Li-Hsuan Chen

Dun-Wei Cheng

Sun-Yuan Hsieh
email: hsiehsy@mail.ncku.edu.tw

Ling-Ju Hung
email: hunglc@cs.ccu.edu.tw

Ralf Klasing
email: ralf.klasing@labri.fr

Bang Chia-Wei Lee
email: cwlee@nttu.edu.tw

Ye Wu

✩✩ Li-Hsuan Chen

Ling-Ju Hung

Chia-Wei Lee

Ye Bang
email: bangye@cs.ccu.edu.tw

Wu

L.-H Chen

L.-J Hung

C.-W Lee

Approximability and inapproximability of the star p -hub center

published or not. The documents may come L'archive ouverte pluridisciplinaire

Introduction

The hub location problems have various applications in transportation and telecommunication systems. Variants of hub location problems have been defined and well-studied in the literatures (see the two survey papers [START_REF] Campbell | Hub location problems[END_REF][START_REF] Alumur | Network hub location problems: the state of the art[END_REF]). Suppose that we have a set of demand nodes that want to communicate with each other through some hubs in a network. A single allocation hub location problem requests each demand node can only be served by exactly one hub. Conversely, if a demand node can be served by several hubs, then this kind of hub location problem is called multi-allocation. Classical hub location problems ask to minimize the total cost of all origin-destination pairs (see e.g., [START_REF] Todosijević | A general variable neighborhood search for solving the uncapacitated r-allocation p-hub median problem[END_REF]). However, minimizing the total routing cost would lead to the result that the poorest service quality is extremely bad. In this paper, we consider a single hub location problem with minmax criterion, called ∆ β -Star p-Hub Center Problem which is different from the classic hub location problems. The min-max criterion is able to avoid the drawback of minimizing the total cost.

A complete weighted graph G = (V, E, w) is called ∆ β -metric, for some β ≥ 1/2, if the distance function w(•, •) satisfies w(v, v) = 0, w(u, v) = w(v, u), and the β-triangle inequality, i.e., w(u, v) ≤ β • (w(u, x) + w(x, v)) for all vertices u, v, x ∈ V . If β > 1 then we speak about relaxed triangle inequality, and if β < 1 we speak about sharpened triangle inequality. Let u, v be two vertices in a tree T . Use d T (u, v) to denote the distance between u, v in T . Define D(T) = max u,v∈T d T (u, v) called the diameter of T .

We give the definition of the ∆ β -Star p-Hub Center Problem as follows.

∆ β -Star p-Hub Center Problem (∆ β -SpHCP) Input: A ∆ β -metric graph G = (V, E, w), a center vertex c ∈ V , and a positive integer p, |V | ≥ 2p + 1. Output: A depth-2 spanning tree T * rooted at c (called the central hub) such that c has exactly p children (called hubs) and the diameter of T * , D(T *), is minimized.

Here, we assume that the number of non-hubs is at least as many as the number of hubs, i.e., |V | ≥ 2p + 1. The assumption |V | ≥ 2p + 1 is reasonable because in real applications, a hub could be a post office or an airport, and a non-hub could be a mail post, a customer, or a passenger.

The ∆ β -SpHCP problem is a general version of the original Star p-Hub Center Problem (SpHCP) since the original problem assumes the input graph to be a metric graph, i.e., β = 1. We use SpHCP to denote the ∆ β -SpHCP for β = 1. Yaman and Elloumi [START_REF] Yaman | Star p-hub center problem and star p-hub median problem with bounded path lengths[END_REF] showed that SpHCP is NP-hard and gave two integer programming formulations for the same problem. Liang [START_REF] Liang | The hardness and approximation of the star p-hub center problem[END_REF] showed that SpHCP does not admit a (1.25ǫ)approximation algorithm for any ǫ > 0 unless P = NP and gave a 3.5-approximation algorithm.

