led Kolmogorov to formulate in 1962 a refined
scaling hypothesis [2,3] to bridge the large-scale and small-
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scale behavior using the quantity ε�, characterizing viscous
dissipation averaged over a ball of size �, as

ε� ∼ [δu(x,�)]3

�
. (2)

This results in Sp = 〈εp/3
� 〉�p/3 ∼ �τ (p)+p/3 ∼ �ζ (p), showing

that all the corrections to self-similarity are given by the
statistics of ε�, via the function τ (p).

However, Kraichnan [4] suggested that if such a relation
holds, then ε� should represent some well-defined local energy
flux �� rather than a local energy dissipation averaged over
a volume of linear dimension �. The problem of defining the
local subscale-energy-flux was considered by Meneveau [5] by
employing wavelets to measure the energy transfer to scales
smaller than � at any space point x, but this analysis was shown
to be flawed [6]. Eyink used the coarse-graining approach to
obtain a local energy balance in space and scale from the INSE
and thereby was able to identify the local energy flux from the
large scales to the small scales as

��(x) ≡ −Tr[(∇u�)τ �], (3a)

τ �
ij = (uiuj )� − u�

i u
�
j , (3b)

where the superscript refers to a coarse-grained field at scale
� and τ represents a stress tensor (because of the small-scale
components <�). Physically we can view ��(x) as the effective
dissipation of the energy contained in the scales larger than �

by the action of the stress, coming from scales smaller than �,
on the gradients of the large-scale motion [6].

As discussed in Ref. [6], the above definition guarantees that
whenever δu(x,�) = O(�h), then �� = O(�3h−1). Such a for-
mulation then allows us to link the occurrence of intermittency
to the local scaling and regularity properties of the velocity
field. Indeed, we find that if h > 1/3, �� vanishes as � → 0
and the weak solutions to the Euler equations do conserve
energy; conversely, if h < 1/3, then there may exist solutions
which dissipate energy, i.e., even in the absence of viscosity
ν = 0. This behavior of the weak solutions was conjectured by
Onsager in 1949 [7]. Now, if such a solution starts to develop
in a viscous fluid, it will be regularized at a scale ηh ∝ ν1/(1+h),
at which h becomes 1. We refer to this behavior of the solution
as an instance of a quasisingularity. The viscous dissipation
becomes dominant and constant below ηh, while the energy
flux vanishes like �2. For h � 1/3, this results in a “spot” of
large energy dissipation at the location of the quasisingularity
and this explains the intermittency.

Another way of interpreting the above behavior is at
the probabilistic level, in which case we postulate that the
solutions of the INSE obey the scaling δu(x,�) ∼ �h only in
a statistical sense [8]. The probability of occurrence of such
an event then varies as P (h,�) ∼ �C(h) [8]. In Ref. [9] Eyink
used a simple Borel-Cantelli argument to show that such a
statistical interpretation implies, almost with certainty, that
the velocity field realizations are singular. Moreover, a precise
connection between structure function scaling exponents and
intermittency can be made by using the multifractal formalism,
i.e., in the form of the spatial dimension of the singularity set by
means of an explicit variational formula [10]. The latter yields
τ (p) = minh[p(3h − 1) + C(h)], whereas in the deterministic

interpretation, C(h) has the meaning of the codimension of the
set of points where a quasisingularity of exponent h occurs.

Irrespective of the interpretation, we see that to understand
intermittency, it is interesting to study the local energy transfer
��(x). However, a closer examination of the expression for the
local flux in Eq. (3) shows that it is a sum of products of two
terms: (a) ∇ju

�
i = O(�h−1) and (b) τ �

ij = O(�2h). Therefore, if
we take the case of h = 1/3 as an illustrative example, then in
the limit � → 0 the term (a) is unbounded and the term (b) goes
to zero smoothly. So, even though the product is theoretically
bounded, it is very likely that any attempt to determine ��

at small scales by using the data from experiments will
be prone to unavoidable noise issues, thereby resulting in
values which are either too large or small compared to the
exact value.

In this paper, we discuss another expression of the local flux,
which is devoid of the above-mentioned potential flaw. A weak
formulation has been used to derive the local energy balance
equation for the three-dimensional (3D) incompressible Euler
and NS equations in Ref. [11]. This local energy balance
is similar to the classical Kármán-Howarth-Monin (KHM)
relation, but it is local in space and does not require the
velocity field to be homogeneous or regular. It describes the
temporal evolution of the point-split kinetic energy at a given
scale � and position x. It has three main constituent terms:
(1) a spatial flux term, describing how the input energy is
transported within the flow; (2) a local energy transfer D I

�

describing how the energy is transferred locally through scales
by nonlinear interactions; (3) a term describing the energy
transfer and dissipation by viscosity. The � → 0 limit of D I

�

gives the contribution to the local dissipation stemming from
the eventual lack of smoothness in the solution (singularities),
also known as inertial dissipation, D I.

Such a generalization of the classical KHM relation allows
us to handle possible singularities and quasisingularities and
to study their impact on the energy transfer and dissipation; it
also puts Kolmogorov’s 1962 refined similarity hypothesis in
a natural framework. This motivates us to explore the statistics
of the interscale flux and viscous terms in a fully developed
turbulence as the scale � is varied from in the inertial range
down to the dissipation scale and analyze how they relate
potential singularities or quasisingularities with intermittency.

In the present paper, we perform an experimental study of
the connection between the local energy flux and intermittency
by analyzing the velocity fields measured via stereo particle im-
age velocimetry (SPIV) in the turbulent von Kármán swirling
flow. We generate turbulence at very high Reynolds numbers in
a cylindrical vessel filled with fluid by using two independently
rotating impellers. Our experimental setup allows us to perform
experiments for a long duration of time (ranging from minutes
to hours), so as to accumulate sufficient statistics for a reliable
data analysis. We also perform direct numerical simulations of
the INSE at a moderate resolution to compare with the trends
from the analysis of the experimental data.

We connect the high-order statistics of the interscale transfer
with the statistics of the velocity field and show that they are
compatible with the refined similarity hypothesis. We condi-
tion the velocity structure functions on the regions of large
or small inertial dissipation and show that the intermittency
corrections are governed by the extreme events of the inertial
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dissipation. Furthermore, we characterize the statistics of these
extreme events via generalized Pareto distribution analysis (a
peak over threshold approach) and discuss its link with the
multifractal analysis.

In Sec. II we give a brief overview of the mathematical
background and present details of the experimental setup and
the numerical simulations. We present the results of our study
in Sec. III and provide a discussion and the conclusions in
Sec. IV.

II. METHODS

A. Mathematical background

In this section we briefly review the mathematical frame-
work which we use to analyze the data from the experiments
and the supporting numerical simulations. In our discussion
we closely follow the material in Refs. [11,12]. We consider
a weak solution u of the NS equation Eq. (1a) in the absence
of forcing, i.e., f = 0, to keep the analysis simple. We now
introduce a regularized velocity field

u�(x,t) = φ� ∗ u(x,t), (4)

where

φ�(ξ ) = 1

�3
φ(ξ/�) (5)

is an infinitely differentiable function with compact support
on R3, even, non-negative with integral one. The regularized
velocity field obeys regularized NS equations given by

∂tu
�
i + ∂j (uiuj )� = −∂ip

� + ν∂k∂ku
�
i , (6a)

∂ju
�
j = 0. (6b)

We remark that we can regard u� as a continuous wavelet
transform of the velocity field u with respect to the wavelet
φ, provided the latter has the correct properties [13].

