Sequential Model Selection Method for Nonparametric Autoregression
Ouerdia Arkoun, Jean-Yves Brua, Serguei Pergamenshchikov

To cite this version:
Ouerdia Arkoun, Jean-Yves Brua, Serguei Pergamenshchikov. Sequential Model Selection Method for Nonparametric Autoregression. 2018. hal-01871165

HAL Id: hal-01871165
https://hal.science/hal-01871165
Preprint submitted on 10 Sep 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Sequential Model Selection Method for Nonparametric Autoregression *

Ouerdia Arkoun †, Jean-Yves Brua ‡and
Serguei Pergamenshchikov§

Abstract

In this paper for the first time the nonparametric autoregression estimation problem for the quadratic risks is considered. To this end we develop a new adaptive sequential model selection method based on the efficient sequential kernel estimators proposed by Arkoun and Pergamenshchikov (2016). Moreover, we develop a new analytical tool for general regression models to obtain the non asymptotic sharp oracle inequalities for both usual quadratic and robust quadratic risks. Then, we show that the constructed sequential model selection procedure is optimal in the sense of oracle inequalities.

MSC: primary 62G08, secondary 62G05

Keywords: Non-parametric estimation; Non parametric autoregression; Non-asymptotic estimation; Robust risk; Model selection; Sharp oracle inequalities.

*This work was supported by the RSF grant 17-11-01049 (National Research Tomsk State University).
†Sup’Biotech, Laboratoire BIRL, 66 Rue Guy Moquet, 94800 Villejuif, France and Laboratoire de Mathématiques Raphael Salem, Normandie Université, UMR 6085 CNRS-Université de Rouen, France, e-mail: ouerdia.arkoun@gmail.com
‡Laboratoire de Mathématiques Raphael Salem, Normandie Université, UMR 6085 CNRS-Université de Rouen, France, e-mail : jean-yves.brua@univ-rouen.fr
§Laboratoire de Mathématiques Raphael Salem, UMR 6085 CNRS-Université de Rouen Normandie, France and International Laboratory of Statistics of Stochastic Processes and Quantitative Finance, National Research Tomsk State University, e-mail: Serge.Pergamenshchikov@univ-rouen.fr
1 Introduction

One of the standard linear models in general theory of time series is the autoregressive model (see, for example, [1] and the references therein). Natural extensions for such models are nonparametric autoregressive models which are defined by

\[y_k = S(x_k) y_{k-1} + \xi_k \quad \text{and} \quad x_k = a + \frac{k(b-a)}{n}, \tag{1.1} \]

where \(S(\cdot) \in L^2[a, b] \) is unknown function, \(a < b \) are fixed known constants, \(1 \leq k \leq n \), the initial value \(y_0 \) is a constant and the noise \((\xi_k)_{k \geq 1}\) is i.i.d. sequence of unobservable random variables with \(E\xi_1 = 0 \) and \(E\xi_1^2 = 1 \).

The problem is to estimate the function \(S(\cdot) \) on the basis of the observations \((y_k)_{1 \leq k \leq n}\) under the condition that the noise distribution is unknown.

It should be noted that the varying coefficient principle is well known in the regression analysis. It permits the use of more complex forms for regression coefficients and, therefore, the models constructed via this method are more adequate for applications (see, for example, [9], [23]). In this paper we consider the varying coefficient autoregressive models (1.1). There is a number of papers which consider these models such as [7], [8] and [6]. In all these papers, the authors propose some asymptotic (as \(n \to \infty \)) methods for different identification studies without considering optimal estimation issues.

To our knowledge, for the first time, the minimax estimation problem for the model (1.1) has been treated in [3] and [24] in the nonadaptive case, i.e. for the known regularity of the function \(S \). Then, in [2] it is proposed to use the sequential analysis method for the adaptive pointwise estimation problem in the case where the unknown Hölder regularity is less than one, i.e when the function \(S \) is not differentiable. Also it should be noted (see, [2]) that for the model (1.1), the adaptive pointwise estimation is possible only in the sequential analysis framework. That is why we study sequential estimation methods for the smooth function \(S \). In this paper we consider the quadratic risk defined as

\[R_p(\hat{S}_n, S) = E_{p,S}\|\hat{S}_n - S\|^2, \quad \|S\|^2 = \int_a^b S^2(x)dx, \tag{1.2} \]

where \(\hat{S}_n \) is an estimator of \(S \) based on observations \((y_k)_{1 \leq k \leq n}\) and \(E_{p,S} \) is the expectation with respect to the distribution law \(P_{p,S} \) of the process \((y_k)_{1 \leq k \leq n}\) given the distribution density \(p \) and the coefficient \(S \). Moreover, taking into account that the distribution \(p \) is unknown, we use the robust nonparametric estimation approach proposed in [12]. To this end we set the robust risk as

\[R^*(\hat{S}_n, S) = \sup_{p \in \mathcal{P}} R_p(\hat{S}_n, S), \tag{1.3} \]
where \mathcal{P} is a family of the distributions defined in Section 2.

In order to estimate the function S in model (1.6) we make use of the estimator family $(\hat{S}_\lambda, \lambda \in \Lambda)$, where \hat{S}_λ is a weighted least square estimator with the Pinsker weights. For this family, similarly to [14], we construct a special selection rule, i.e. a random variable $\hat{\lambda}$ with values in Λ, for which we define the selection estimator as $\hat{S} = \hat{S}_{\hat{\lambda}}$. Our goal in this paper is to show the non asymptotic sharp oracle inequality for the robust risks (1.3), i.e. to show that for any $\bar{\varrho} > 0$ and $n \geq 1$

$$\mathcal{R}^*(\hat{S}, S) \leq (1 + \bar{\varrho}) \min_{\lambda \in \Lambda} \mathcal{R}^*(\hat{S}_\lambda, S) + \frac{B_n}{\bar{\varrho} n},$$

(1.4)

where B_n is a rest term such that for any $\bar{\delta} > 0$,

$$\lim_{n \to \infty} \frac{B_n}{n^{\bar{\delta}}} = 0.$$

(1.5)

In this case the estimator \hat{S} is called optimal in the oracle inequality sense. In this paper, in order to obtain this inequality for model (1.1) we develop a new model selection method based on the truncated sequential procedures developed in [4] for the pointwise efficient estimation. Then we use the non asymptotic analysis tool proposed in [14] based on the non-asymptotic studies from [5] for a family of least-squares estimators and extended in [10] to some other estimator families. To this end we use the approach proposed in [16], i.e. we pass to a discrete time regression model by making use of the truncated sequential procedure introduced in [4]. To this end, at any point $(z_l)_{1 \leq l \leq d}$ of a partition of the interval $[a, b]$, we define a sequential procedure (τ_l, S_l^*) with a stopping rule τ_l and an estimator S_l^*. For $Y_l = S_l^*$ with $1 \leq l \leq d$, we come to the regression equation on some set $\Gamma \subseteq \Omega$:

$$Y_l = S(z_l) + \zeta_l, \quad 1 \leq l \leq d.$$

(1.6)

Here, in contrast with the classical regression model, the noise sequence $(\zeta_l)_{1 \leq l \leq d}$ has a complex structure, namely,

$$\zeta_l = \xi_l^* + \varpi_l,$$

(1.7)

where $(\xi_l^*)_{1 \leq l \leq d}$ is a "main noise" sequence of uncorrelated random variables and $(\varpi_l)_{1 \leq l \leq n}$ is a sequence of bounded random variables.

We will use the oracle inequality (1.4) to prove the asymptotic efficiency for the proposed procedure, using the same method as it is been used in [15]. The asymptotic efficiency means that the procedure provides the optimal convergence rate and the asymptotically minimal rate normalized risk which
coincides with the Pinsker constant. It should be emphasized that only sharp oracle inequalities of type (1.4) allow to synthesis efficiency property in the adaptive setting.

The paper is organized as follows: In Section 2 we state the main conditions for the model (1.1). In Section 3 we describe the passage to the regression scheme. In Section 4 we describe the sequential model selection procedure. In Section 5 we announce the main results. In Section 6 we study the properties of the obtained regression model (1.6). In Section 7 we prove all basic results. In Appendix A we give all the auxiliary and technical tools.

2 Main Conditions

As in [4] we assume that in the model (1.1) the i.i.d. random variables \((\xi_k)_{k \geq 1}\) have a density \(p\) (with respect to Lebesgue measure) from the functional class \(\mathcal{P}\) defined as

\[
\mathcal{P} := \left\{ p \geq 0 : \int_{-\infty}^{+\infty} p(x) \, dx = 1, \quad \int_{-\infty}^{+\infty} x \, p(x) \, dx = 0, \right. \\
\left. \int_{-\infty}^{+\infty} x^2 \, p(x) \, dx = 1 \quad \text{and} \quad \sup_{k \geq 1} \frac{\int_{-\infty}^{+\infty} |x|^{2k} \, p(x) \, dx}{\varsigma^k(2k-1)!!} \leq 1 \right\}, \tag{2.1}
\]

where \(\varsigma \geq 1\) is some fixed parameter, which may be a function of the number observation \(n\), i.e. \(\varsigma = \varsigma(n)\), such that for any \(\delta > 0\)

\[
\lim_{n \to \infty} \frac{\varsigma(n)}{n^\delta} = 0. \tag{2.2}
\]

Note that the \((0,1)\)-Gaussian density belongs to \(\mathcal{P}\). In the sequel we denote this density by \(p_0\). It is clear that for any \(q > 0\)

\[
m_q^* = \sup_{p \in \mathcal{P}} \mathbb{E}_p |\xi_1|^q < \infty, \tag{2.3}
\]

where \(\mathbb{E}_p\) is the expectation with respect to the density \(p\) from \(\mathcal{P}\). To obtain the stable (uniformly with respect to the function \(S\)) model (1.1), we assume that for some fixed \(0 < \epsilon < 1\) and \(L > 0\) the unknown function \(S\) belongs to the \(\epsilon\)-stability set introduced in [4] as

\[
\Theta_{\epsilon,L} = \left\{ S \in C_1([a,b], \mathbb{R}) : |S|_* \leq 1 - \epsilon \quad \text{and} \quad |\dot{S}|_* \leq L \right\}, \tag{2.4}
\]

where \(C_1([a,b], \mathbb{R})\) is the Banach space of continuously differentiable \([a,b] \to \mathbb{R}\) functions and \(|S|_* = \sup_{a \leq x \leq b} |S(x)|\).
3 Passage to a discrete time regression model