The Single Allocation p-Hub Center Problem was introduced in [START_REF] O'kelly | Solution strategies for the single facility minimax hub location problem[END_REF][START_REF] Campbell | Integer programming formulations of discrete hub location problems[END_REF] which is similar to SpHCP with min-max criterion and well-studied in [START_REF] Kara | On the single-assignment p-hub center problem[END_REF][START_REF] Ernst | Uncapacitated single and multiple allocation p-hub center problem[END_REF][START_REF] Meyer | A 2-phase algorithm for solving the single allocation p-hub center problem[END_REF][START_REF] Chen | Approximation algorithms for single allocation k-hub center problem[END_REF]. The difference between the two problems is that the Single Allocation p-Hub Center Problem assumes that hubs are fully interconnected. Thus, for the Single Allocation p-Hub Center Problem, the communication between hubs is not necessary to go through a specified central hub c.

For β = 1, ∆ β -SpHCP is NP-hard and even NP-hard to have a (1.25-ǫ)-approximation algorithm for any ǫ > 0. In this paper, we investigate the complexity of ∆ β -SpHCP parameterized by β-triangle inequality. The motivation of this research for β < 1 is to investigate whether there exists a large subclasses of input instances of ∆ β -SpHCP that can be solved in polynomial time or admit polynomial-time approximation algorithms Table 1: The main results where ∆ β -SpHCP cannot be approximated within g(β) and has an r(β)approximation algorithm.

β lower bound g(β) upper bound r(β) [0.7737..., 1]

[1 2 , 3- √ 3 2] 1 1 (3- √ 3 2 , 2 3] 1+2β-2β 2 4(1-β) 1+2β-2β 2 4(1-β) [2
5β+1 4 1 + 4β 2 5β+1 [1, 2] β + 1 2 β + 4β 2 -2β 2+β [2, ∞) β + 1 2 2β + 1
with a reasonable approximation ratio. For β ≥ 1, it is an interesting issue to see whether there exists a polynomial-time approximation algorithm with an approximation ratio linear in β.

Our study uses the well-known concept of stability of approximation [START_REF] Böckenhauer | Towards the Notion of Stability of Approximation for Hard Optimization Tasks and the Traveling Salesman Problem (Extended Abstract)[END_REF][START_REF] Böckenhauer | Stability of Approximation[END_REF][START_REF] Hromkovič | Stability of approximation algorithms and the knapsack problem[END_REF][START_REF] Rozenberg | Hromkovič: Algorithmics for Hard Problems -Introduction to Combinatorial Optimization, Randomization, Approximation, and Heuristics[END_REF]. The idea behind this concept is to find a parameter (characteristic) of the input instances that captures the hardness of particular inputs. An approximation algorithm is called stable with respect to this parameter, if its approximation ratio grows with this parameter but not with the size of the input instances. A nice example is the Traveling Salesman Problem (TSP) that does not admit any polynomial-time approximation algorithm with an approximation ratio bounded by a polynomial in the size of the input instance, but is 3 2 -approximable for metric input instances. Here, one can characterize the input instances by their "distance" to metric instances. This can be expressed by the β-triangle inequality for any β ≥ 1 2 . In a sequence of papers [START_REF] Andreae | On the traveling salesman problem restricted to inputs satisfying a relaxed triangle inequality[END_REF][START_REF] Andreae | Performance guarantees for approximation algorithms depending on parameterized triangle inequalities[END_REF][START_REF] Bender | Performance guarantees for the TSP with a parameterized triangle inequality[END_REF][START_REF] Böckenhauer | Approximation algorithms for the TSP with sharpened triangle inequality[END_REF][START_REF] Böckenhauer | Towards the Notion of Stability of Approximation for Hard Optimization Tasks and the Traveling Salesman Problem (Extended Abstract)[END_REF][START_REF] Böckenhauer | An Improved Lower Bound on the Approximability of Metric TSP and Approximation Algorithms for the TSP with Sharpened Triangle Inequality (Extended Abstract)[END_REF][START_REF] Böckenhauer | Improved lower bounds on the approximability of the traveling salesman problem[END_REF][START_REF] Mömke | An improved approximation algorithm for the traveling salesman problem with relaxed triangle inequality[END_REF], it was shown that one can partition the set of all input instances of TSP into infinitely many subclasses according to the degree of violation of the triangle inequality, and for each subclass one can guarantee upper and lower bounds on the approximation ratio. Similar studies were performed for the problem of constructing 2-connected spanning subgraphs of a given complete graph whose edge weights obey the β-triangle inequality [START_REF] Böckenhauer | On the hardness of constructing minimal 2-connected spanning subgraphs in complete graphs with sharpened triangle inequality[END_REF], and for the problem of finding, for a given positive integer k ≥ 2 and an edge-weighted graph G, a minimum k-edge-or k-vertex-connected spanning subgraph [START_REF] Böckenhauer | On k-Edge-Connectivity Problems with Sharpened Triangle Inequality[END_REF][START_REF] Böckenhauer | On k-Connectivity Problems with Sharpened Triangle Inequality[END_REF], demonstrating that for these problems the β-triangle inequality can serve as a measure of hardness of the input instances.