We multiply Eq. (1a) and Eq. (6a) by u� and u, respectively,
and add them together; after the rearrangement of terms we
obtain the following balance equation:

∂tuiu
�
i + ∂iTi = E� − 2ν∂ju

�
i ∂jui,

Ti = uju
�
jui + p�ui + pu�

i − ν∂iuju
�
j ,

E� = uiuj ∂iu
�
j − ∂i(uiuj )�uj . (7)

We rewrite E� as

−2E� =
∫

∇φ�(ξ ) · δu(δu)2dξ − ∂i(uiujuj )�

+ ∂i[ui(ujuj )�], (8)

where δu is the velocity increment over a distance ξ and ∇ the
gradient over ξ [11]. Also,

ν∂ju
�
i ∂jui = −ν

∫
∇2φ�(ξ )ui(x)ui(x + ξ )dξ

− ν∂j

∫
∇jφ

�(ξ )ui(x)ui(x + ξ )dξ. (9)

Finally, we note that 2E�(x) ≡ uiu
�
i = ∫

φ�(ξ )ui(x)ui(x +
ξ )dξ . Therefore, we have

∂tE
�(x) + ∂jJj = 1

4

∫
∇φ�(ξ ) · δu(δu)2dξ

+ ν

∫
∇2φ�(ξ )u(x) · u(x + ξ )dξ

≡ −D I
� − Dν

� , (10)

where

Ji = uiE
� + 1

2

(
p�ui + pu�

i

)

− 1

4
[(uiujuj )� − ui(ujuj )�] − ν∂iE

�

+ ν

∫
∇iφ

�(ξ )uj (x)uj (x + ξ )dξ . (11)

Equation (10) is a local nonrandom form of the classical
KHM equation and describes the evolution of the point-split
kinetic energy at scale � and at position x through three main
ingredients: (1) a spatial flux term ∇ · J , which describes
how the input energy is transported within the flow; (2) an
interscale flux D I

�, which describes how the energy cascades
locally across the length scales; and (3) Dν

� , which describes
space transfer and dissipation of energy by viscosity. Note that
the main assumption in the derivation of the weak Kármán-
Howarth-Monin (WKH) equation, namely the existence of
a singularity or quasisingularity, breaks the homogeneity as-
sumption; however, if the singularities fluctuate in time and
space, homogeneity may be recovered, albeit in a statistical
sense [8].

The contribution to the local dissipation because of the
possible lack of smoothness of the velocity field is given by

D I = lim
�→0

(
lim
ν→0

D I
�

)
; (12)

note that the order of limits is important: we first take the high
Reynolds number limit ν → 0 and then � → 0. The sign of
D I depends on the space dimension. In one dimension, for
the Burgers equation D I � 0. In two dimensions D I = 0. In
3D, the condition of existence of a suitable weak solution
only implies that the spatial average 〈D I〉 � 0, while the
instantaneous local D I depends on the regularity of the velocity
field. It is zero if the velocity field is regular and nonzero
in the presence of a singularity of the Euler equation. As
long as h < 1/3, the local energy transfer, which scales like
�3h−1, is prone to increase locally with decrease in the scale �

until reaching � = ηh where it is dissipated. This results in a
huge variation of the local energy dissipation and intermittency
[14]. Such a scenario has already been validated on the shell
models of turbulence [15]. This suggests that a natural analog
of the quantity ε� is D I

� [14]. In the present paper we show
conclusively by making use of the analytical, numerical, and
experimental analysis that it is indeed the case.

B. Experimental setup and the description of the flow field

We use the von Kármán flow setup at SPEC to conduct
experiments for this study. Here we briefly describe the
experimental setup and refer to Appendix A 1 and Refs. [16,17]
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TABLE I. Parameters describing the five experimental data sets (A, B, C, D, and E) and the DNS run. F is the rotation frequency of the
impellers in Hz; Re is the Reynolds number based on the radius of the tank; Reλ is the Taylor-microscale Reynolds number; ε is the dimensionless
energy dissipation, reported in Ref. [17] for the data sets A–E; η is the Kolmogorov dissipation length scale; and �x represents the spatial
resolution in the measurements and the DNS. The second to last column, Samples, indicates the number of velocity field samples over which
the statistical averaging is performed (product of number of time frames and number of spatial points), and the last column shows the symbols
used to represent the experimental data sets.

Case F (Hz) Glycerol content Re Reλ ε η (mm) �x (mm) Samples Symbol

A 5 0% 3 × 105 1870 0.0254 0.02 2.4 29999 × 89 × 65 ◦
B 5 0% 3 × 105 2750 0.0450 0.02 0.48 29228 × 77 × 79 �
C 5 0% 3 × 105 2510 0.0502 0.02 0.24 28000 × 162 × 157 ♦
D 1 0% 4 × 104 917 0.0413 0.08 0.48 9999 × 77 × 80 �
E 1.2 59% 6 × 103 214 0.0275 0.37 0.24 30188 × 151 × 174 �

DNS 5123 138 0.0182 0.0091 2η/3 24 × 5123

for more details. The setup consists of a cylindrical tank of
height H = 20 cm and radius R = 10 cm to hold the test fluid.
We drive the fluid to and maintain it in a turbulent state at high
Reynolds numbers by means of two independently rotating
impellers at frequency F , located at the top and the bottom
of the cylindrical tank. We measure the radial ur, axial uz,
and azimuthal uφ components of the velocity fields by using
high-zooming lenses coupled to a standard particle image
velocimetry (SPIV) technique. We perform our measurements
within a 4 cm × 3 cm region located on the meridian plane,
around the symmetry point of the experimental setup (see
Fig. 16 in Appendix A 2). At this location, a shear layer
induced by the differential rotation produces a strong turbulent
motion [18,19]. We used the SPIV data from these experiments
in Ref. [17] to present an extensive characterization of the
intermittency by using the velocity structure functions in
such a flow configuration. However, in this study our goal
is more fundamental and we want to trace the origin of
the intermittency corrections and connect them with extreme
events of local dissipation D I

� and Dν
� .

The Reynolds number based on the radius of the tank is
Re = 2πR2F/ν, where ν is the kinematic viscosity of the
fluid in the tank. The local energy injection rate ε has been
computed in [17]. In our experiments, we use a mixture of
water and glycerol and by varying their proportion we can
control the viscosity of the fluid; this in turn allows us to tune
the Kolmogorov scale η. This feature coupled with the use of
the multiscale imaging method in our experiments enables us
to access scales in the range of η to 5000η (i.e., three decades
of inertial range) in a fully turbulent flow. Table I summarizes
the parameters corresponding to the different data sets used
throughout this paper.

C. Direct numerical simulations

In our analysis of the experimental data, we check for the
influence of experimental errors, anisotropy, inhomogeneity,
finite boundaries, and projection effects (our measurements are
on a plane and not over a volume). We implement these checks
by comparing the results from the analysis of the experimental
with those from the direct numerical simulations (DNS) of the
3D NS Eq. (1a). To carry out the DNS, we use the NSE solver
VIKSHOBHA, an efficient, parallel numerical code based on

a pseudospectral method. We use this to determine the fluid
velocity u on a cubic, triply periodic domain with sides L =
Lx = Ly = Lz = 2π .

The use of the periodic boundary conditions allow us to
express u as a Fourier series. However, in any DNS only a
finite number of Fourier modes can be used. Therefore, to
limit the number of Fourier modes, we make use of a Galerkin
truncation and solve the NSE in Fourier space with N3

c modes.
The velocity field is now given by u(x,t) = �kûk exp [ik · x],
where k = (n1,n2,n3)2π/L and ni ∈ [−Nc,Nc − 1]. In other
words, we discretize the computational domain and use an N3

c
number of grid points to represent u in the real (physical) space.
We use the incompressibility condition ∇ · u to eliminate
the pressure by introducing a transverse projection operator
Pi,k(k) = δi,j − kikj/k2, which projects the nonlinear term
u · ∇u on the plane perpendicular to k. To implement the
pseudospectral method, we compute the linear terms in Fourier
space and the nonlinear term in real space, which we then
transform to Fourier space; to remove aliasing errors we use
a 2/3-dealiasing rule, so that the maximum wave number in
our simulations is kmax = Nc/3. We evolve the NS equations
in time by using a second-order Runge-Kutta scheme, while
exactly solving the linear part.

In the present work, we take Nc = 512 and use the Taylor-
Green forcing at wave number k̃f = 1 with an amplitude
f0 = 0.12 (see Appendix A 7 for more details). We use several
independent velocity samples to compute the same diagnostics
as for the experimental flow field, but now in a 3D volume rather
than on a plane.