We will use as a basic procedure the pointwise procedure from [4] at the
points \((z_l)_{1 \leq l \leq d}\) defined as

\[
z_l = a + \frac{l}{d}(b - a) \quad \text{and} \quad d = \lfloor \sqrt{n} \rfloor ,
\]

(3.1)

where \([a]\) is the integer part of a number \(a\). So we propose to use the first \(\iota_l\) observations for the auxiliary estimation of \(S(z_l)\). We set

\[
\tilde{S}_{\iota_l} = \frac{1}{A_{\iota_l}} \sum_{j=1}^{\iota_l} Q_{l,j} y_{j-1} y_j, \quad A_{\iota_l} = \sum_{j=1}^{\iota_l} Q_{l,j} y_{j-1}^2 ,
\]

(3.2)

where \(Q_{l,j} = Q(u_{l,j})\) and the kernel \(Q(\cdot)\) is the indicator function of the interval \([-1; 1]\), i.e. \(Q(u) = 1_{[-1,1]}(u)\). The points \((u_{l,j})\) are defined as

\[
u_{l,j} = \frac{x_j - z_l}{h} .
\]

(3.3)

Note that to estimate \(S(z_l)\) on the basis of kernel estimator with the kernel \(Q\) we use only the observations \((y_j)_{k_{1,l} \leq j \leq k_{2,l}}\) from the \(h\)-neighborhood of the point \(z_l\), i.e.

\[
k_{1,l} = \lfloor n \tilde{z}_l - n \tilde{h} \rfloor + 1 \quad \text{and} \quad k_{2,l} = \lfloor n \tilde{z}_l + n \tilde{h} \rfloor \wedge n ,
\]

(3.4)

where \(\tilde{z}_l = (z_l - a)/(b - a)\) and \(\tilde{h} = h/(b - a)\). Note that, only for the last point \(z_d = b\), we take \(k_{2,d} = n\). We chose \(\iota_l\) in (3.2) as

\[
\iota_l = k_{1,l} + q \quad \text{and} \quad q = q_n = \lfloor (n \tilde{h})^{\mu_0} \rfloor
\]

(3.5)

for some \(0 < \mu_0 < 1\). In the sequel for any \(0 \leq k < m \leq n\) we set

\[
A_{k,m} = \sum_{j=k+1}^{m} Q_{l,j} y_{j-1}^2 \quad \text{and} \quad A_m = A_{0,m} .
\]

(3.6)

Next, similarly to [2], we use a kernel sequential procedure based on the observations \((y_j)_{\iota_l \leq j \leq n}\). To transform the kernel estimator in a linear function of observations and we replace the number of observations \(n\) by the following stopping time

\[
\tau_l = \inf\{\iota_l + 1 \leq k \leq k_{2,l} : A_{\iota_l,k} \geq H_l\} ,
\]

(3.7)
where \(\inf \{ \emptyset \} = k_{2,l} \) and the positive threshold \(H_l \) will be chosen as a positive random variable which is measurable with respect to the \(\sigma \)-field \(\{ y_1, \ldots, y_{t_l} \} \).

Now we define the sequential estimator as

\[
S^*_l = \frac{1}{H_l} \left(\sum_{j=t_l+1}^{\tau l} Q_{l,j} y_{j-1} y_j + \gamma_l Q_{l,\tau l} y_{\tau l-1} y_{\tau l} \right) 1_{\Gamma_l}, \tag{3.8}
\]

where \(\Gamma_l = \{ A_{t_l, k_{2,l}-1} \geq H_l \} \) and the correcting coefficient \(0 < \gamma_l \leq 1 \) on this set is defined as

\[
A_{t_l, \tau l-1} + \gamma_l^2 Q_{l, \tau l} y_{\tau l-1}^2 = H_l. \tag{3.9}
\]

Note that, to obtain the efficient kernel estimator of \(S(z_l) \) we need to use all \(k_{2,l} - t_l - 1 \) observations. Similarly to [19], one can show that \(\tau_l \approx \gamma_l H_l \) as \(H_l \to \infty \), where

\[
\gamma_l = 1 - S^2(z_l). \tag{3.10}
\]

Therefore, one needs to chose \(H_l \) as \((k_{2,l} - t_l - 1) / \gamma_l \). Taking into account that the coefficients \(\gamma_l \) are unknown, we define the threshold \(H_l \) as

\[
H_l = \frac{1 - \bar{\epsilon}}{\tilde{\gamma}_l} (k_{2,l} - t_l - 1) \quad \text{and} \quad \bar{\epsilon} = \frac{1}{2 + \ln n}, \tag{3.11}
\]

where \(\tilde{\gamma}_l = 1 - \tilde{S}^2_{t_l} \) and \(\tilde{S}_{t_l} \) is the projection of the estimator \(\hat{S}_{t_l} \) in the interval \(]-1 + \bar{\epsilon}, 1 - \bar{\epsilon}[, \) i.e.

\[
\tilde{S}_{t_l} = \min(\max(\hat{S}_{t_l}, -1 + \bar{\epsilon}), 1 - \bar{\epsilon}). \tag{3.12}
\]

To obtain the uncorrelated stochastic terms in kernel estimator for \(S(z_l) \) we chose the bandwidth \(h \) as

\[
h = \frac{b - a}{2d}. \tag{3.13}
\]

As to the estimator \(\hat{S}_{t_l} \), we can show the following property.

Proposition 3.1. The convergence rate in probability of the estimator (3.12) is more rapid than any power function, i.e. for any \(b > 0 \)

\[
\lim_{n \to \infty} n^b \max_{1 \leq i \leq d} \sup_{S \in \Theta_{x,t}} \sup_{p \in P} \mathbb{P}_{p,S} \left(|\tilde{S}_{t_l} - S(z_l)| > \epsilon_0 \right) = 0, \tag{3.14}
\]

where \(\epsilon_0 = \epsilon_0(n) \to 0 \) as \(n \to \infty \) such that \(\lim_{n \to \infty} n^{\delta} \epsilon_0 = \infty \) for any \(\delta > 0 \).

Now we set

\[
Y_l = S^*_l(z_l) 1_{\Gamma_l} \quad \text{and} \quad \Gamma = \bigcap_{l=1}^{d} \Gamma_l. \tag{3.15}
\]

Using the convergence (3.14), we study the probability properties of the set \(\Gamma \) in the following proposition.
Proposition 3.2. For any $b > 0$, the probability of the set Γ satisfies the following asymptotic equality

$$\lim_{n \to \infty} n^b \sup_{S \in \Theta_{s,t}} P_{p,S}(\Gamma^c) = 0.$$ \hspace{1cm} (3.16)

In view of this proposition we can shrink the set Γ^c. So, using the estimators (3.15) on the set Γ we obtain the discrete time regression model (1.6) in which

$$\xi^*_l = \frac{\sum_{j=u_l+1}^{\eta_l-1} Q_{l,j} y_{j-1} \xi_j + \varkappa_l Q(u_{l,\eta_l}) y_{\eta_l-1} \xi_{\eta_l}}{H_l}$$ \hspace{1cm} (3.17)

and $\varpi_l = \varpi_{1,l} + \varpi_{2,l}$, where

$$\varpi_{1,l} = \frac{\sum_{j=u_l+1}^{\eta_l-1} Q_{l,j} y_{j-1} \hat{s}_{l,j} + \varkappa_l^2 Q(u_{l,\eta_l}) y_{\eta_l-1} \hat{s}_{l,\eta_l}}{H_l}, \quad \hat{s}_{l,j} = S(x_j) - S(z_l)$$

and

$$\varpi_{2,l} = \frac{(\varkappa_l - \varkappa_l^2) Q(u_{l,\eta_l}) y_{\eta_l-1}^2 S(x_{\eta_l})}{H_l}.$$ \hspace{1cm} (3.18)

Note that in the model (1.6) the random variables $(\xi^*_j)_{1 \leq j \leq d}$ are defined only on the set Γ. For technical reasons we need to define these variables on the set Γ^c as well. To this end, for any $j \geq 1$ we set

$$Q_{l,j} = Q_{l,j} y_{j-1} 1_{\{j < k_{2,l}\}} + \sqrt{H_l} Q_{l,j} 1_{\{j = k_{2,l}\}}$$ \hspace{1cm} (3.19)

and $\tilde{A}_{u_l,m} = \sum_{j=u_l+1}^{m} \tilde{Q}_{l,j}^2$. Note, that for any $j \geq 1$ and $l \neq m$

$$\tilde{Q}_{l,j} \tilde{Q}_{m,j} = 0.$$ \hspace{1cm} (3.20)

and $\tilde{A}_{u_l, k_{2,l}} \geq H_l$. So now we can modify the stopping time (3.7) as

$$\tilde{\tau}_l = \inf\{k \geq \tau_l + 1 : \tilde{A}_{u_l,k} \geq H_l\}.$$ \hspace{1cm} (3.21)

Obviously, $\tilde{\tau}_l \leq k_{2,l}$ and $\tilde{\tau}_l = \tau_l$ on the set Γ for any $1 \leq l \leq d$. Now similarly to (3.9) we define the correction coefficient as

$$\tilde{A}_{u_l, \tilde{\tau}_l - 1} + \tilde{\varkappa}_l^2 \tilde{Q}_{l, \tilde{\tau}_l} = H_l.$$ \hspace{1cm} (3.22)