In Table 1, we list the main results of this paper. The rest of the paper is organized as follows. In Section 2, for β ≥ 3- √ 3

2 , we show that for any ǫ > 0, to approximate ∆ β -SpHCP to a ratio g(β)ǫ is NP-hard. In Section 3, we give r(β)-approximation

algorithms for ∆ β -SpHCP. If β ≤ 3- √ 3 2 , we have r(β) = g(β) = 1, i.e., ∆ β -SpHCP is polynomial time solvable. If 3- √ 3 2 < β ≤ 2 3 , we have r(β) = g(β). For 2 3 ≤ β ≤ 1, r(β) = min{ 1+2β-2β 2 4(1-β) , 1 + 4β 2 5β+1 } and g(β) = 5β+1 4 . Moreover, for β ≥ 1, we have r(β) = min{β + 4β 2 -2β
2+β , 2β + 1} and g(β) = β + 1 2 . For β ≥ 2, the approximability of the problem (i.e., upper and lower bound) is linear in β. For β = 1, we reduce the gap between the 1.

upper and lower bounds of approximability of SpHCP. We obtain that for any ǫ > 0, to approximate SpHCP to a ratio 1.5ǫ is NP-hard and a 5 3 -approximation algorithms for SpHCP.

We close this section with some notation and definitions, and a property of ∆ β -metric. For a vertex v in a tree T , we use N T (v) to denote the set of vertices adjacent to v in T and

N T [v] = N T (v) ∪ {v}. Let f (v) be the parent of v in T and f (v) = v if v is the root of T . Let T * be an optimal solution of ∆ β -SpHCP in a given β-metric graph G = (V, E, w).
For a non-hub x in T * , we use f * (x) to denote the hub in T * that is adjacent to x. We use T to denote the best solution among all solutions in T where T is the collection of all solutions satisfying that all non-hubs are adjacent to the same hub for ∆ β -SpHCP in a given β-metric graph G = (V, E, w).

Lemma 1 ([9]

). Let G = (V, E) be a ∆ β -metric graph for 1 2 ≤ β < 1. For any two edges (u, x), (v, x) with a common endvertex x in G, w(u, x) ≤ β 1-β • w(v, x).

Inapproximability results

In this section, we show that for β > 3-

√ 3 2 , to approximate ∆ β -SpHCP to a factor g(β) -ǫ is NP-hard where g(β) = 1+2β-2β 2 4(1-β) for 3- √ 3 2 < β ≤ 2 3 , g(β) = 5β+1 4 for 2 3 ≤ β ≤ 1, and g(β) = β + 1 2 for β ≥ 1.
In the following lemma, we first show that for 3-

√ 3 2 < β ≤ 2 3 and for any ǫ > 0, it is NP-hard to approximate ∆ β -SpHCP to a factor 1+2β-2β 2 4(1-β) -ǫ. Lemma 2. Let 3- √ 3 2 < β ≤ 2 3 . For any ǫ > 0, to approximate ∆ β -SpHCP to a factor 1+2β-2β 2 4(1-β) -ǫ is NP-hard.
Proof. We will prove that, if ∆ β -SpHCP can be approximated to within a factor 1+2β-2β 2 4(1-β)ǫ in polynomial time, for some ǫ > 0, then Set Cover can be solved in polynomial time. This will complete the proof, since Set Cover is well-known to be NP-hard [START_REF] Garey | Computers and Intractability: A guide to the theory of NP-completeness[END_REF].