III. RESULTS

We now present the results from our analysis of the exper-
imental flow field and the numerical simulations.

A. Wavelet structure functions

The local energy transfers are computed by using the
wavelet transforms. Therefore, it is natural to make a link
between the intermittency of the velocity field and the local
energy transfer via the wavelet structure functions, rather than
the classical structure functions. They are defined by using the
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FIG. 1. Wavelet structure functions. (a) Plots of Sp/εp/3ηζ (p) vs �/η for the first nine orders: p = 1 (light blue), p = 2 (orange), p = 3
(yellow), p = 4 (purple), p = 5 (green), p = 6 (pale blue), p = 7 (red), p = 8 (strong blue), and p = 9 (deep orange). The black dashed lines
indicate the power-law behavior (�/η)ζ (p) [see Table II for the values of ζ (p)]. (b) Plots of the rescaled structure functions Sp/S

p/3
3 vs �/η. The

black dashed lines indicate the power law (�/η)ζ (p)−p/3. η is the Kolmogorov dissipation length scale and ε is the dimensionless energy injection
rate. The structure function of any order p is obtained by combining the five different experimental data sets, shown here by using different
symbols: A (circles), B (squares), C (diamonds), D (triangles), and E (stars). A comparison with the DNS results is shown by plotting Sp of
different orders as solid curves with the same color scheme as used for the experimental data sets. The structure functions have been shifted by
multiplying with an arbitrary factor for visual clarity.

following quantities:

Gij (x,�) =
∫

d y∇j��( y)ui(x + y),

Sij (x,�) = 1

2
[Gij (x,�) + Gji(x,�)],

Aij (x,�) = 1

2
[Gij (x,�) − Gji(x,�)], (13)

where ��(x) = �−d�(x/�) is a Gaussian function and d is
the space dimension. We then compute the wavelet velocity
increments as

δW (u)(x,�) = (
δ2
L + δ2

⊥
)1/2

, (14)

where

δL(�) = � max
ij

|Sij (x,�)|,
δ⊥(�) = � max

ij
|Aij (x,�)|, (15)

respectively. We use the increments δW (u)(x,�) to infer the
general scaling properties of the velocity fields by defining the
structure functions as

Sp(�) = 〈|δW (u)(x,�)|p〉, (16)

where 〈 〉 denotes an average over space and time. This way
of defining the structure functions has some similarities with
those based on the principal values of |GR

ij (x)| as reported

by Kestener and Arneodo in Ref. [20]. Like in Ref. [20], our
approach does not involve the derivatives of the velocity field,
nor does it introduce any additional noise. Moreover, our defi-
nition is free of singular values computation, a procedure which
may generate some noise. Therefore, ours is the smoothest
possible definition of the structure functions, which enables us
to quantify the scaling properties of a given velocity field.

We first check that this definition provides a description of
the intermittency that is compatible with what is obtained by
using the classical velocity increments. In Fig. 1(a) we plot the
structure functions Sp(�), p ∈ (1,9) for the five experimental
flows A to E (see Table I for more details). We observe that
the plots of Sp(�) rescaled by εp/3ηζ (p) vs �/η collapse on
a universal curve for the cases A to E, which are different
for different p. In Table II we summarize the exponents
ζ (p), which we obtain for the different orders of Sp(�). The
scaling behavior is similar to what is observed for the structure
functions computed by directly using velocity increments [17].
Also, the scaling exponents are in good agreement with those
computed by using extended self-similarity [21]. Moreover,
we find that these structure functions compare well with those
computed from the DNS velocity field; in particular, we have
a good agreement with the experimental data set E, which has
similar Reλ.

We note that the structure functions from different experi-
mental data sets deviate significantly, by being systematically
lower, from those at higher Reλ. In [17], this difference between

TABLE II. Values of the multiscaling exponents ζ (p), τ (p), and γ (p) for the velocity, the local transfers, and viscous dissipation structure
functions, respectively, of different orders (see text for more details). The values of ζ (p) listed here have been taken from Ref. [17].

Exponent/Order p 1 2 3 4 5 6 7 8 9

ζ (p) 0.36 0.69 1 1.29 1.55 1.78 1.98 2.17 2.33
τ (p/3) 0.03 0.02 0 −0.04 −0.12 −0.22 −0.30 −0.50 −0.67
γ (p/3) 0.01 0.01 0 −0.02 −0.06 −0.10 −0.16 −0.22 −0.30
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FIG. 2. Plots of the probability distribution function of the instantaneous values of the (a) local energy transfer D I
�/ε and (b) viscous

dissipation Dν
� at different scales. The PDFs at the different scales are shown by using different colors: �/η = 680 blue curve (data set A),

�/η = 240 red curve (data set B), �/η = 90 yellow curve (data set C), �/η = 30 purple curve (data set D), and �/η = 3 green curve (data set E).
η is the Kolmogorov dissipation length scale and ε is the dimensionless energy injection rate. Inset (a1): Same as in panel (a) but D I

� normalized
with the standard deviation of the distribution. Inset (b1): A log-log plot of the PDF of viscous dissipation Dν

� at different scales for the positive
values only.

different experimental cases was attributed to inhomogeneities
of the dissipation. A way to test this hypothesis is to consider
rescaled wavelet structure functions, i.e., Sp(�)/[S1(�)]n/3,
since in such a case the dependence with respect to ε cancels.
We plot these rescaled structure functions in Fig. 1(b) and find
an improvement in their collapse on the universal curves for all
the data sets A to E. Now they follow the expected scaling law
�τ (p/3), which is compatible with the scaling S3(�) ∼ �. Also,
the agreement with the control DNS is also improved.

B. Spatiotemporal statistics of the local energy transfer
and viscous dissipation

We now explore the connection between the intermittency
study presented above and the statistics of the local energy
transfer and viscous dissipation. We compute D I

� and Dν
� for

the experimental data sets A to E. Note that in our experimental
setup, the velocity fields are such that their fluctuations have
spatially homogeneous statistics; they do not depend on space.

1. Probability distribution functions

In Figs. 2(a) and 2(b) we show the probability distribution
functions (PDFs) of the local interscale transfer D I

� and the
viscous dissipation Dν

� , respectively, at different scales, by ac-
cumulating data from the instantaneous fields. Both quantities
are very intermittent in space and time. Dν

� is predominantly
positive; the percentage of the positive values varies between
67% and 90%, as we move from the large length scales to small
length scales close to η, respectively. The existence of negative
values is due to the fact that Dν

� is the sum of a transport term
and a dissipation term, both originating from the viscous part
[see Eq. (9)]. The relative importance of the latter increases
with the decreasing scales. This also explains the difference
with the traditional viscous dissipation term εν = ν∂iuj ∂iuj

(see Fig. 3), whose PDF is close to the log-normal form. In
the inset Fig. 2(b1) we plot the PDFs of the positive values of

Dν
� , which show a clear impact of the viscous dissipation at the

smaller scales. In contrast, the PDFs of D I
� are rather symmetric

with both large positive and negative values representing direct
and inverse (backscatter) energy transfer, respectively. These
PDFs display wide tails, irrespective of whether we choose the
total dissipation ε or the standard deviation of Dν

� to normalize
Dν

� . The tail width of the PDFs of D I
�/ε initially increases and

then decreases, as we move from large to small scales. If D I
�

is normalized by its standard deviation, we observe that the
decrease of the tail width of the PDFs is less pronounced at
small scales; this results in the overlap of the PDF tails for the
length scales 90η and 3η. This suggests that the behavior of

-15 -10 -5 0 5
log( i uj i uj )

10-6

10-4

10-2

100

P
D

F

FIG. 3. Plot of the probability distribution function of the instan-
taneous values of log(εv = ν∂iuj ∂iuj ) for the experimental data set
E. The black curve indicates a Gaussian with the mean and variance
obtained from the experimental data set.
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FIG. 4. Pseudocolor plots of the instantaneous D I
� field in the plane of measurement from the experimental data sets E and C at the scales

� = η and � = 12 η, respectively. Top panels (a) data set E and (b) data set C: extreme events are absent and the location of the maximal local
dissipation is shown by a white dot. Bottom panels (c) data set E and (d) data set C: in the presence of the extreme events, the white dot indicates
the location of an extreme event, where the local energy transfer is 100 times larger than the mean. The measurement domain is shown in units
of the radius of the cylindrical tank R.