It is clear that $0 < \tilde{\varkappa}_l \leq 1$ and $\tilde{\varkappa}_l = \varkappa_l$ on the set Γ for $1 \leq l \leq d$. Using this coefficient we set

$$\eta_l = \frac{\sum_{j=u_l+1}^{\tilde{\tau}_l-1} \tilde{Q}_{l,j} \xi_j + \tilde{\varkappa}_l \tilde{Q}_{l, \tilde{\tau}_l} \xi_{\tilde{\tau}_l}}{H_l}.$$ \hspace{1cm} (3.23)
Note that on the set Γ, for any $1 \leq l \leq d$, the random variables $\eta_l = \xi^*$. Moreover (see Lemma A.2), for any $1 \leq l \leq d$ and $p \in P$

$$E_{p,S} \left(\eta_l | G_l \right) = 0, \quad E_{p,S} \left(\eta_l^2 | G_l \right) = \sigma_l^2 \quad \text{and} \quad E_{p,S} \left(\eta_l^4 | G_l \right) \leq \bar{m}\sigma_l^4, \quad (3.23)$$

where $\sigma_l = H_l^{-1/2}$, $G_l = \sigma\{\eta_1, \ldots, \eta_{l-1}, \sigma_l\}$ and $\bar{m} = 4(144/\sqrt{3})^4m^*_4$. It is clear that

$$\sigma_{0,*} \leq \min_{1 \leq l \leq d} \sigma_l^2 \leq \max_{1 \leq l \leq d} \sigma_l^2 \leq \sigma_{1,*}, \quad (3.24)$$

where

$$\sigma_{0,*} = \frac{1 - \epsilon^2}{2(1 - \epsilon)n\bar{h}} \quad \text{and} \quad \sigma_{1,*} = \frac{1}{(1 - \epsilon)(2n\bar{h} - \bar{q} - 3)}.$$

Now, taking into account that $|\varpi_{1,l}| \leq L\bar{h}$, for any $S \in \Theta_{\epsilon,L}$ we obtain that

$$\sup_{S \in \Theta_{\epsilon,L}} E_{p,S} \varpi_l^2 \leq \left(L^2\bar{h}^2 + \frac{\hat{\nu}_n}{(n\bar{h})^2} \right), \quad (3.25)$$

where $\hat{\nu}_n = \sup_{p \in P} \sup_{S \in \Theta_{\epsilon,L}} E_{p,S} \max_{1 \leq j \leq n} Y_j^4$. The behavior of this coefficient is studied in the following proposition.

Proposition 3.3. For any $b > 0$ the sequence $(\hat{\nu}_n)_{n \geq 1}$ satisfies the following limiting equality

$$\lim_{n \to \infty} n^{-b} \hat{\nu}_n = 0. \quad (3.26)$$

Remark 3.1. It should be noted that the property (3.26) means that the asymptotic behavior of the upper bound (3.25) is approximately as \bar{h}^{-2} when $n \to \infty$. We will use this in the oracle inequalities below.

Remark 3.2. It should be emphasized that to estimate the function S in (1.1) we use the approach developed in [16] for the sequential drift estimation problem in the stochastic differential equation. On the basis of the efficient sequential kernel procedure developed in [11, 13, 18] with the kernel-indicator, the stochastic differential equation is replaced by regression model. It should be noted that to obtain the efficient estimator one needs to take the kernel-indicator estimator. By this reason, in this paper, we use the kernel-indicator in the sequential estimator (3.8). It also should be noted that the sequential estimator (3.8) which has the same form as in [4], except the last term, in which the correction coefficient is replaced by the square root of the coefficient used in [22]. We modify this procedure to calculate the variance of the stochastic term (3.17).
4 Model selection

In this section we consider the nonparametric estimation problem in the non
asymptotic setting for the regression model (1.6) for some set $\Gamma \subseteq \Omega$. The
design points $(z_l)_{1 \leq l \leq d}$ are defined in (3.1). The function $S(\cdot)$ is unknown and
has to be estimated from observations the Y_1, \ldots, Y_d. Moreover, we assume
that the unobserved random variables $(\eta_l)_{1 \leq l \leq d}$ satisfy the properties (3.23)
with some nonrandom constant $\bar{m} > 1$ and the known random positive co-
efficients $(\sigma_l)_{1 \leq l \leq d}$ satisfy the inequality (3.24) for some nonrandom positive
constants $\sigma_{0,*}$ and $\sigma_{1,*}$. Concerning the random sequence $\varpi = (\varpi_l)_{1 \leq l \leq n}$ we
suppose that

$$u_d^* = E_{p,S 1_{\Gamma}} \| \varpi \|_d^2 < \infty.$$ (4.1)

The performance of any estimator \hat{S} will be measured by the empirical
squared error

$$\| \hat{S} - S \|_d^2 = (\hat{S} - S, \hat{S} - S)_d = \frac{b - a}{d} \sum_{l=1}^d (\hat{S}(z_l) - S(z_l))^2.$$

Now we fix a basis $(\phi_j)_{1 \leq j \leq n}$ which is orthonormal for the empirical inner
product:

$$(\phi_i, \phi_j)_d = \frac{b - a}{d} \sum_{l=1}^d \phi_i(z_l) \phi_j(z_l) = 1_{\{i=j\}}.$$ (4.2)

For example, we can take the trigonometric basis $(\phi_j)_{j \geq 1}$ in $L_2[a, b]$ defined as

$$\phi_1 = 1, \quad \phi_j(x) = \sqrt{\frac{2}{b-a}} \text{Tr}_j(2\pi[j/2]l_0(x)), \quad j \geq 2,$$ (4.3)

where the function $\text{Tr}_j(x) = \cos(x)$ for even j and $\text{Tr}_j(x) = \sin(x)$ for odd
j, $[x]$ denotes the integer part of x. and $l_0(x) = (x - a)/(b - a)$. Note that,
using the orthonormality property (4.2) we can represent for any $1 \leq l \leq d$
the function S as

$$S(z_l) = \sum_{j=1}^d \theta_{j,d} \phi_j(z_l) \quad \text{and} \quad \theta_{j,d} = (S, \phi_j)_d.$$ (4.4)

So, to estimate the function S we have to estimate the Fourier coefficients
$(\theta_{j,d})_{1 \leq j \leq d}$. To this end, we replace the function S by these observations, i.e.

$$\hat{\theta}_{j,d} = \frac{b - a}{d} \sum_{l=1}^d Y_l \phi_j(z_l).$$ (4.5)
From (1.6) we obtain immediately the following regression scheme
\[\hat{\theta}_{j,d} = \theta_{j,d} + \zeta_{j,d} \quad \text{with} \quad \zeta_{j,d} = \sqrt{\frac{b - a}{d}} \eta_{j,d} + \varpi_{j,d}, \quad (4.6) \]

where
\[\eta_{j,d} = \sqrt{\frac{b - a}{d}} \sum_{l=1}^{d} \eta_l \phi_j(z_l) \quad \text{and} \quad \varpi_{j,d} = \frac{b - a}{d} \sum_{l=1}^{d} \varpi_l \phi_j(z_l). \]

Note that the upper bound (3.24) and the Bounyakovskii-Cauchy-Schwarz inequality imply that
\[|\varpi_{j,d}| \leq \|\varpi\|_d \|\phi_j\|_d = \|\varpi\|_d. \quad (4.7) \]

We estimate the function S on the grid (3.1) by the weighted least-squares estimator
\[\hat{S}_\lambda(z_l) = \sum_{j=1}^{d} \lambda(j) \hat{\theta}_{j,d} \phi_j(z_l) \mathbf{1}_\Gamma, \quad 1 \leq l \leq d, \quad (4.8) \]

where the weight vector $\lambda = (\lambda(1), \ldots, \lambda(d))'$ belongs to some finite set $\Lambda \subset [0,1]^d$, the prime denotes the transposition. We set for any $a \leq t \leq b$
\[\hat{S}_\lambda(t) = \hat{S}_\lambda(z_1) \mathbf{1}_{\{a \leq t \leq z_1\}} + \sum_{l=2}^{d} \hat{S}_\lambda(z_l) \mathbf{1}_{\{z_{l-1} \leq t \leq z_l\}}. \quad (4.9) \]

Moreover, denoting $\lambda^2 = (\lambda^2(1), \ldots, \lambda^2(n))'$ we define the following sets
\[\Lambda_1 = \{\lambda^2, \lambda \in \Lambda\} \quad \text{and} \quad \Lambda_2 = \Lambda \cup \Lambda_1. \quad (4.10) \]

Denote by ν the cardinal number of the set Λ and
\[\nu^* = \max_{\lambda \in \Lambda} \sum_{j=1}^{d} \mathbf{1}_{\{\lambda(j) > 0\}}. \]

In order to obtain a good estimator, we have to write a rule to choose a weight vector $\lambda \in \Lambda$ in (4.8). We define the empirical squared risk as
\[\text{Err}_d(\lambda) = \|\hat{S}_\lambda - S\|_d^2. \]

Using (4.4) and (4.8) we can rewrite this risk as
\[\text{Err}_d(\lambda) = \sum_{j=1}^{d} \lambda^2(j) \hat{\theta}_{j,d}^2 - 2 \sum_{j=1}^{d} \lambda(j) \hat{\theta}_{j,d} \theta_{j,d} + \sum_{j=1}^{d} \theta_{j,d}^2. \quad (4.11) \]
Since the coefficient $\theta_{j,d}$ is unknown, we need to replace the term $\hat{\theta}_{j,d} \theta_{j,d}$ by some of its estimators which we choose as

$$
\tilde{\theta}_{j,d} = \hat{\theta}_{j,d}^2 - \frac{b - a}{d} s_{j,d} \quad \text{with} \quad s_{j,d} = \frac{b - a}{d} \sum_{l=1}^{d} \sigma_{l}^2 \phi_j(z_l).
$$

(4.12)

Note that from (3.24) - (4.2) it follows that

$$
s_{j,d} \leq \sigma_{1,*}.
$$

(4.13)

Finally, we define the cost function of the form

$$
J_d(\lambda) = \sum_{j=1}^{d} \lambda^2(j) \tilde{\theta}_{j,d}^2 - 2 \sum_{j=1}^{d} \lambda(j) \tilde{\theta}_{j,d} + \delta P_d(\lambda),
$$

(4.14)

where the penalty term is defined as

$$
P_d(\lambda) = \frac{b - a}{d} \sum_{j=1}^{d} \lambda^2(j) s_{j,d}
$$

(4.15)

and $0 < \delta < 1$ is some positive constant which will be chosen later. We set

$$
\hat{\lambda} = \arg \min_{\lambda \in \Lambda} J_d(\lambda)
$$

(4.16)

and define an estimator of $S(t)$ of the form (4.9):

$$
\hat{S}_s(t) = \hat{S}_{\hat{\lambda}}(t) \quad \text{for} \quad a \leq t \leq b.
$$

(4.17)

Remark 4.1. We use the procedure (4.17) to estimate the function S in the autoregressive model (1.1) through the regression scheme (1.6) generated by the sequential procedures (3.15).