Let (S, U) be an instance of Set Cover where U is the universal set, |U| = n, and S is a collection of subsets of U, |S| = m. The goal is to decide whether S has a subset S ′ of size k such that s i ∈S ′ s i = U. In the following, we construct a β-metric graph

G = (V ∪ S ∪ Y ∪ {c}, E, w) according to (S, U). For each element v ∈ U, construct a c 1 S ′ Y V S \ S ′ 1 1 1 β 1-β β 1-β T Figure 2: A solution of ∆ β -SHCP in G vertex v ∈ V , i.e., V = U. For each set s ∈ S, construct a vertex s ∈ S, |S| = |S|.
We add mk + 2 vertices in Y and a center c in G. The reason to create (mk + 2) many vertices in Y is to avoid all elements in U to be selected as hubs in some solutions of ∆ β -SpHCP. The edge cost of G is defined in Table 2.

Table 2: The costs of edges (a, b) in G w(a, b) b ∈ S b ∈ V b ∈ Y a = c 1 2β β 1-β a ∈ S 1 1 if b ∈ a β 1-β 2β otherwise a ∈ V 1 if a ∈ b 1 β 1-β 2β otherwise a ∈ Y β 1-β β 1-β β 1-β
Clearly, G can be constructed in polynomial time. It is easy to verify that G is a β-metric graph. Let (G, c) be the input of ∆ β -SpHCP constructed according to (S, U) where c is the specified center and p = m + 2.

Let S ′ ⊂ S be a set cover of (S, U) of size k. We then construct a solution T of ∆ β -SpHCP according to S ′ . For each set s ∈ S ′ , collect the vertex s ∈ S ′ in G. Let S ′ ∪ Y be hubs adjacent to c where |S ′ | = |S ′ |. Note that S ′ is a set cover. For each v ∈ V , connect v to exactly one set s ∈ S ′ satisfying that v ∈ s. Connect all vertices in S \ S ′ to a vertex s ∈ S ′ . Since each v ∈ V is connected to a set s ∈ S ′ satisfying that v ∈ s, we see that w(v, s) = 1. Hence D(T) = 4 (see Fig. 2). Let T * denote an optimal solution of ∆ β -SpHCP in G. We have Assume that there exists a polynomial time algorithm that finds a solution

D(T *) ≤ 4. c f (y) ∈ S ′ T V ′ Y ′ y ∈ Y \ Y ′ 1 2β β 1-β β 1-β c S ′ T f (y) ∈ V ′ Y ′ y ∈ Y \ Y ′ 1 2β β 1-β β 1-β c S ′ T V ′ f (y) ∈ Y ′ y ∈ Y \ Y ′ 1 2β β 1-β β 1-β (a) (b) (c)
T of ∆ β - SpHCP in G with D(T) < 1+2β-2β 2 1-β . W.l.o.g., assume that N T (c) = S ′ ∪ V ′ ∪ Y ′ where S ′ ⊆ S, V ′ ⊆ V , and Y ′ ⊆ Y . Claim 1. All y ∈ Y must be hubs, i.e., Y ′ = Y .
Proof. Suppose there exists y ∈ Y not a hub in T . Since p = m + 2 and |S| = m, there exists x ∈ V ′ ∪ Y ′ . There are three cases.