D I
� in the dissipation range can be as intermittent as it is in the

inertial range.
A quantitative measure of the above effect is given by

the number of “extreme events” of interscale transfer, i.e.,
instances when D I

�/〈D I
�〉 � 1000 over the measurement area.

In our analysis, we count the number of such events in one
data set of 3 × 104 snapshots. We do not find any extreme
event satisfying the above criterion at scale � ≈ 160η; only 4
extreme events at scale � ≈ 80η; 18 extreme events at scale
� ≈ 40η; and 36 extreme events at scale � ≈ 2η. In Fig. 4 we
show the pseudocolor plots of the instantaneous D I

� for the
data sets E and C at scales � ≈ η and � ≈ 12η, respectively. In
particular, we show these typical maps of local energy transfer
in the absence and presence of the extreme events in the upper
and lower panels, respectively.

The characterization of the flow topology around the ex-
treme events of inertial dissipation is an important question
and it has been suggested that it differs from that associated
with the viscous dissipation [16]. The pseudocolor plots of
D I

� Figs. 4(c) and 4(d) show that these extreme events are
located within the coherent structures. Moreover, another
important feature which is evident from Fig. 4(c) is the
presence of these extreme events of energy transfers at the
scales of the order of the dissipation length scale. As a result,
the local energy balance has a significant contribution from
the interscale transfer, irrespective of how it is dissipated at
small scales (viscous dissipation or lack of smoothness of
the velocity fields [16,22]). This behavior is compatible with
the multifractal description of turbulence [10], in which the
singularities with exponent h < 1/3 dissipate energy at scales
ηh ∼ Re−1/(1+h) < η. Even though the number of extreme
events increases with decreasing scale, their contribution to

the total energy dissipation decreases with it. This is clear from
the comparison of Fig. 2(a) and its inset. For example, if we
look for events which are larger than 500 times the average
dissipation rate ε, we find only 3 such events at � ∼ η as
compared to 306 events at � ∼ 12η.

The above discussion highlights the need to identify the
correlation between D I

� and Dν
� . We do so by computing the

logarithm of the joint PDFs of these two quantities at different
scales; we show them in Fig. 5. The logarithm of the joint
PDFs is such that the maxima of |D I

�| coincide with minima of
|Dν

� | (and vice versa). This suggests that the extreme events
of interscale transfer correspond to the minima of viscous
dissipation (and vice versa).

2. Behavior of the spatiotemporal averages

The mean of D I
� converges very slowly, if at all, perhaps

because of the presence of the extreme events of both positive
and negative signs in its distribution. Also, the convergence is
more difficult at the large length scales than at the small length
scales of a given data set; this is so because any statistical
analysis of the former involves a lower number of independent
blocks of data compared to the latter. In Appendix A 5 we give
the details of the convergence tests, which we have performed
on the following quantities, namely, D I

�, Dν
� , and |D I

�| at
different scales (see Figs. 19, 20, and 21, respectively). In
summary, the mean is in general not converged for any of
the scales we considered for the data sets B, C, and D, even
over 3 × 104 frames. We observe a satisfactory convergence
of the mean only for the first few scales for the data sets C
and E. However, if we consider the absolute values of D I

�, this
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FIG. 5. Plots of the logarithm of the joint probability distribution function of the local energy transfer D I
� and the viscous dissipation Dν

�

at different scales: (a) �/η = 540, (b) �/η = 250, (c) �/η = 70, and (d) �/η = 3. η is the Kolmogorov dissipation length scale and ε is the
dimensionless energy injection rate.

problem is absent and the convergence of the mean is ensured
at all scales for all the data sets A–E (over 3 × 104 frames).

In Figs. 6(a) and 6(b) we plot the spatiotemporal average
of D I

�/ε and |D I
�|/ε versus universal coordinates �/η, respec-

tively, for the different experimental data sets (we use different
symbols to represent them). We also show the variation of the
mean energy dissipation 〈Dν

� 〉 with scale �/η on these plots.
We remark that 〈Dν

� 〉 is second order in velocity increments
and is also everywhere positive; therefore, it does not suffer
from the convergence issues (see Fig. 20). Moreover, if we
plot 〈Dν

� 〉 vs �/η, its values from different data sets collapse
on a single curve. It displays �−4/3 power-law scaling down to
30η and it tends to ε at small scales. We observe that compared
to 〈Dν

� 〉 the data collapse is not so good for 〈D I
�〉 and results in

scatter, a signature of the lack of convergence of this quantity
for some data sets.

The behavior of absolute value of the local energy transfer
〈|D I

�|〉 is significantly different from that of 〈D I
�〉. The former

reaches a value of about 2 to 3 times ε for scales � > 30η,
whereas the latter stays below ε/3. This large difference
can attributed to the fact that our measurements are on a
plane, which prevents us from computing the contribution
of the velocity increments in the azimuthal direction. This
may change the proportion of the events with positive signs

compared to that with negative signs, especially the extreme
ones.

To check the above arguments, we compare our results with
the data from the homogeneous, isotropic 3D DNS. For the
DNS run we expect the sum of 〈D I

�〉 and 〈Dν
� 〉 to be equal to the

mean energy dissipation ε. Figure 7 shows that such a relation
is very well satisfied for the scales � < 40η, beyond which the
finite-size effects lead to deviation. As expected, the relation
is not satisfied for 〈|D I

�|〉, which makes the sum exceed ε, as
now both positive and negative instances contribute without
cancellations. From these plots, we can infer that the inertial
range exists, if at all, for scales larger than, but close to,
10η. We observe that 〈Dν

� 〉 obtained from the DNS agrees
well with the experimental data, whereas 〈D I

�〉 obtained from
the DNS is 3 times larger than that from the experiments.
This observation is in agreement with the arguments about
the projection effects related with SPIV, which highlights the
limitation of the experimental measurements.

C. Higher order statistics and refined similarity hypothesis

We explore the higher order statistics of the local energy
transfer and viscous dissipation by defining the following
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FIG. 6. Spatiotemporal averages of the local energy transfer and viscous dissipation: (a) plots of 〈D I
�〉/ε (red symbols) and 〈Dν

� 〉/ε (green
symbols) vs �/η. (b) Analogous plots for the absolute values of the local energy transfer and the viscous dissipation. The black horizontal
dashed line indicates a constant value of 1/3. The black dotted line indicates the power law �−4/3. A comparison with DNS is shown by plotting
in (a) 1

3 〈D I
�〉/ε (red curve) and 〈Dν

� 〉/ε (green curve) vs �/η; (b) 2〈|D I
�|〉/ε (red curve) and 〈|Dν

� |〉/ε (green curve) vs �/η. η is the Kolmogorov
dissipation length scale and ε is the dimensionless energy injection rate. The different experimental data sets are represented by different
symbols: A (circles), B (squares), C (diamonds), D (triangles), and E (stars).

structure functions:

�I
p = 〈∣∣D I

�

∣∣p〉
, (17)

�ν
p = 〈∣∣Dν

�

∣∣p〉
, (18)

respectively. We compute these structure functions for p =
i/3, where i ∈ (1,9), and plot them in Fig. 8. We observe
that for a given order p, �I

p and �ν
p from different data sets

rescaled by (�I
1)pητ (p) and (�ν

1 )pηγ (p), respectively, collapse
on a single universal curve. For a given order p, the universal
curve is a power law with exponent τ (p/3) = ζ (p) − p/3 and
γ (p/3) for �I

p/3 and �ν
p/3, respectively. The computation of

100 101 102 103
10-3

10-2

10-1

100

FIG. 7. Spatiotemporal averages of the local energy transfer and
viscous dissipation from the DNS: plots of 〈D I

�〉/ε (red curve) and
〈Dν

� 〉/ε (green curve) vs �/η. Analogous plots for the average of the
absolute values of local energy transfer and the viscous dissipation
are shown by dashed red and green curves, respectively. The black
horizontal dashed line indicates a constant value of 1. The black dotted
line indicates the power law �−4/3. η is the Kolmogorov dissipation
length scale and ε is the dimensionless energy injection rate.

the exponent γ (p/3) from the multifractal theory is postponed
to Sec. III F. We find that the magnitude of γ (p/3) is always
smaller than the exponent τ (p/3), which we obtain for the
intermittency correction to the structure functions.