5 Main results

In this section we formulate all main results. First we obtain the sharp oracle inequality for the selection model procedure (4.17) for the general regression model (1.6).

Theorem 5.1. There exists some constant $l^* > 0$ such that for any weight vectors set Λ, any $p \in \mathcal{P}$, any $n \geq 1$ and $0 < \delta \leq 1/12$, the procedure (4.17), satisfies the following oracle inequality

$$
E_{p,S}\|\hat{S}_s - S\|_d^2 \leq \frac{1 + 4\delta}{1 - 6\delta} \min_{\lambda \in \Lambda} E_{p,S}\|\hat{S}_{\lambda} - S\|_d^2
$$

$$
+ l^* \frac{\nu \kappa^2}{\delta} \left(\frac{\sigma_{1,*}^2}{\sigma_{0,*} d} + u^*_d + \delta^2 \sqrt{P_S(\Gamma^c)} \right).
$$

(5.1)
Using now Lemma A.7 we obtain the oracle inequality for the quadratic risks (1.2).

Theorem 5.2. There exists some constant $l^* > 0$ such that for any weight vectors set Λ, any continuously differentiable function S, any $p \in \mathcal{P}$, any $n \geq 1$ and $0 < \delta \leq 1/12$, the procedure (4.17) satisfies the following oracle inequality

$$R_p(\hat{S}_*, S) \leq \frac{(1 + 4\delta)(1 + \delta)^2}{1 - 6\delta} \min_{\lambda \in \Lambda} R_p(\hat{S}_\lambda, S)$$

$$+ l^* \nu \left(\frac{\|\hat{S}\|^2}{d^2} + \frac{\sigma_{x,x}^2}{\sigma_{0,x}^2} + u_d + \delta^2 \sqrt{P_x(\Gamma_c)} \right).$$

(5.2)

Now we assume that the cardinal ν of Λ and the parameter ς in the density family (2.1) are functions of the number observations n, i.e. $\nu = \nu(n)$ and $\varsigma = \varsigma(n)$ such that for any $\tilde{\delta} > 0$

$$\lim_{n \to \infty} \frac{\nu(n)}{n^{\tilde{\delta}}} = 0.$$

(5.3)

Using Propositions 3.2 – 3.3 and the bounds (3.24) - (3.25) we obtain the oracle inequality for the estimation problem for the model (1.1).

Theorem 5.3. Assume that the conditions (2.2) and (5.3) hold. Then for any $p \in \mathcal{P}$, $S \in \Theta_{\epsilon,L}$, $n \geq 3$ and $0 < \delta \leq 1/12$, the procedure (4.17) satisfies the following oracle inequality

$$R_p(\hat{S}_*, S) \leq \frac{(1 + 4\delta)(1 + \delta)^2}{1 - 6\delta} \min_{\lambda \in \Lambda} R_p(\hat{S}_\lambda, S) + B_n(p) \frac{\delta n}{\tilde{\delta}}.$$

(5.4)

where the term $B_n(p)$ is such that for any $\tilde{\delta} > 0$

$$\lim_{n \to \infty} \frac{B_n(p)}{n^{\tilde{\delta}}} = 0.$$

We obtain the same inequality for the robust risks

Theorem 5.4. Assume that the conditions (2.2) and (5.3) hold. Then for any $n \geq 3$, any $S \in \Theta_{\epsilon,L}$ and any $0 < \delta \leq 1/12$, the procedure (4.17) satisfies the following oracle inequality

$$R^*(\hat{S}_*, S) \leq \frac{(1 + 4\delta)(1 + \delta)^2}{1 - 6\delta} \min_{\lambda \in \Lambda} R^*(\hat{S}_\lambda, S) + B_n^* \frac{\delta n}{\tilde{\delta}},$$

(5.5)

where the term B_n^* is such that for any $\tilde{\delta} > 0$

$$\lim_{n \to \infty} \frac{B_n^*}{n^{\tilde{\delta}}} = 0.$$
It is well known that to obtain the efficiency property we need to specify the weight coefficients \((\lambda(j))_{1 \leq j \leq n} \) (see, for example, [15]). Consider for some fixed \(0 < \varepsilon < 1 \) a numerical grid of the form

\[
\mathcal{A} = \{1, \ldots, k^*\} \times \{\varepsilon, \ldots, m\varepsilon\},
\]

where \(m = [1/\varepsilon^2] \). We assume that both parameters \(k^* \geq 1 \) and \(\varepsilon \) are functions of \(n \), i.e. \(k^* = k^*(n) \) and \(\varepsilon = \varepsilon(n) \), such that

\[
\begin{align*}
\lim_{n \to \infty} k^*(n) &= +\infty, \\
\lim_{n \to \infty} k^*(n) &\frac{\ln n}{\ln n} = 0, \\
\lim_{n \to \infty} \varepsilon(n) &= 0 \quad \text{and} \quad \lim_{n \to \infty} n^\delta \varepsilon(n) = +\infty
\end{align*}
\]

for any \(\delta > 0 \). One can take, for example, for \(n \geq 2 \)

\[
\varepsilon(n) = \frac{1}{\ln n} \quad \text{and} \quad k^*(n) = k^*_0 + \sqrt{\ln n},
\]

where \(k^*_0 \geq 0 \) is some fixed constant. For each \(\alpha = (\beta, l) \in \mathcal{A} \), we introduce the weight sequence

\[
\lambda_{\alpha} = (\lambda_{\alpha}(j))_{1 \leq j \leq n}
\]

with the elements

\[
\lambda_{\alpha}(j) = 1_{\{1 \leq j < j_*\}} + (1 - (j/\omega_{\alpha})^\beta) 1_{\{j_* \leq j \leq \omega_{\alpha}\}},
\]

where \(j_* = 1 + [\ln n] \), \(\omega_{\alpha} = (d_{\beta} 1n)^{1/(2\beta+1)} \) and

\[
d_{\beta} = \frac{(\beta + 1)(2\beta + 1)}{\pi^{2\beta} \beta}.
\]

Now we define the set \(\Lambda \) as

\[
\Lambda = \{\lambda_{\alpha}, \alpha \in \mathcal{A}\}.
\]

Note that these weight coefficients are used in [20, 21] for continuous time regression models to show the asymptotic efficiency. It will be noted that in this case the cardinal of the set \(\Lambda \) is \(\nu = k^*m \). It is clear that properties (5.7) imply condition (5.3).
6 Properties of the regression model (1.6)

In order to prove the oracle inequalities we need to study the conditions introduced in [20] for the general semi-martingale model. To this end we set for any $\lambda \in \mathbb{R}^d$ the functions

$$B(\lambda) = \frac{b-a}{\sqrt{d}} \sum_{j=1}^{d} \lambda(j) \tilde{\eta}_{j,d}, \quad \tilde{\eta}_{j,d} = \eta_{j,d} - \mathbb{E}_{p,S} \eta_{j,d}^2. \quad (6.1)$$

Proposition 6.1. For any $d \geq 1$ and any $\lambda = (\lambda_1, \ldots, \lambda_d) \in \mathbb{R}^d$

$$\mathbb{E}_{p,S} 1_\Gamma B^2(\lambda) \leq 10(b - a) \sigma_1 \tilde{m} \mathbb{E}_{p,S} P_d(\lambda). \quad (6.2)$$

where \tilde{m} is defined in (3.23).

Proof. First note that the random variable $\tilde{\eta}_{j,d}$ can be represented as

$$\tilde{\eta}_{j,d} = \frac{b-a}{d} \sum_{l=1}^{d} \left(\phi_{j,l}^2 (z_l) \hat{\eta}_l + 2 1_{l \geq 2} \bar{v}_{j,l} \eta_l \right),$$

where $\hat{\eta}_l = \eta_l^2 - \sigma_l^2$ and $\bar{v}_{j,l} = \phi_j(z_l) \sum_{r=1}^{l-1} \phi_j(z_r) \eta_r$. Therefore, we can rewrite the term $B(\lambda)$ as

$$B(\lambda) = B_1(\lambda) + 2B_2(\lambda).$$

The terms $B_1(\lambda)$ and $B_2(\lambda)$ are defined as

$$B_1(\lambda) = \frac{(b-a)^2}{d \sqrt{d}} \sum_{l=1}^{d} \psi_{1,l}(\lambda) \hat{\eta}_l \quad \text{and} \quad B_2(\lambda) = \frac{(b-a)^2}{d \sqrt{d}} \sum_{l=2}^{d} \psi_{2,l}(\lambda) \eta_l,$$

where

$$\psi_{1,l}(\lambda) = \sum_{j=1}^{d} \lambda(j) \phi_{j,l}^2 (z_l) \quad \text{and} \quad \psi_{2,l}(\lambda) = \sum_{j=1}^{d} \lambda(j) \bar{v}_{j,l}.$$

So,

$$\mathbb{E}_{p,S} B^2(\lambda) \leq 2\mathbb{E}_{p,S} B_1^2(\lambda) + 8\mathbb{E}_{p,S} B_2^2(\lambda). \quad (6.3)$$