• If f (y) ∈ S ′ as Fig. 3(a), then there exists

x ∈ V ′ ∪ Y ′ with d T (x, y) = w(x, c) + w(c, f (y)) + w(f (y), y) ≥ min{2β, β 1-β } + 1 + β 1-β = 2β + 1 + β 1-β (since 3- √ 3 2 < β ≤ 2 3) = 1+2β-2β 2 1-β , a contradiction to the assumption that D(T) < 1+2β-2β 2 1-β . • If f (y) ∈ V ′ Fig. 3(b), then there exists x ∈ V ′ ∪ Y ′ with d T (x, y) = w(x, c) + w(c, f (y)) + w(f (y), y) ≥ min{2β, β 1-β } + 2β + β 1-β = 2β + 2β + β 1-β (since 3- √ 3 2 < β ≤ 2 3) ≥ 1+2β-2β 2 1-β , a contradiction to the assumption that D(T) < 1+2β-2β 2 1-β . • If f (y) ∈ Y ′ Fig. 3(c), then there exists x ∈ V ′ ∪ Y ′ with d T (x, y) = w(x, c) + w(c, f (y)) + w(f (y), y) ≥ min{2β, β 1-β } + β 1-β + β 1-β = 2β + β 1-β + β 1-β (since 3- √ 3 2 < β ≤ 2 3) ≥ 1+2β-2β 2 1-β , a contradiction to the assumption that D(T) < 1+2β-2β 2 1-β .
Thus, all y ∈ Y must be hubs, i.e., Y ′ = Y . Claim 2. Each y ∈ Y does not have a child in T .

Proof. Suppose that there exists y ∈ Y has a child. There are two cases.

• If y has a child s ∈ S \ S ′ , then there exists x ∈ N T (c) with

d T (x, s) = w(x, c) + w(c, y) + w(y, s) ≥ min{1, 2β, β 1-β } + β 1-β + β 1-β = 1 + 2 • β 1-β (sinc 3- √ 3 2 < β ≤ 2 3) ≥ 1+2β-2β 2 1-β , a contradiction to the assumption that D(T) < 1+2β-2β 2 1-β . • If y has a child v ∈ V \ V ′ , then there exist x ∈ N T (c) with d T (x, v) = w(x, c) + w(c, y) + w(y, v) ≥ min{1, 2β, β 1-β } + β 1-β + β 1-β = 1 + 2 • β 1-β (sinc 3- √ 3 2 < β ≤ 2 3) ≥ 1+2β-2β 2 1-β , a contradiction to the assumption that D(T) < 1+2β-2β 2 1-β . Thus, each y ∈ Y has no child in T . Claim 3. No v ∈ V \ V ′ is adjacent to any u ∈ V ′ . Proof. Suppose that there exists v ∈ V \ V ′ is adjacent to u ∈ V ′ in T . We see that for any y ∈ Y d T (v, y) = w(v, u) + w(u, c) + w(c, y) = 1 + 2β + β 1 -β ≥ 1 + 2β -2β 2 1 -β , a contradiction to the assumption that D(T) < 1+2β-2β 2 1-β . Thus, no v ∈ V \ V ′ is adjacent to any u ∈ V ′ .
According to Claims 1, 2, and 3, in T all vertices V \ V ′ must be adjacent to vertices in

S ′ . If there exists v ∈ V \ V ′ satisfying that w(v, f (v)) = 2β, then d T (v, y) = w(v, f (v)) + w(f (v), c) + w(c, y) = 2β + 1 + β 1 -β ≥ 1 + 2β -2β 2 1 -β ,
a contradiction to the assumption that D(T) < 1+2β-2β 2

1-β

. Thus, each v ∈ V \ V ′ satisfies that w(v, f (v)) = 1. We see that S ′ forms a set cover of V \ V ′ . For each u ∈ V ′ , pick a set s ∈ S satisfying u ∈ s, call the collection of sets S ′′ . It is easy to see that |S ′′ | = |V ′ | and S ′ ∪ S ′′ forms a set cover of V = U of size at most k. This shows that if ∆ β -SpHCP has a solution T with D(T) < 1+2β-2β 2 1-β that can be found in polynomial time, then Set Cover can be solved in polynomial time. However, Set Cover is a well-known NPhard problem [START_REF] Garey | Computers and Intractability: A guide to the theory of NP-completeness[END_REF]. By the fact that Set Cover is NP-hard and D(T *) ≤ 4, this implies that for any ǫ > 0, to approximate ∆ β -SpHCP to a factor 1+2β-2β 2 4(1-β)ǫ is NP-hard.