These results are in agreement with a refined similarity
hypothesis, that had been suggested in [23]:

Sp(�)

(S3(�))p/3
∼ �I

p/3(
�I

1

)p/3 . (19)

We compute these structure functions for the data from the
DNS run and plot them in Fig. 8. �I

p and �ν
p from the DNS

are in agreement with the experimental data sets for orders up
to p = 4/3, but show increasing deviations both at small and
large length scales. We find that the agreement is better for �ν

p

than it is for �I
p, which may be attributed to the aforementioned

projection effects related to SPIV.

D. Conditioned wavelet structure functions:
The role of extreme events of inertial dissipation

The discussion in the previous section allows us to draw
an important conclusion that in the turbulent regime the
intermittency corrections are governed by the local energy
transfers. This motivates us to explore this connection further
by conditioning the structure functions on the regions of high
or low inertial dissipation (i.e., local energy transfers at the
resolution scale). We implement this for each of the data
sets A to E by defining two special sets of points A and B
corresponding to the locations of low and high values of |D I

�x|,
respectively. We divide the PDF of |D I

�x| at the smallest scale
of a given experimental data set (A to E) into 10 deciles: the
set of points forming the first decile (the spatial regions with
|D I

�x| being in the 10% lower values of the inertial dissipation,
that is, values close to 0) are assigned to the set A and the
points forming the last decile (the spatial regions with |D I

�x|
in the highest 10% in magnitude) are assigned to the set B.
Therefore, the extreme events of D I

�x are in set B. We then
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FIG. 8. Plots of the structure function of the (a) local energy transfer �I
p vs �/η and (b) viscous dissipation �ν

p vs �/η. Different orders of
the structure functions are distinguished by using different colors: p = 1/3 (light blue), p = 2/3 (orange), p = 1 (yellow), p = 4/3 (purple),
p = 5/3 (green), p = 2 (pale blue), p = 7/3 (red), p = 8/3 (strong blue), and p = 3 (deep orange). For the structure function of a given order,
the DNS result is represented by a continuous line, while different experimental data sets are represented by different symbols: A (circles), B
(squares), C (diamonds), D (triangles), and E (stars). The dotted lines indicate the power law �τ (p/3) (for �I

p) and �γ (p/3) (for �ν
p); see Table II for

the values of τ (p/3) and γ (p/3). Note: The structure functions shown in (a) and (b) have been rescaled by (�DR
1 )p/3ητ (p/3) and (�ν

1 )p/3ηγ (p/3),
respectively; η is the Kolmogorov dissipation scale.

compute the wavelet structure functions defined by

SC
n (�) = 〈|δW (u)(x,�)|p〉A,B, (20)

where the average is taken on either set A or set B. We show
these structure functions in Fig. 9 for orders p ∈ (1,9) and
compare them with the original, unconditioned, wavelet-based
structure functions. We observe that the structure functions
conditioned on the events of small inertial dissipation are
less intermittent than the unconditioned ones and display
�p/3 power-law scaling behavior. In contrast, the structure
functions conditioned on the extreme values of the inertial
dissipation have intermittency, which is similar to those that
are unconditioned. This clearly shows that the intermittency
is essentially governed by the extreme events of the inertial
dissipation.

E. Extreme value analysis of the spatiotemporal probability
distribution functions

We now know from the detailed study of the various
structure functions presented in the previous sections that the
extreme events of D I

� control the intermittency and their PDFs
are strongly non-Gaussian. Also, these extreme events are
located in the tails of the PDFs. Therefore, we now use the tools
of the extreme value analysis to further explore the statistical
properties of these extreme events. We characterize the tails of
the PDFs by using the generalized Pareto distribution (GPD)
given by

fGPD(x; μ,σ,ξ ) = 1

σ

[
1 + ξ

x − μ

σ

]−1−1/ξ

, (21)

where μ ∈ R is the location parameter representing the chosen
threshold, σ > 0 is the scale parameter representing the typical
order of extreme fluctuations, and ξ is the tail shape parameter,
representing the rate of decay of extremes in the tail.

We apply this analysis to the PDFs of D I
� at different

scales (based on 3 × 104 samples) and obtain fits by using
the maximum likelihood estimation criterion (implemented
in the MATLAB routine “gpfit”). We fit in each case the
parameters μ, σ , and ξ for the quantiles 0.975, 0.99, and 0.995
indicating strong, rare, and extreme events, respectively. As
a result, we obtain the spatial and scale dependence of these
three parameters μ(�), σ (�), and ξ (�) for the above-mentioned
three types of events. We varied the series size and find that
these indicators have better convergence properties than the
moments of D I

�; thus, they are better suited for interpreting the
behavior of the tails.

In our use of the GPD analysis, we are also motivated by the
possible links it can provide with the multifractal properties of
the local energy transfer field D I

�(x,t). The GPD analysis of
a multifractal field, characterized by a spectrum D(h), yields
the following scale dependence for the three parameters:

μ(�) ∼ �hmin , σ (�) ∼ �hmin , ξ ∼ 1/p∗, (22)

where hmin = min[h/D(h) = 0] and p∗ = dD(h)
dh

|hmin (see
Refs. [24,25] for additional details).

1. Quantile value parameter μ

The parameter μ describes the value at which a given
quantile is achieved, i.e., the typical value of an extreme event
that has the probability given by the quantile. In Figs. 10(a)
and 10(b) we show the variation of μ normalized by ε as
a function of �/η from the negative and positive tails of the
PDF, respectively. We observe that for the positive tails [see
Fig. 10(b)], the normalized quantile threshold μ/ε follows a
smooth curve, which is almost flat over the range of scales
(10η,300η) coinciding with the inertial range. This behavior
corresponds to the value hmin = 0. We also find that outside
the above-mentioned range of scales, both at the small and
large length scales, μ decreases to zero rather sharply. For the
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FIG. 9. Role of the extreme events of inertial dissipation. Plots of the structure functions: SC
p vs �/η conditioned (symbols with black

filling) either on the set A (less intense events of D I
�x; shown in the left panel) or B (extreme events of D I

�x, shown in the right panel) and
the unconditioned Sp vs �/η. The black dashed lines indicate �ζ (n). The colored lines show �p/3: p = 1 (light blue), p = 2 (orange), p = 3
(yellow), p = 4 (purple), p = 5 (green), p = 6(pale blue), p = 7 (red), p = 8 (strong blue), and p = 9 (deep orange). The structure functions
have been shifted by multiplying with an arbitrary factor for visual clarity.

negative tails [see Fig. 10(a)], the plots of μ do not follow a
smooth curve and are more scattered. This difference between
the behavior of the positive and negative tails may be an
indication of the fact that the positive and negative events
of D I

�(x,t) are not equivalent and correspond to different
processes. Moreover, we notice discontinuities on moving
from one experimental data set to another, thereby implying
that μ is sensitive to the Reynolds number. In Fig. 10(c) we
show the plots of μ−/ε versus μ+/ε and we find that on

average the μ+ is larger than μ−, tracing the asymmetry of
the distribution towards positive values.