Taking into account property (4.2) and Bonyakovskii - Cauchy - Schwarz inequality we get

$$\psi_{1,l}^2(\lambda) \leq \sum_{j=1}^{d} \lambda^2(j) \phi_{j,l}^2 (z_l) \sum_{j=1}^{d} \phi_{j,l}^2 (z_l) = \frac{d}{b-a} \sum_{j=1}^{d} \lambda^2(j) \phi_{j,l}^2 (z_l).$$
In view of properties (3.23) we obtain that

\[
\mathbf{E}_{p,S} B_2^2(\lambda) = \frac{(b-a)^4}{d^3} \sum_{l=1}^{d} \psi_{1,l}^2(\lambda) \mathbf{E}_{p,S} \eta_l^2 \leq \frac{(b-a)^4}{d^3} \sum_{l=1}^{d} \psi_{1,l}^2(\lambda) \mathbf{E}_{p,S} \eta_l^4
\]

\[
\leq \sigma_{1,*} \hat{m} \frac{(b-a)^3}{d^2} \mathbf{E}_{p,S} \sum_{j=1}^{d} \lambda^2(j) \sum_{l=1}^{d} \sigma_l^2 \phi_j^2(z_l)
\]

\[
= \sigma_{1,*} (b-a) \mathbf{E}_{p,S} P_d(\lambda).
\]

To estimate the last term in the right hand side of the inequality (6.3), noting that the term \(\psi_{2,l}(\lambda)\) can be represented as

\[
\psi_{2,l}(\lambda) = \sum_{r=1}^{l-1} g_{l,r} \eta_r,
\]

where \(g_{l,r} = \sum_{j=1}^{d} \lambda(j) \phi_j(z_l) \phi_j(z_r)\), we use properties (3.23) to obtain

\[
\mathbf{E}_{p,S} B_2^2(\lambda) = \frac{(b-a)^4}{d^3} \sum_{l=2}^{d} \mathbf{E}_{p,S} \psi_{2,l}^2(\lambda) \eta_l^2 \leq \sigma_{1,*} \frac{(b-a)^4}{d^3} \sum_{l=2}^{d} \mathbf{E}_{p,S} \psi_{2,l}^2(\lambda)
\]

\[
= \sigma_{1,*} \frac{(b-a)^4}{d^3} \sum_{l=2}^{d} \sum_{r=1}^{l-1} g_{l,r} \mathbf{E}_{p,S} \sigma_r^2
\]

\[
\leq \sigma_{1,*} \frac{(b-a)^4}{d^3} \sum_{r=1}^{d} \mathbf{E}_{p,S} \sigma_r^2 \sum_{l=1}^{d} g_{l,r} = \sigma_{1,*} (b-a) \mathbf{E}_{p,S} P_d(\lambda).
\]

Hence Proposition 6.1. \(\Box\)

Now we need the following moment bound.

Proposition 6.2. For any non random \(v_1, \ldots, v_d\)

\[
\mathbf{E} \left(\sum_{j=1}^{d} v_j \eta_{j,d} \right)^2 \leq \sigma_{1,*} \sum_{j=1}^{d} v_j^2.
\] \hspace{1cm} (6.4)

Proof. Note that

\[
\mathbf{E} \left(\sum_{j=1}^{d} v_j \eta_{j,d} \right)^2 = \frac{b-a}{d} \mathbf{E} \sum_{l=1}^{d} \sigma_l^2 \left(\sum_{j=1}^{d} v_j \phi_j(z_l) \right)^2
\]

\[
\leq \sigma_{1,*} \frac{(b-a)}{d} \sum_{l=1}^{d} \left(\sum_{j=1}^{d} v_j \phi_j(z_l) \right)^2.
\]
By applying the orthonormal property (4.2) we obtain the desired inequality. Hence Proposition 6.2. □

7 Proofs

7.1 Proof of Proposition 3.1

First recall that

\[\hat{S}_{i_l} = \frac{1}{A_{i_l}} \sum_{j=1}^{i_l} Q_{i_l,j} y_{j-1} y_j \quad \text{and} \quad \overline{S}_{i_l} = \min(\max(\hat{S}_{i_l}, -1 + \tilde{\epsilon}), 1 - \tilde{\epsilon}) , \]

where \(\tilde{\epsilon} = 1/(2 + \ln n) \). Note that for sufficiently large \(n \), for which we have \(\tilde{\epsilon} < \epsilon \) and then \(S(z_l) \in [-1 + \tilde{\epsilon}; 1 - \tilde{\epsilon}] \). We can write

\[|\overline{S}_{i_l} - S(z_l)| \leq |\hat{S}_{i_l} - S(z_l)| \leq \sum_{j=k_{1,l}}^{i_l} y_{j-1}^2 |S(x_j) - S(z_l)| + I_n \]

where \(I_n = \sum_{j=k_{1,l}}^{i_l} y_{j-1} \xi_j / \sum_{j=k_{1,l}}^{i_l} y_{j-1}^2 \). Taking into account that \(|x_j - z_l| \leq h \) for \(k_{1,l} \leq j \leq k_{2,l} \), we obtain that for any \(S \in \Theta_{\epsilon,L} \),

\[|\overline{S}_{i_l} - S(z_l)| \leq Lh + |I_n| . \]

So, for sufficiently large \(n \)

\[
P_{p,S} \left(|\overline{S}_{i_l} - S(z_l)| > \epsilon_0 \right) \leq P_{p,S} \left(I_n > \frac{\epsilon_0}{2} \right) \]

\[
\leq P_{p,S} \left(I_n > \frac{\epsilon_0}{2} , \Xi \right) + P_{p,S} (\Xi^c) ,
\]

where \(\Xi = \left\{ |\gamma_{m_0,m_1}(z_l)| \leq 1/2 \right\} \), \(m_0 = k_{1,l} - 2 \), \(m_1 = i_l - 1 \) and \(\gamma_{m_0,m_1}(z_l) \) is defined in (A.7). Hence we obtain the following inequality on the set \(\Xi \):

\[
\sum_{j=k_{1,l}}^{i_l} y_{j-1}^2 = (i_l - k_{1,l} + 1) \left(\frac{1}{1 - S^2(z_l)} + \gamma_{m_0,m_1}(z_l) \right) \geq \frac{q}{2} .
\]
Therefore, for any \(\bar{p} > 2 \),

\[
P_{p,S} \left(I_n > \frac{c_0}{2}, \Xi \right) \leq P_{p,S} \left(\left| \sum_{j=k_{1,l}}^{t_l} y_{j-1} \xi_j \right| > \frac{q}{2} \right)
\]

\[
\leq \frac{q^\bar{p}}{\bar{q}^\bar{p}} E_{p,S} \left| \sum_{j=k_{1,l}}^{t_l} y_{j-1} \xi_j \right|^\bar{p}.
\]

(7.2)

Using here the correlation inequality (A.2) and the bound (A.6), we obtain that

\[
\max_{1 \leq l \leq d} \sup_{S \in \Theta_{L}} \sup_{p \in P} E_{p,S} \left| \sum_{j=k_{1,l}}^{t_l} y_{j-1} \xi_j \right|^\bar{p} \leq c_p q^{\bar{p}/2}.
\]

Applying this bound in (7.1) and using Lemma A.6 we obtain Proposition 3.1.

7.2 Proof of Proposition 3.2

First note, that

\[
P_{p,S}(\Gamma^c) \leq \sum_{l=1}^{d} P_{p,S} \left(A_{t_l,k_{2,l}-1} < H_l \right).
\]

Moreover, note that in view of definition (A.7) the term \(A_{t_l,k_{2,l}-1} \) can be represented as

\[
A_{t_l,k_{2,l}-1} = (m_{1,l} - m_{0,l}) \left(\frac{1}{\gamma_l} + \Upsilon_{m_{0,l},m_{1,l}}(z_l) \right),
\]

where \(m_{0,l} = t_l - 1 \) and \(m_{1,l} = k_{2,l} - 2 \). Taking into account the definition of \(H_l \) in (3.11) and the fact that \(0 < \tilde{\gamma}_l, \gamma_l \leq 1 \) and that \(|\tilde{\gamma}_l - \gamma_l| \leq 2|\tilde{S}_l - S(z_l)| \), we obtain

\[
P_{p,S} \left(A_{t_l,k_{2,l}-1} < H_l \right) = P_{p,S} \left(\frac{1}{\gamma_l} + \Upsilon_{m_{0,l},m_{1,l}}(z_l) < \frac{1 - \bar{\epsilon}}{\tilde{\gamma}_l} \right)
\]

\[
\leq P_{p,S} \left(\left| \frac{1}{\gamma_l} - \frac{1}{\tilde{\gamma}_l} \right| > \frac{\bar{\epsilon}}{2} \right) + P_{p,S} \left(\left| \Upsilon_{m_{0,l},m_{1,l}}(z_l) \right| > \frac{\bar{\epsilon}}{2} \right)
\]

\[
\leq P_{p,S} \left(\left| \tilde{S}_l - S(z_l) \right| > \frac{\bar{\epsilon}^2}{4} \right) + P_{p,S} \left(\left| \Upsilon_{m_{0,l},m_{1,l}}(z_l) \right| > \frac{\bar{\epsilon}}{2} \right).
\]

Applying here Proposition 3.1 and Lemma A.6 we obtain Proposition 3.2.

\[\square\]
7.3 Proof of Proposition 3.3

Note that, for any $m \geq 1$

$$E_{p,S} \max_{1 \leq j \leq n} y_j^4 \leq n^{b/2} + \sum_{j=1}^{n} \int_{nb/2}^{+\infty} P_{p,S}(y_j^4 \geq z) \, dz$$

$$\leq n^{b/2} + n \max_{1 \leq j \leq n} E_{p,S} |y_j|^{4m} \int_{nb/2}^{+\infty} z^{-m} \, dz$$

$$= n^{b/2} + \max_{1 \leq j \leq n} E_{p,S} |y_j|^{4m} \frac{n^{1-b(m-1)/2}}{m-1}.$$

Choosing here $m > 1 + 2/b$ and using the bound (A.6) we obtain the property (3.26). Hence Proposition 3.3.