In the following lemma, we show that for 2 3 ≤ β ≤ 1 and for any ǫ > 0, it is NP-hard to approximate ∆ β -SpHCP to a factor 5β+1 4ε.

Lemma 3. Let 2 3 ≤ β ≤ 1.
For any ε > 0, to approximate ∆ β -SpHCP to a factor 5β+1 4 -ε is NP-hard.

Proof. We will prove that, if ∆ β -SpHCP can be approximated within a factor 5β+1 4 ε in polynomial time for some ε > 0, then a 2-approximate solution of set cover problem can be found in polynomial time. This will complete the proof, since for any ε > 0, to approximate Set Cover to within a factor (1ε) ln n is NP-hard [START_REF] Dinur | Analytical approach to parallel repetition[END_REF].

Let (S, U) be an instance of the set cover problem, where U, |U| = n, is the universal set and S, |S| = m, is a collection of subsets of U. The goal of the problem is to decide whether there exists a subset S ′ ⊆ S of size k such that

s i ∈S ′ s i = U. c S ′ 2 S ′ 1 Y V 1 S 2 \ S ′ 2 1 1 S 1 \ S ′ 1 V 2 2 1 1 1 1 Figure 4: D(T) = 4 Construct a β-metric graph G = (V 1 ∪ V 2 ∪ S 1 ∪ S 2 ∪ Y ∪ {c}, E, w) of ∆ β -SpHCP as follows. For each element v ∈ U, construct a copy of v in V 1 and another copy of v in V 2 , i.e., V 1 = V 2 = U. For each set s ∈ S, construct a vertex in S 1 and a vertex in S 2 , |S 1 | = |S 2 | = |S|. Construct (2m -2k + 2) vertices in Y . The reason to create (2m -2k + 2)
many vertices in Y is to avoid all elements in U to be selected as hubs in some solutions ∆ β -SpHCP. Add a vertex c in G as the specified center. Let p = 2m + 2. The edge cost of G is defined in Table 3. It is not hard to see that any three vertices in G satisfying β-triangle inequality.

Table 3: The cost of edges (a, b) in G w(a, b) b ∈ S 1 b ∈ S 2 b ∈ V 1 b ∈ V 2 b ∈ Y a = c 1 1 2β 2β 2 a ∈ S 1 1 2β 1 if b ∈ a β + 2β 2 3β 2β otherwise a ∈ S 2 2β 1 β + 2β 2 1 if b ∈ a 3β 2β otherwise a ∈ V 1 1 if a ∈ b β + 2β 2 2β β + β 2 + 2β 3 β + 3β 2 2β otherwise a ∈ V 2 β + 2β 2 1 if a ∈ b β + β 2 + 2β 3 2β β + 3β 2 2β otherwise a ∈ Y 3β 3β β + 3β 2 β + 3β 2 2
Suppose (S, U) has a set cover S ′ ⊂ S of size k. We then construct a solution of ∆ β -SpHCP according to S ′ as Fig. 4. Let S ′ 1 ⊂ S 1 be the copy of S ′ and S ′ 2 ⊂ S 2 be the copy of

S ′ . Let all vertices in S ′ 1 ∪ S ′ 2 ∪ Y be hubs connected to c. For each v ∈ V 1 , connect v to exactly one set s ∈ S ′ 1 such that v ∈ s. For each v ′ ∈ V 2 , connect v ′ to exactly one set s ′ ∈ S ′ 2 such that v ′ ∈ s ′ . Connect all vertices in S 1 \ S ′ 1 to any vertex in S ′ 1 and connect all vertices in S 2 \ S ′ 2 to any vertex in S ′ 2 . Notice that S ′ is a set cover of U. We see that for v ∈ V 1 , w(v, f (v)) = 1 where f (v) ∈ S ′ 1 is the hub adjacent to v satisfying that v ∈ f (v) and for v ′ ∈ V 2 , w(v ′ , f (v ′)) = 1 where f (v ′) ∈ S ′ 2 satisfying that v ′ ∈ f (v ′). We see that D(T) = 4. Let T * denote an optimal solution of ∆ β -SpHCP. Then D(T *) ≤ 4.
Suppose that there exists a polynomial time algorithm for ∆ β -SpHCP that computes a solution T such that D(T