2. Intermittency parameter σ

The parameter σ quantifies the “width” of the tails of a PDF;
therefore, it is an indicator of the importance of the extreme
events. In Figs. 11(a) and 11(b) we plot the σ normalized by ε

versus �/η for the negative and the positive tails of the PDFs,
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FIG. 10. Quantile threshold parameter from the GPD analysis: (a) μ−/ε vs �/η and (b) μ+/ε vs �/η from the negative and positive tails of
the PDF of D I

�, respectively. (c) Parametric plot of μ−/ε vs μ+/ε. Different colors indicate different quantile values: 0.975 (cyan), 0.99 (orange),
and 0.995 (green). The dotted line indicates |μ+| = |μ−|. Different experimental data sets are indicated by different symbols: A (circles), B
(squares), C (diamonds), D (triangles), and E (stars). η is the Kolmogorov length scale.

respectively. We observe that, when plotted in this manner,
only the lowest or the lower two quantiles follow a universal
curve for the different experimental data sets A to E and this
behavior is independent of whether we choose the positive or
the negative tail. For the highest quantile, we notice a Reynolds
number dependence in the form of sharp discontinuities on
moving from one data set to the next. We may attribute the
observation of this behavior to the lack of statistics—the
higher the quantile the lower the number of events—therefore,
resulting in a poor fit. However, at the highest quantile, we can
improve the data collapse of different experimental data sets by
explicitly introducing the Reynolds number dependence. This
is based on the assumption that the intermittency parameter
follows a shape governed by the similarity of second kind,
first suggested by Castaing [26,27] and derived by Dubrulle
and Graner from finite scale invariance [28]:

ln σ = β(exp[α ln(�/L)] − 1), (23)

where β = β0 ln(Re) and α = α0/ ln(Re), and L is a large scale
(L = 1 in our nondimensional units). In the limit ln(Re) → 0,
we recover the classical similarity ln(σ ) ∝ ln(�/L), but at
finite Re we have to include corrections to the similarity. In

the present case, this assumption implies that ln(σ )/ ln(Re)
versus ln(�)/ ln(Re) should collapse on a universal curve for
the different data sets. We show this in the insets Figs. 11(a.1)
and 11(b.1) for the negative and the positive tails of the
PDFs, respectively. As we expected, the collapse between the
different data sets is better for the highest quantile. Moreover,
the curve is a straight line, as required by the shape relation
Eq. (23). However, the slope of the straight line, which traces
hmin, depends on the quantile: it increases from 0 to −0.25 as
the quantile changes from 0.975 to 0.995, respectively. This
means that hmin decreases with the value of the quantile. We
find that in all the cases the value of hmin is smaller than those
inferred by using the parameter μ.

In Fig. 12 we show the plots of σ−/ε vs σ+/ε, where σ−
andσ+ denote the intermittency parameters for the negative and
positive tails of the PDFs, respectively. We observe that these
parametric curves display some curvature, indicating that the
two quantities are not correlated in a simple way. In addition,
we find that the intermittency parameter of the positive tail has
the tendency to be higher than the negative tails; this implies
that the positive extreme events are more intermittent than
those with negative sign.
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FIG. 11. Intermittency parameter from the GPD analysis: (a) σ−/ε vs �/η and (b) σ+/ε vs �/η for the negative and positive tails of the
PDF of D I

�, respectively. Insets: (a.1) and (b.1) show the analogous plots of σ obtained by using the self-similarity of the second kind, i.e.,
plots of ln(σ/ε)/ ln(Re) vs ln(�/η)/ ln(Re), where Re is the Reynolds number. Different colors indicate different quantile values: 0.975 (cyan),
0.99 (orange), and 0.995 (green). Different experimental data sets are indicated by different symbols: A (circles), B (squares), C (diamonds),
D (triangles), and E (stars). η is the Kolmogorov length scale.

053101-12



DISSIPATION, INTERMITTENCY, AND SINGULARITIES … PHYSICAL REVIEW E 97, 053101 (2018)

0 5 10 15
0

5

10

+
=

-

FIG. 12. Intermittency parameter: Parameteric plot of σ−/ε vs
σ+/ε. Different colors indicate different quantile values: 0.975 (cyan),
0.99 (orange), and 0.995 (green). Different experimental data sets are
indicated by different symbols: A (circles), B (squares), C (diamonds),
D (triangles), and E (stars). σ− (σ+) denotes the intermittency
parameter for the negative (positive) tail of the PDF of D I

�.

3. Power-law parameter ξ

The parameter ξ quantifies the index of the power law of an
equivalent GPD. If ξ � 0, this indicates that the distribution is
bounded and well behaved. The ξ > 0 implies a pathological
distribution with diverging moments: if the shape parameter
ξ > 1/n, the moments of order n and greater do not exist [29].
In Figs. 13(a) and 13(b) we plot the parameter ξ vs �/η for the
negative and positive tails of the PDFs, respectively; we show
analogous plots in the insets Figs. 13(a.1) and 13(b.1) for this
parameter vs �/R for the negative and positive tails of the
PDFs, respectively, where R is the radius of the cylindrical
tank. Figures 13(a.1) and 13(b.1) show that the curves for
different quantiles collapse on each other indicating that the
Kolmogorov length scale is not the relevant scale to explain
the behavior of this parameter. ξ is close to zero at large length
scales and increases continuously as we decrease the scale; at
the smallest scale in our data sets its value is close to 0.6 for the
highest quantile. This means that the second-order moments

are not defined and it also explains why it is so difficult to
achieve the convergence of the mean.

The steepening of ξ vs � implies that the parameter
p∗ = 1/ξ decreases as a function of scale. Moreover, at the
Kolmogorov scale, we do not observe any indication of the
saturation of the power-law parameter, which means that we
are potentially exploring more and more singular regions.

Figure 14 shows that the correlation plot of ξ from the
negative tail (ξ−) vs that from the positive tail (ξ+) of the PDFs
is roughly linear; we also observe that ξ− has a tendency to be
larger than ξ+. This means that the convergency to a singularity,
if any, is faster for the extreme events of D I

� with negative sign.

F. Compatibility with multifractal analysis

The above GPD analysis has provided us with two important
pieces of information regarding the multifractal spectrum of
the local energy transfer: (1) hmin is between −0.25 and 0
with dependence on the quantity and quantile considered;
(2) p∗ changes between 1.67 and ∞, if we move from the
Kolmogorov scale to the injection scale. We compare this
prediction with the direct estimates of these quantities obtained
from the scaling exponents τ (p) listed in Table II. We use the
Legendre transform formula

τ (p) = minh[ph + 2 − D(h)] (24)

to obtain the values of D(h), which we show in Fig. 15.
We obtain hmin = −0.88 and p∗ = 4. This value of hmin is
much smaller than that obtained from the GPD analysis, which
suggests that the latter requires higher quantile to converge this
quantity. The value of p∗ obtained by using D(h) is obtained
in the GPD analysis for scales close to � = 10−2R (=1 mm),
which sets the characteristic size of the structure. We recall that
the local energy transfer scales as h = 3 hv − 1, where hv is the
scaling exponent of the velocity. This suggests that the above
structures correspond to those with hv ≈ 0. This estimate is
compatible with the observations of Saw et al. [16] of extreme
events of inertial dissipation, that look as shock- or front-like
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FIG. 13. Power-law parameter from the GPD analysis: (a) ξ− vs �/η and (b) ξ+ vs �/η for the negative and positive tails of the PDF of D I
�,

respectively. Insets: (a.1) and (b.1) show the analogous plots of ξ vs �/R, where R is the radius of the cylindrical tank. Different colors indicate
different quantile values: 0.975 (cyan), 0.99 (orange), and 0.995 (green). Different experimental data sets are indicated by different symbols: A
(circles), B (squares), C (diamonds), D (triangles), and E (stars). η is the Kolmogorov length scale.
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FIG. 14. Power-law parameter from the GPD analysis: Parametric
plot of ξ− vs ξ+. Different colors indicate different quantile values:
0.975 (cyan), 0.99 (orange), and 0.995 (green). Different experimental
data sets are indicated by different symbols: A (circles), B (squares),
C (diamonds), D (triangles), and E (stars). ξ− (ξ+) is the power-law
parameter for the negative (positive) tail of the PDF of D I

�.

structures with elongated shape, of about 10 �x in the direction
perpendicular to the front.