7.4 Proof of Theorem 5.1

First of all, note that on the set Γ we can represent the empirical squared error $Err_d(\lambda)$ in the form

$$Err_d(\lambda) = J_d(\lambda) + 2 \sum_{j=1}^{d} \lambda(j) \theta'_{j,d} + \|S\|_d^2 - \delta P_d(\lambda)$$

(7.3)

with $\theta'_{j,d} = \tilde{\theta}_{j,d} - \theta_{j,d} \hat{\theta}_{j,d}$. From (4.6) we find that

$$\theta'_{j,d} = \theta_{j,d} \xi_{j,d} + \frac{b-a}{d} \tilde{n}_{j,d} + 2 \sqrt{\frac{b-a}{d}} n_{j,d} \omega_{j,d} + \omega_{j,d}^2,$$

where $\tilde{n}_{j,d} = n_{j,d}^2 - s_{j,d}$. Now putting

$$M(\lambda) = \sum_{j=1}^{d} \lambda(j) \theta_{j,d} \xi_{j,d},$$

(7.4)

we rewrite (7.3) as follows

$$Err_d(\lambda) = J_d(\lambda) + 2M(\lambda) + 2 \frac{1}{\sqrt{d}} B(\lambda)$$

$$+ 2\Delta(\lambda) + \|S\|_d^2 - \delta P_d(\lambda),$$

(7.5)
where \(\mathbf{B}(\lambda) \) is given in (6.1), \(\Delta(\lambda) = \Delta_1(\lambda) + \Delta_2(\lambda) \),

\[
\Delta_1(\lambda) = \sum_{j=1}^{d} \lambda(j) \varpi_{j,d}^2 \quad \text{and} \quad \Delta_2(\lambda) = 2 \sqrt{\frac{b-a}{d}} \sum_{j=1}^{d} \lambda(j) \eta_{j,d} \varpi_{j,d}.
\]

In view of Proposition 6.1, for any \(\lambda \in \mathbb{R}^d \),

\[
\mathbb{E}_{p,s} \mathbf{1}_{\mathbf{1}} \mathbf{B}^2(\lambda) \leq 10 \sigma_{1,*}(b-a) \mathbf{m} \mathbb{E}_{p,s} P_d(\lambda). \quad (7.6)
\]

Note that the inequalities (3.24) imply that

\[
P_{0,d}(\lambda) \leq P_d(\lambda) \leq P_{1,d}(\lambda), \quad (7.7)
\]

where

\[
P_{0,d}(\lambda) = \frac{\sigma_{0,*}(b-a)|\lambda|^2}{d} \quad \text{and} \quad P_{1,d}(\lambda) = \frac{\sigma_{1,*}(b-a)|\lambda|^2}{d}.
\]

For \(\Delta_1(\lambda) \), taking into account the properties of Fourier coefficients we obtain that

\[
\sup_{\lambda \in [0,1]^d} |\Delta_1(\lambda)| \leq \sum_{j=1}^{d} \varpi_{j,d}^2 = \|\varpi\|_d^2. \quad (7.8)
\]

To estimate the term \(\Delta_2(\lambda) \) we recall that, for any \(\varepsilon > 0 \) and any \(x, y \in \mathbb{R} \)

\[
2xy \leq \varepsilon x^2 + \varepsilon^{-1} y^2. \quad (7.9)
\]

Therefore, for some \(0 < \varepsilon < 1 \),

\[
|\Delta_2(\lambda)| \leq \varepsilon \frac{b-a}{d} \sum_{j=1}^{d} \lambda^2(j) \eta_{j,d}^2 + \frac{\|\varpi\|_d^2}{\varepsilon} = \varepsilon P_d(\lambda) + \varepsilon \frac{\|\mathbf{B}(\lambda^2)\|}{\sqrt{d}} + \frac{\|\varpi\|_d^2}{\varepsilon},
\]

where the vector \(\lambda^2 \in \Lambda_1 \) as in (4.10). Thus, for any \(\lambda \in [0,1]^d \),

\[
|\Delta(\lambda)| \leq \varepsilon P_d(\lambda) + \varepsilon \frac{\|\mathbf{B}(\lambda^2)\|}{\sqrt{d}} + 2\varepsilon^{-1}\|\varpi\|_d^2. \quad (7.10)
\]

Putting

\[
M_1(\lambda) = 2 \frac{\mathbf{B}(\lambda)}{\sqrt{d}} + 2\Delta(\lambda),
\]

we can rewrite the empirical risk (7.5) as

\[
\text{Err}_{d}(\lambda) = J_d(\lambda) + 2M(\lambda) + P_{1}(\lambda) + \|S\|_d^2 - \delta P_d(\lambda). \quad (7.11)
\]
From (7.10) we obtain

\[|M_1(\lambda)| \leq 2 \frac{|B(\lambda)|}{\sqrt{d}} + 2 \frac{|B(\lambda^2)|}{\sqrt{d}} + 2\varepsilon P_d(\lambda) + 4\varepsilon^{-1}\|\varpi\|_d^2. \]

Moreover, setting

\[B^* = \sup_{\lambda \in \Lambda} \left(\frac{B^2(\lambda)}{P_d(\lambda)} + \frac{B^2(\lambda^2)}{P_d(\lambda^2)} \right) \]

and taking into account that \(P_d(\lambda^2) \leq P_d(\lambda) \) for any \(\lambda \in \Lambda \), we get

\[2 \frac{|B(\lambda)|}{\sqrt{d}} + 2 \frac{|B(\lambda^2)|}{\sqrt{d}} \leq 2\varepsilon P_d(\lambda) + \varepsilon^{-1} B^*. \]

By choosing \(\varepsilon = \delta/4 \) we find

\[|M_1(\lambda)| \leq \delta P_d(\lambda) + \frac{16}{\delta} \Upsilon_d, \quad \Upsilon_d = \frac{B^*}{4d} + \|\varpi\|_d^2. \]

(7.12)

Now from (7.11) we obtain that, for some fixed \(\lambda_0 \) from \(\Lambda \),

\[\text{Err}_d(\hat{\lambda}) - \text{Err}_d(\lambda_0) = J_d(\hat{\lambda}) - J_d(\lambda_0) + 2 M(\hat{\mu}) + M_1(\hat{\lambda}) - \delta P_d(\hat{\lambda}) - M_1(\lambda_0) + \delta P_d(\lambda_0), \]

where \(\hat{\mu} = \hat{\lambda} - \lambda_0 \). By the definition of \(\hat{\lambda} \) in (4.16) we obtain on the set \(\Gamma \)

\[\text{Err}_d(\hat{\lambda}) \leq \text{Err}_d(\lambda_0) + 2 M(\hat{\mu}) + 32 \frac{\Upsilon_d}{\delta} + 2\delta P_d(\lambda_0). \]

(7.13)

From (7.6) and (7.7) it follows that

\[\mathbf{E}_{p,S} \textbf{1}_\Gamma B^* \leq \sum_{\lambda \in \Lambda} \mathbf{E}_{p,S} \textbf{1}_\Gamma \left(\frac{B^2(\lambda)}{P_d(\lambda)} + \frac{B^2(\lambda^2)}{P_d(\lambda^2)} \right) \]

\[\leq 10\sigma_{1,*}(b-a)\bar{m} \sum_{\lambda \in \Lambda} \left(\frac{P_{1,d}(\lambda)}{P_{0,d}(\lambda)} + \frac{P_{1,d}(\lambda^2)}{P_{0,d}(\lambda^2)} \right) \]

\[= 20\bar{m}(b-a)\nu \bar{\sigma}_*. \]

and \(\bar{\sigma}_* = \frac{\sigma_{1,*}^2}{\sigma_{0,*}} \). Therefore, for \(0 < \delta < 1 \) this inequality allows to bound \(\Upsilon_d \) as

\[\mathbf{E}_{p,S} \textbf{1}_\Gamma \Upsilon_d \leq \frac{5\bar{m}(b-a)\bar{\sigma}_* \nu}{d} + u_d^*, \]

(7.14)
where \(\mathbf{u}_d^* \) is given by (4.1).

Now we study the second term on the right-hand side of inequality (7.13). For any weight vector \(\lambda \in \Lambda \) we set \(\mu = \lambda - \lambda_0 \). Then we decompose this term as

\[
M(\mu) = Z(\mu) + V(\mu)
\]

with

\[
Z(\mu) = \sqrt{\frac{b-a}{d}} \sum_{j=1}^{d} \mu(j) \theta_{j,d} \eta_{j,d} \quad \text{and} \quad V(\mu) = \sum_{j=1}^{d} \mu(j) \theta_{j,d} \varpi_{j,d}.
\]

We define now the weighted discrete Fourier transformation of \(S \), i.e. we set

\[
\tilde{S}_\mu = \sum_{j=1}^{d} \mu(j) \theta_{j,d} \phi_j.
\]

Now by using Proposition 6.2 we can estimate the term \(Z(\mu) \) as

\[
E_{p,S} 1_\Gamma Z^2(\mu) \leq \sigma_{1,s}(b-a) \| \tilde{S}_\mu \|_d := \sigma_{1,s}(b-a) D(\mu). \tag{7.17}
\]

Moreover, by the inequalities (7.9) with \(\varepsilon = \delta \) and (7.8) we can estimate \(V(\mu) \) as follows

\[
2V(\mu) = 2 \sum_{j=1}^{d} \mu(j) \theta_{j,d} \varpi_{j,d} \leq \delta \| \tilde{S}_\mu \|_d^2 + \frac{\| \varpi \|_d^2}{\delta}. \tag{7.18}
\]

Setting

\[
Z^* = \sup_{\mu \in \Lambda - \lambda_0} \frac{Z^2(\mu)}{D(\mu)},
\]

we obtain on the set \(\Gamma \)

\[
2M(\mu) \leq 2\delta \| \tilde{S}_\mu \|_d^2 + \frac{Z^*}{d\delta} + \frac{\| \varpi \|_d^2}{\delta}. \tag{7.19}
\]

