Sequential Model Selection Method for Nonparametric Autoregression - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2018

Sequential Model Selection Method for Nonparametric Autoregression

Résumé

In this paper for the first time the nonparametric autoregression estimation problem for the quadratic risks is considered. To this end we develop a new adaptive sequential model selection method based on the efficient sequential kernel estimators proposed by Arkoun and Pergamenshchikov (2016). Moreover, we develop a new analytical tool for general regression models to obtain the non asymptotic sharp oracle inequalities for both usual quadratic and robust quadratic risks. Then, we show that the constructed sequential model selection procedure is optimal in the sense of oracle inequalities. MSC: primary 62G08, secondary 62G05
Fichier principal
Vignette du fichier
Ar_Br_Pe_03_09_2018.pdf (353.66 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01871165 , version 1 (10-09-2018)

Identifiants

  • HAL Id : hal-01871165 , version 1

Citer

Ouerdia Arkoun, Jean-Yves Brua, Serguei Pergamenshchikov. Sequential Model Selection Method for Nonparametric Autoregression. 2018. ⟨hal-01871165⟩
59 Consultations
62 Téléchargements

Partager

More