The obtained D(h) can also be used to compute other
quantities of interest, like the exponent γ . Indeed, since Dν

�

scales like 2h − 2, we get

〈|Dν
� |p〉 ∼ �ξν (p),

ξν(p) = min
h

[p(2h − 2) + 2 − D(h)]. (25)

Approximating C(h) = 2 − D(h) by a parabola C(h) = (h −
a)2/2b, with a = 1/3 + 3b/2 to ensure that ζ (3) = 1, we get

ξν(p) = 2p(a − 1) − 2bp2,

γ (p/3) = 2

3
bp − 2

9
bp2. (26)

Using b = 0.025, we get the value of Table II.

IV. DISCUSSION AND CONCLUSIONS

We know that at small scales turbulence displays strong de-
viations from the homogeneity and self-similarity assumptions
of Kolmogorov’s phenomenological theory. In this work, we
have carried out a detailed exploration of the idea that these
strong deviations are linked to the existence of singularities
or quasisingularities in the turbulent flows, which produce
extremely localized and violent events of dissipation [14,15].
Therefore, both the homogeneity and the regularity conditions
have to be relaxed and the weak formulation approach needs
to be adopted to describe the local energy transport and
dissipation [11]. We discuss in detail the local energy balance
equation derived by using the weak solution formulation (see
Refs. [11,12]). In particular, we elaborate on the expressions for
the local energy transfers and local energy dissipation; we show
how in our approach they generalize the average quantities in
the Kármán-Howarth-Monin equation. We call this framework
the weak Kármán-Howarth-Monin (WKH) equation.

We emphasize that this approach offers several interest-
ing possibilities, as we describe below. WKH provides a
natural framework to study possible quasisingularities and
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FIG. 15. Multifractal spectrum: Plot of D(h) vs h computed by
using the values of the τ (p), scaling exponents of the local energy
transfer structure functions (see Table II), in Eq. (24). The red dash-dot
line indicates the tangent f (h) = 4(h − hmin), where hmin = −0.88.

singularities (see Ref. [22] for more details). In the presence
of a quasisingularity or a singularity in the velocity field,
it yields a nonzero inertial dissipation term D I in the limit
� → 0. Moreover, even after we perform a coarse-graining
on the velocity field, the signatures of quasisingularities and
singularities are present at finite resolutions in the form of D I

�

being nonzero along the lines in the scale space that originate
from the singularity at � = 0. We can use the study of the
velocity field at the dissipation scales around the extreme
events of D I

�(u,x,t) to classify the possible quasisingularities
and singularities [16]. Therefore, WKH provides a concrete
description of the multifractal framework. Also, the analysis
of the tail of the PDFs of D I

�(u,x,t) provides information about
the topology of the quasisingularities.

The main advantage of the WKH framework is to localize
in space and time the different terms, which contribute to
the energy cascade at any scale � and associate them with
special topologies of the velocity fields. This approach can
be then used far beyond the Kolmogorov scale, e.g., to study
energy transfers in geophysical flows [30]. We find this to be
complementary to the traditional methods used in turbulence,
which focus only on the structures associated with enstrophy
or viscous dissipation (these were thought be the only relevant
entities as the end product of the energy cascade). In our
framework, the local energy transfer and inertial dissipation
term appears as the most relevant quantity, which may be used
to devise and validate new models of turbulence. Also, we can
compute the main terms describing the local energy transfers
D I

� and Dν
� , once the velocity field is known. Interestingly,

as discussed in Ref. [22], it is now possible to explore
these concepts in experiments since the advent of the particle
image velocimetry methods. Moreover, the weak formulation
introduces a natural smoothing that makes the computation
of these quantities much less sensitive to the noise than the
original direct formulation.

Motivated by these considerations, we use the experimental
measurements in a turbulent swirling flow to provide a study
of the statistics and the scaling properties of D I

� and Dν
� . We
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find that the energy transfers are very intermittent because of
the presence of extreme events at the dissipative scale, which
may be regarded as the footprints of the quasisingularities
or singularities existing at sub-Kolmogorov scale [16]. We
show that these extreme events govern the intermittency
corrections of the velocity field and follow from a refined
similarity analysis based on local energy transfers [6,31]. We
characterize the distribution of these extreme events by using
the generalized Pareto distribution (GPD) analysis. The width
of the tails is shown to be compatible with a similarity of
the second kind, first proposed by Castaing [27]. Finally, we
make a connection between the topological and the statistical
properties of the extreme events of the inertial dissipation field
and its multifractal properties.

In our analysis we are constrained to use the velocity fields
measured on a plane because of the experimental limitations.
We recognize that it is important to perform the same analysis
on the velocity field measured over a volume, but the latter
is still an experimental challenge because of the extreme
refinement needed for such an analysis. We partly fill this
gap by performing a 3D DNS at a moderate resolution and
check that our results are not affected by the measurement con-
straints. Given that the numerical simulations of the INSE are
performed over a finite resolution, it is yet not clear whether the
extreme events of the local energy transfer will still be present,
if they are indeed triggered by the potential sub-Kolmogorov
scale Navier-Stokes singularities or quasisingularities. In the
absence of these extreme events, we expect a different behavior
of the tails of the distributions of the local energy transfers.
However, an elaborate validation of our experimental results in
numerical simulations requires very large simulations, which
is a challenging task.
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APPENDIX: METHODS

1. Experimental setup

We visualize turbulent von Kármán flows in a plexiglass
cylinder of radiusR = 100 mm, filled with water at a controlled
temperature of 20 ◦C. The flows are driven by two counter-
rotating curve-bladed impellers at a frequency F , rotating with
their blades concave face pushing forward (called ANTI in
previous publications of our group). The setup is oriented
with its axis of symmetry in the vertical direction. Using
high-zooming lenses coupled to standard stereo particle image
velocimetry (PIV), we obtain 3-component velocity fields
(radial ur , axial uz, azimuthal uφ) of the flows in a vertical plane
containing the symmetric axis, with nominal spatial resolution
between �x = 0.24 mm and �x = 3.4 mm (the laser sheet
that defines the measurement plane is ∼1 mm thick). The
torque and frequency of each impeller is measured using a
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FIG. 16. Patchwork of mean velocity field in experiments A and
C (in the black square). Color codes uy , while ux and uz are in arrows.
The coordinates have been nondimensionalized by R the radius of the
cylinder.

torque meter (SCAIME Inc.). More details on the setup can be
found in [16]. The Reynolds number of the flow is given by
Re = 2πR2F/ν, where ν is the fluid’s kinematic viscosity. We
use different mixtures of glycerol and water in order to vary the
viscosity of the working fluid, and thus the Reynolds number.
Monitoring the torques C1 and C2 applied to each impeller, we
obtain the dimensionless energy injection rate as

ε = 2π (C1 + C2)F

ρπHR4(2πF )3
. (A1)

We have checked in a scale 4:1 heat-insulated version of
our experiment in helium that in the stationary regime, the
global energy input is balanced by a global heat output, so
that ε also measures the energy dissipated in the flow. Due to
flow inhomogeneity, however, the energy dissipation is not
homogeneous within the whole flow. Therefore, we use in
this paper local estimates, derived from second-order structure
functions in [17]. From this, we can compute the Kolmogorov
dissipative scale as η = (ε/ν3)−1/4.

We have further shown that in our experimental setup
the dimensionless energy dissipation rate saturates towards a
constant value ε = 0.05 above Rec = 3500 [32], correspond-
ing to the critical Reynolds number for the onset of fully
developed turbulence [33]. Varying the viscosity while keeping
Re > 3500 thus enables us to monitor the size of the dissipative
scale, while remaining in the regime where the flow is fully
turbulent. Measurements at different values of �x/η were
then obtained by acting on the frequency F , the mixture
composition, and the zooming lens. Table I summarizes the
parameters corresponding to the different cases. In cases A
and B, the SPIV system has been zoomed on a 4 cm × 3 cm
zone at the center of the experiment; see Fig. 16.