Note now that from (7.17) it follows that

\[
E_{p,S} 1_\Gamma Z^* \leq \sum_{\mu \in \Lambda - \lambda_0} \frac{E_{p,S} 1_\Gamma Z^2(\mu)}{D(\mu)} \leq \nu \sigma_{1,s}(b-a). \tag{7.20}
\]
Now we estimate the first term on the right-hand side of the inequality (7.19). On the set Γ we have
\[
\|\tilde{\mathbf{S}}_{\mu}\|_{d}^{2} - \|\hat{\mathbf{S}}_{\mu}\|_{d}^{2} = \sum_{j=1}^{d} \mu^{2}(j)(\theta_{j,d}^{2} - \hat{\theta}_{j,d}^{2}) \leq -2 \sum_{j=1}^{d} \mu^{2}(j) \theta_{j,d} \zeta_{j,d} \\
= -2Z_{1}(\mu) - 2V_{1}(\mu),
\] (7.21)
where
\[
Z_{1}(\mu) = \sqrt{\frac{b-a}{d}} \sum_{j=1}^{d} \mu^{2}(j)\theta_{j,d}\eta_{j,d} \quad \text{and} \quad V_{1}(\mu) = \sum_{j=1}^{d} \mu^{2}(j)\theta_{j,d}\varpi_{j,d}.
\]
Taking into account that $|\mu(j)| \leq 1$, similarly to inequality (7.17), we find
\[
\mathbf{E}_{p,S} \mathbf{1}_{\Gamma} Z_{1}^{2}(\mu) \leq \sigma_{1,*} \mathbf{D}(\mu).
\]
Moreover, for the random variable
\[
Z_{1}^{*} = \sup_{\mu \in \Lambda - \lambda_{0}} \frac{Z_{1}^{2}(\mu)}{\mathbf{D}(\mu)},
\]
we obtain the same upper bound as in (7.20), i.e.
\[
\mathbf{E}_{p,S} Z_{1}^{*} \mathbf{1}_{\Gamma} \leq \nu \sigma_{1,*}(b-a).
\] (7.22)
Furthermore, similarly to (7.18) we estimate the second term in (7.21) as
\[
2|V_{1}(\mu)| \leq \delta \|\tilde{S}_{\mu}\|_{d}^{2} + \frac{\|\varpi\|_{d}^{2}}{\delta},
\]
Therefore, on the set Γ
\[
\|\tilde{S}_{\mu}\|_{d}^{2} \leq \|\hat{S}_{\mu}\|_{d}^{2} + 2\delta \|\tilde{S}_{\mu}\|_{d}^{2} + \frac{Z_{1}^{*}}{d\delta} + \frac{\|\varpi\|_{d}^{2}}{\delta},
\]
i.e.
\[
\|\tilde{S}_{\mu}\|_{d}^{2} \leq \frac{1}{1-2\delta} \|\hat{S}_{\mu}\|_{d}^{2} + \frac{1}{(1-2\delta)d\delta} \left(\frac{Z_{1}^{*}}{d} + \|\varpi\|_{d}^{2} \right).
\] (7.23)
Using this inequality in (7.19) and putting $Z_{2}^{*} = Z^{*} + Z_{1}^{*}$ yield on the set Γ
\[
2M(\hat{\mu}) \leq \frac{2\delta}{1-2\delta} \|\hat{S}_{\mu}\|_{d}^{2} + \frac{1}{\delta(1-2\delta)} \left(\frac{Z_{2}^{*}}{d} + \|\varpi\|_{d}^{2} \right)
\]
\[
\leq 4\delta(\text{Err}_{d}(\hat{\lambda}) + \text{Err}_{d}(\lambda_{0})) + \frac{1}{\delta(1-2\delta)} \left(\frac{Z_{2}^{*}}{d} + \|\varpi\|_{d}^{2} \right).
\]
Therefore from the preceding inequality and (7.13) we obtain
\[
\text{Err}_d(\hat{\lambda}) \mathbf{1}_\Gamma \leq \frac{1 + 2\delta}{1 - 6\delta} \text{Err}_d(\lambda_0) \mathbf{1}_\Gamma + \frac{32(1 - 2\delta)}{\delta(1 - 6\delta)} Y_d \mathbf{1}_\Gamma
\]
\[
+ \frac{1}{\delta(1 - 6\delta)} \left(\frac{Z_d^*}{d} + \|\varpi\|_d^2 \right) \mathbf{1}_\Gamma + \frac{2\delta(1 - 2\delta)}{1 - 6\delta} P_d(\lambda_0) \mathbf{1}_\Gamma
\]
and through the inequalities (7.14), (7.20) and (7.22) we estimate the empirical risk as
\[
\mathbb{E}_{p,S} \text{Err}_d(\hat{\lambda}) \mathbf{1}_\Gamma \leq \frac{1 + 2\delta}{1 - 6\delta} \mathbb{E}_{p,S} \text{Err}_d(\lambda_0) \mathbf{1}_\Gamma + \frac{32(1 - 2\delta)}{\delta(1 - 6\delta)} \left(\frac{5\bar{m}\sigma_{1,}\nu(b - a)}{d} + \mathbf{u}_d^* \right)
\]
\[
+ \frac{1}{\delta(1 - 6\delta)} \left(\frac{2\nu\sigma_{1,}(b - a)}{d} + \mathbf{u}_d^* \right) + \frac{2\delta(1 - 2\delta)}{1 - 6\delta} \mathbb{E}_{p,S} \mathbf{1}_\Gamma P_d(\lambda_0).
\]
Taking into account that \(\sigma_{*,1} \leq \sigma_*\) and that \(1 - 6\delta > 1/2\) for \(0 < \delta < 1/12\), we get
\[
\mathbb{E}_{p,S} \text{Err}_d(\hat{\lambda}) \mathbf{1}_\Gamma \leq \frac{1 + 2\delta}{1 - 6\delta} \mathbb{E}_{p,S} \text{Err}_d(\lambda_0) \mathbf{1}_\Gamma + \frac{320}{\delta} \left(\frac{(\bar{m} + 1)\sigma_{*,}\nu(b - a)}{d} + \mathbf{u}_d^* \right)
\]
\[
+ \frac{2\delta(1 - 2\delta)}{1 - 6\delta} \mathbb{E}_{p,S} \mathbf{1}_\Gamma P_d(\lambda_0).
\]
By applying Lemma A.4 with \(\varepsilon = 2\delta\) we get that
\[
\mathbb{E}_{p,S} \text{Err}_d(\hat{\lambda}) \mathbf{1}_\Gamma \leq \frac{1 + 4\delta}{1 - 6\delta} \mathbb{E}_{p,S} \text{Err}_d(\lambda_0) \mathbf{1}_\Gamma + \frac{320}{\delta} \left(\frac{(\bar{m} + 1)\sigma_{*,}\nu(b - a)}{d} + 3\mathbf{u}_d^* \right)
\]
\[
+ 10\delta \sqrt{\sigma_{1,*}\bar{m}\mathbf{1}_{p,S}(\Gamma^c)}.
\]
Taking into account the definition of \(\bar{m}\) in (3.23) and that \(m_d^* \leq 3\varsigma^2\), then by replacing
\[
\mathbb{E}_{p,S} \text{Err}_d(\hat{\lambda}) \mathbf{1}_\Gamma \quad \text{and} \quad \mathbb{E}_{p,S} \text{Err}_d(\lambda_0) \mathbf{1}_\Gamma
\]
by
\[
\mathbb{E}_{p,S} \|\hat{S}_d - S\|_d^2 - \|S\|_d^2 \mathbf{1}_{p,S}(\Gamma^c) \quad \text{and} \quad \mathbb{E}_{p,S} \|\hat{S}_{\lambda_0} - S\|_d^2 - \|S\|_d^2 \mathbf{1}_{p,S}(\Gamma^c)
\]
respectively, we come to the inequality (5.1). Hence Theorem 5.1. □

Acknowledgements. The last author was partially supported by the Russian Federal Professor program (project no. 1.472.2016/1.4, the Ministry of Education and Science of the Russian Federation), the research project no. 2.3208.2017/4.6 (the Ministry of Education and Science of the Russian Federation), by RFBR Grant 16-01-00121 A and by "The Tomsk State University competitiveness improvement program” grant 8.1.18.2018.
A Appendix

A.1 Burkhölder inequality

We need the following from [25].

Proposition A.1. Let \((M_k)_{1 \leq k \leq n}\) be a martingale. Then for any \(q > 1\)

\[
E|M_n|^q \leq b_q^* E \left(\sum_{j=1}^{n} (M_j - M_{j-1})^2 \right)^{q/2}, \tag{A.1}
\]

where the coefficient \(b_q^* = 18(q^{3/2}/(q - 1)^{1/2})\).

A.2 Properties of the sequential procedures

Lemma A.2. The properties (3.23) hold for the random variables \((\eta_l)_{1 \leq l \leq d}\) defined in (3.22).

Proof. First, we set \(F_j = \sigma\{\xi_1, \ldots, \xi_j\}\) for \(1 \leq j \leq n\) and as usual \(F_0 = \{\Omega, \emptyset\}\). Moreover, note that

\[
\eta_l = \sum_{j=1}^{n} \tilde{t}_{l,j} \xi_j \quad \text{and} \quad t_{l,j} = \sigma_i^2 \left(1_{(t_i \leq j < \bar{t}_i)} \tilde{Q}_{l,j} + 1_{(j = \bar{t}_i)} \tilde{z}_i \tilde{Q}_{l, \bar{t}_i} \right).
\]

Taking into account that \(\tilde{t}_{l,j}\) is \(F_{j-1}\) - measurable for any \(1 \leq j \leq n\) and

\[
\sum_{j=1}^{n} t_{l,j}^2 = \sigma_i^2.
\]

Note also that \(G_l = \sigma\{\eta_1, \ldots, \eta_{l-1}, \sigma_l, \}\) \(\subset F_{t_i}\). Noting that

\[
E \left(\eta_l | F_{t_i} \right) = 0 \quad \text{and} \quad E \left(\eta_l^2 | F_{t_i} \right) = 1,
\]

we obtain the first two equalities in (3.23). As to the last inequality, note that through (A.1) we can write

\[
E_{p,S} \left(\left(\sum_{j=1}^{n} \tilde{t}_{l,j} \xi_j \right)^4 \bigg| F_{t_i} \right) \leq b_4^* E_{p,S} \left(\left(\sum_{j=1}^{n} t_{l,j}^2 \xi_j^2 \right)^2 \bigg| F_{t_i} \right).
\]
Now, note that
\[\left(\sum_{j=1}^{n} \tilde{t}_{l,j}^2 \tilde{\xi}_j^2 \right)^2 \leq 2\sigma_l^4 + 2 \left(\sum_{j=1}^{n} \tilde{t}_{l,j}^2 \tilde{\xi}_j \right)^2 \]
where \(\tilde{\xi}_j = \xi_j^2 - 1 \). Taking into account that
\[E_{p,S} \left(\left(\sum_{j=1}^{n} \tilde{t}_{l,j}^2 \tilde{\xi}_j \right)^2 | \mathcal{F}_{t_l} \right) = E_{p} \tilde{\xi}_1^2 \sum_{j=1}^{n} \tilde{t}_{l,j}^4 \leq \sigma_l^4 E_{p} \tilde{\xi}_1^2, \]
we obtain the last bound in (3.23). Hence Lemma A.2.

\[\square \]

A.3 Correlation inequality

Now we give the correlation inequality from [17].

Proposition A.3. Let \((\Omega, \mathcal{F}, (\mathcal{F}_j)_{1 \leq j \leq n}, P)\) be a filtered probability space and \((X_j, \mathcal{F}_j)_{1 \leq j \leq n}\) be a sequence of random variables such that for some \(p \geq 2\)

\[\max_{1 \leq j \leq n} E |X_j|^p < \infty. \]

Define
\[b_{j,n}(p) = \left(E(|X_j| \sum_{k=j}^{n} |E(X_k|\mathcal{F}_j)|)^{p/2} \right)^{2/p}. \]

Then
\[E \left| \sum_{j=1}^{n} X_j \right|^p \leq (2p)^{p/2} \left(\sum_{j=1}^{n} b_{j,n}(p) \right)^{p/2}. \tag{A.2} \]

A.4 Upper bound for the penalty term

Lemma A.4. For sufficiently large \(n\) and \(0 < \varepsilon < 1\),

\[E_{p,S} P_d(\lambda) \leq \frac{1}{1 - \varepsilon} E_{p,S} Err_d(\lambda) 1_{\Gamma} + \frac{u^*_d}{(1 - \varepsilon)\varepsilon} \]
\[+ \frac{10}{1 - \varepsilon} \sqrt{\sigma_{l,r} \mathbf{m}_p \mathbf{1}_{\mathcal{P}_S}(\Gamma^c)}. \]

25
Proof. Indeed, by the definition of $\text{Err}_d(\lambda)$ on the set Γ we have

$$\text{Err}_d(\lambda) = \sum_{j=1}^{d} \left((\lambda(j) - 1)\theta_{j,d} + \lambda(j)\zeta_{j,d} \right)^2$$

$$= \sum_{j=1}^{d} \left((\lambda(j) - 1)\theta_{j,d} + \lambda(j)\varpi_{j,d} + \lambda(j)\sqrt{\frac{b-a}{d}}\eta_{j,d} \right)^2.$$

Therefore, putting

$$I_1 = \sum_{j=1}^{d} \lambda(j)(\lambda(j) - 1)\theta_{j,d}\eta_{j,d} \quad \text{and} \quad I_2 = \sum_{j=1}^{d} \lambda^2(j)\varpi_{j,d}\eta_{j,d},$$

we get on the set Γ the following lower bound for the empirical risk

$$\text{Err}_d(\lambda) \geq \frac{b-a}{d} \sum_{j=1}^{d} \lambda^2(j)\eta_{j,d}^2 + 2\sqrt{\frac{b-a}{d}} I_1 + 2\sqrt{\frac{b-a}{d}} I_2.$$

Taking into account that for $0 < \varepsilon < 1$,

$$2\sqrt{\frac{b-a}{d}} |I_2| \leq \varepsilon \frac{b-a}{d} \sum_{j=1}^{d} \lambda^2(j)\eta_{j,d}^2 + \frac{\|\varpi\|_d^2}{\varepsilon},$$

we get

$$\text{Err}_d(\lambda) \geq (1 - \varepsilon) \frac{b-a}{d} \sum_{j=1}^{d} \lambda^2(j)\eta_{j,d}^2 + 2\sqrt{\frac{b-a}{d}} I_1 - \frac{\|\varpi\|_d^2}{\varepsilon}. \quad (A.3)$$

Let us consider the first term in (A.3), then we have

$$\mathbb{E}_{p,S} 1_{\Gamma} \sum_{j=1}^{d} \lambda^2(j)\eta_{j,d}^2 = \mathbb{E}_{p,S} \sum_{j=1}^{d} \lambda^2(j) s_{j,d} - \mathbb{E}_{p,S} 1_{\Gamma^c} \sum_{j=1}^{d} \lambda^2(j)\eta_{j,d}^2.$$

Using the correlation inequality (A.2) and the upper bound for the fourth moment in (3.23) we obtain

$$\mathbb{E}_{p,S} \eta_{j,d}^4 \leq 64 \tilde{m} \sigma_{1,*}^2. \quad (A.4)$$

This implies

$$\mathbb{E}_{p,S} 1_{\Gamma} \sum_{j=1}^{d} \lambda^2(j)\eta_{j,d}^2 \geq \mathbb{E}_{p,S} \sum_{j=1}^{d} \lambda^2(j) s_{j,d} - 8\sigma_{1,*} d \sqrt{\tilde{m} \mathbb{P}_{p,S}(\Gamma^c)}. \quad (A.5)$$

26
Therefore, we obtain
\[
\frac{b-a}{d} \mathbb{E}_{p,S} \mathbf{1}_\Gamma \sum_{j=1}^d \lambda^2(j) \eta_{j,d}^2 \geq \mathbb{E}_{p,S} P_d(\lambda) - 8(b-a)\sigma_{1,*} \sqrt{\text{mp}_{p,S}(\Gamma^c)}.
\]
Moreover, taking into account that \(\mathbb{E}_{p,S} I_1 = 0\) and in view of Proposition (6.2)
\[
\mathbb{E}_{p,S} I_2 \leq \sigma_{1,*} \|S\|_d.
\]
So, recalling that \(\|S\|_d \leq b-a\), we estimate \(\mathbb{E}_{p,S} I_1 \Gamma\) as
\[
\big|\mathbb{E}_{p,S} I_1 \Gamma\big| = \big|\mathbb{E}_{p,S} I_1 \Gamma^c\big| \leq \sqrt{\sigma_{1,*}} \sqrt{\text{mp}_{p,S}(\Gamma^c)}.
\]
Hence Lemma A.4. \(\square\)

A.5 Properties of the model (1.1)

Lemma A.5. For all \(t \in \mathbb{N}^*\) and \(0 < \epsilon < 1\), the random variables \(y_k\) in (1.1) satisfy the following:
\[
\sup_{n \geq 1} \sup_{0 \leq k \leq n} \sup_{S \in \Theta_{\epsilon,L}} \mathbb{E}_{p,S} y_k^{2t} < \infty. \tag{A.6}
\]

Proof. This lemma is shown in [2] (Lemma A.1). \(\square\)

We set
\[
\Upsilon_{m_0,m_1}(z_l) = \frac{1}{m_1 - m_0} \sum_{j=m_0+1}^{m_1} y_j^2 - \frac{1}{\gamma_l}, \tag{A.7}
\]
where \((k_{1,2} - 2)_+ \leq m_0 < m_1 \leq k_{2,1}\), \((a)_+\) is positive part of \(a\) and \(\gamma_l\) is defined in (3.10).

Lemma A.6. Assume that the bounds \(m_0\) and \(m_1\) in (A.7) are such that for some \(0 < \epsilon_1 < 1/2\)
\[
\liminf_{n \to \infty} n^{\epsilon_1} (m_1 - m_0) > 0.
\]
Then, for any \(b > 0\)
\[
\lim_{n \to \infty} n^b \max_{1 \leq l \leq d} \sup_{S \in \Theta_{\epsilon,L}} \sup_{p \in \mathcal{D}} \mathbb{P}_{p,S} \left(\left| \Upsilon_{m_0,m_1}(z_l) \right| > \epsilon_0 \right) = 0, \tag{A.8}
\]
where \(\epsilon_0 = \epsilon_0(n) \to 0\) as \(n \to \infty\) is such that \(\lim_{n \to \infty} n^{\delta} \epsilon_0 = \infty\) for any \(\delta > 0\).

Proof. This lemma is shown in [2] (Lemma A.2). \(\square\)
A.6 Properties of the norms

Lemma A.7. Let f be an absolutely continuous $[a,b] \to \mathbb{R}$ function with $\|f\| < \infty$ and g be a simple $[a,b] \to \mathbb{R}$ function of the form

$$g(t) = \sum_{j=1}^{p} c_j \chi_{(t_{j-1}, t_j]}(t),$$

where c_j are some constants. Then for all $\bar{\varepsilon} > 0$, the function $\Delta = f - g$ satisfies the following inequalities

$$\|\Delta\|^2 \leq (1 + \bar{\varepsilon})\|\Delta\|_d^2 + \left(1 + \frac{1}{\bar{\varepsilon}}\right) \frac{\|\dot{f}\|_d^2}{d^2} (b - a)^2,$$

and

$$\|\Delta\|_d^2 \leq (1 + \bar{\varepsilon})\|\Delta\|^2 + \left(1 + \frac{1}{\bar{\varepsilon}}\right) \frac{\|\dot{f}\|_d^2}{d^2} (b - a)^2.$$

Proof. Lemma A.7 is proven in [21]. (Lemma A.2.)

References