2. Velocity fields

The results of this paper are based on series of SPIV
measurements taken at frequency 15Hz (3 to 12 times the eddy
turnover time) over 35 to 40 minutes, resulting in samples of
30 000 frames that can be considered as statistically indepen-
dent. For each sample, the velocity field is reconstructed using
peak correlation performed over 50% overlapping windows
of size 16 to 32 pixels. As a result, we get instantaneous
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FIG. 17. Radial (a) and vertical (b) velocity profiles at z = 0
(resp. x = 0). Red: case A; green: case B; blue: case C; gray: case
E. Square: ur ; circles: uy ; stars: uz. The coordinates have been
nondimensionalized by R the radius of the cylinder.

snapshots of the three components of the velocity field on a
grid of approximate size 90 × 70. In the sequel, we work with
dimensionless quantities, using the radius of the vessel R as
the unit of length, and the impeller rotation period (2πF )−1 as
the unit of time. A typical map of the time-averaged velocity
fields for the global experiments is provided in Fig. 16 for the
cases A and C, showing the location of the zoom window. One
observes a continuity in the flow topology between the zoomed
and unzoomed case, showing that the calibration is consistent
in between the two cases. To quantify further the discrepancy
between the different zoomed and unzoomed field and estimate
error bars, we plot in Fig. 17 mean radial and vertical profiles
near the stagnation point. From this comparison, we can
estimate a relative error on velocity measurements of 10%,
resulting in an uncertainty of 30% for third-order quantities.

3. Wavelet spectrum

Given that the weak formulation was derived using contin-
uous wavelet transform, it is informative to first compute the
wavelet power spectrum of our velocity fields, given by

EW (k) = 1

C�k�

∫
d2b

∣∣∣∣WTi

(
�,u,

k�

k
,b

)∣∣∣∣
2

, (A2)

where

Wi(�,u,a,b) =
∫

ui(x)�

(
x − b

a

)
d2x

a
(A3)
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FIG. 18. Wavelet spectrum for the 5 different cases of Table I: blue
circle: case A; red square: case B; yellow diamond: case C; purple
triangle: case D; green stars: case E. The dotted line is (η/�)−5/3. The
spectrum and the the scale � have been made nondimensional using
η, the Kolmogorov scale, and ε, the energy dissipation.

is the 2D continuous wavelet transform of ui with respect to
the Mexican hat wavelet � (Laplacian of a Gaussian), C� is a
normalizing coefficient, and k� is the centroid velocity wave
number, defined through the Fourier transform of � as

k� =
∫

k|�̂(k)|dk∫ |�̂(k)|dk
. (A4)

As discussed in [13], this global wavelet spectrum converges
towards the Fourier energy spectrum provided � has enough
vanishing moments. Its advantage is that it is less noisy than the
Fourier energy spectrum, since it can be interpreted as a moving
average of the energy spectrum over the wave number space
[13]. The wavelet spectrum is provided in Fig. 18 following
a “universal” representation EW (�)/ε2/3/η5/3 = F (η/�), with
� = k�/k, for the cases we considered in the paper. One sees
that the superposition of the 5 cases follows a �−5/3 law over
a large interval of wave number, that can be interpreted as an
inertial range. Case A corresponds to injection scales, cases B,
C, and D correspond to inertial range, while case E is in the
dissipative range.

4. Diagnostics for energy transfer and dissipation

Given any instantaneous velocity field, we can compute the
2D-3C velocity increments δ�u(�r) = �u(�x2D + �r2D) − �u(�x2D),
�x2D , and �r2D being the coordinates onto the plane of measure-
ments. In this paper, for simplicity, we omit the 2D superscript.

Following Eq. (10), we may then use our measurements to
compute the quantity D I

� and Dν
� :

D I
� = 1

4

∫
∇φ�(ξ ) · δu(δu)2,

Dν
� = −ν

∫
∇2φ�(ξ )u(x) · u(x + ξ )dξ. (A5)
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FIG. 19. Convergence of D I
� for cases A (a), B (b), C (c), D (d), and E (e).

For this, we use a simple shift in the definition of Dν
� to write

it in term of a continuous wavelet transform as

Dν
� (x) = −νui(x)WTi(�,u,�,x), (A6)

where WTi(�,u,�,x) is the continuous wavelet transform of ui

with respect to the wavelet � = ∇2φ. Taking φ as a Gaussian

transforms � into the Mexican hat wavelet. The advantage
of such a formulation is that it transforms the problem of
computation of Dν

� (x) into the problem of computing 3 con-
tinuous wavelet transform, which is very fast using algorithms
based on FFT. In the sequel, we use the 2D continuous wavelet
MATLAB package provided by the toolbox YAWTB [35].
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FIG. 20. Convergence of Dν
� for cases A (a), B (b), C (c), D (d), and E (e).
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FIG. 21. Convergence of |D I
�| for cases A (a), B (b), C (c), D (d), and E (e).
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In the same way, one can use continuous wavelet transforms
to compute efficiently D I

�. Indeed, developing its expression,
we get 18 terms looking typically like

T11 = 1

4

∫
∇1φ

�(ξ )u1(x + ξ )|u(x + ξ )|2, (A7)

which can be expressed as

T11 = 1
4WT1(∇1φ,u|u|2,�,x). (A8)

Using complex wave numbers and complex wavelet trans-
forms, we can then compute the whole term D I

� using only
9 complex continuous wavelet transforms.

For the DNS, we have used the same method, using the
3D continuous wavelet MATLAB package provided by the
toolbox YAWTB.

5. Convergency analysis

To check the convergency of the quantity D I
� and Dν

� , we
have computed the running average of a variable ensemble
of velocity fields, ranging from 0% of the total number of
frames to 100% of the total number. The results are displayed
in Figs. 19 and 20. One sees that the average is converged in
all cases and for all scales for Dν

� , and only for the first scales
for the high-resolution data set C and E for D I

�. For all other
cases and scales, the average of D I

� is not converged within our
statistics. If one looks for the average of the absolute value of
D I

�, the convergency is ensured for all cases and scales, as can
be seen in Fig. 21.

6. Generalized Pareto distribution analysis

To perform the extreme value analysis we have chosen
the so-called peak-over-threshold approach formalized by
Pickands [34]. In this approach one considers a series of in-
dependent and identically distributed variables X1,X2, . . . ,Xn

and studies the probability P (X > t) of exceeding a threshold t

corresponding to a large quantile. The Pickands theorem states
that such exceedings asymptotically obey a generalized Pareto
distribution (GPD) distribution with cumulative distribution

function:

FG(x; μ,σ,ξ ) = 1 −
[

1 + ξ

(
x − μ

σ

)]−1/ξ

, (A9)

where μ ∈ R is the location parameter representing the chosen
threshold and σ > 0 is the scale parameter, representing the
typical order of extreme fluctuations. The sign of ξ discrim-
inates the kind of tail decay of the parent distribution: When
ξ = 0, the distribution is of Gumbel type with exponentially
decaying tail and Eq. (A9) reduces to

FG(x; μ,σ,ξ ) = 1 − exp

(
−x − μ

σ

)
. (A10)

The case ξ > 0, corresponds to a Fréchet distribution with
a fat tail decaying as a power law. Conversely, the case ξ < 0
corresponds to the Weibull distribution with a bounded tail. In
the Fréchet ξ > 0 case, only the moments up to 1/ξ exist,
meaning that there is a nonzero probability of observing
infinite values for the observable analyzed. The parameters
are estimated using the MATLAB function gpfit that use a
maximum likelihood estimator.

7. Direct numerical simulations: Initial data and forcing

To start the DNS run, we use the Taylor-Green initial
velocity field given by

ux = sin(x) cos(y) cos(z), (A11a)

uy = − cos(x) sin(y) cos(z), (A11b)

uz = 0. (A11c)

We obtain turbulent steady states of the INSE by using the
Taylor-Green forcing:

fx = f0 sin(k̃fx) cos(k̃fy) cos(k̃fz), (A12a)

fy = −f0 cos(k̃fx) sin(k̃fy) cos(k̃fz), (A12b)

fz = 0, (A12c)

where f0 and k̃f are the forcing amplitude and wave number,
respectively. We define kf = √

3k̃f as the amplitude of the
forcing wave vector kf = (k̃f ,k̃f ,k̃f ).
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