) < 5β + 1. Let S ′ 1 ∪ S ′ 2 ∪ V ′ 1 ∪ V ′ 2 ∪ Y ′ be the set of children of c, i.e., N T (c) = S ′ 1 ∪ S ′ 2 ∪ V ′ 1 ∪ V ′ 2 ∪ Y ′ Claim 1. All y ∈ Y must be hubs, i.e., Y ′ = Y . (a) (b) (c) y ′ ∈ Y ′ 2 ≥ min{2β, 2} 2 y ∈ Y \ Y ′ T x c s ∈ S ′ 1 ∪ S ′ 2 3β ≥ min{2β, 2} 1 y ∈ Y \ Y ′ T x c c x T y ∈ Y \ Y ′ 2β ≥ min{1, 2β, 2} β + 3β 2 v ∈ V ′ 1 ∪ V ′ 2 Figure 5:
The three cases that there exists y ∈ Y not adjacent to c where (a)

x ∈ N T (c); (b) x ∈ V ′ 1 ∪ V ′ 2 ∪ Y ′ ; (c) x ∈ V ′ 1 ∪ V 2 ∪ Y ′ .
Proof. Suppose there exists y ∈ Y not a hub. There are three cases.

• y is a child of v ∈ V ′ 1 ∪ V ′ 2 as Fig. 5(a). For x ∈ N(c) \ {v}, we see that d T (y, x) = w(y, v) + w(v, c) + w(c, x) ≥ (β + 3β 2) + 2β + min{1, 2β, 2} = 3β 2 + 3β + 1 ≥ 5β + 1 (since β ≥ 2 3), a contradiction to the assumption that D(T) < 5β + 1. • y is a child of s ∈ S ′ 1 ∪ S ′ 2 as Fig. 5(b). Since |N T (c)| = p = 2m + 2 and |S 1 | = |S 2 | = m, N T (c) \ (S ′ 1 ∪ S ′ 2) = ∅. There exists x ∈ V ′ 1 ∪ V ′ 2 ∪ Y ′ such that d T (y, x) = w(y, s) + w(s, c) + w(c, x) ≥ 3β + 1 + min{2β, 2} = 5β + 1,
a contradiction to the assumption that D(T) < 5β + 1.

• y is a child of y ′ ∈ Y as Fig. 5(c). Since |N T (c)| = p = 2m + 2 and |S 1 | = |S 2 | = m, we see N T (c) \ (S ′ 1 ∪ S ′ 2) = ∅. There exists x ∈ V ′ 1 ∪ V ′ 2 ∪ Y ′ such that d T (y, x) = w(y, y ′) + w(y ′ , c) + w(c, x) ≥ 2 + 2 + min{2β, 2} = 4 + 2β ≥ 5β + 1, a contradiction to the assumption that D(T) < 5β + 1.
This shows that all y ∈ Y must be hubs in T .

Claim 2. Each y ∈ Y has no children in T .

Proof. Suppose that there exists y ∈ Y having a child in T . Notice that by Claim 1, all y ∈ Y are hubs. There are two cases.

• y has a child v ∈ V 1 ∪ V 2 .
Then there exists a hub x ∈ N T (c) such that

d T (x, v) = w(x, c) + w(c, y) + w(y, v) ≥ min{1, 2β, 2} + 2 + (β + 3β 2) = 3β 2 + β + 3 > 5β + 1 (since β ≥ 2 3)
a contradiction to the assumption D(T) < 5β + 1.

• y has a child s ∈ S 1 ∪ S 2 . Then there exists a hub x ∈ N T (c) and

d T (x, s) = w(x, c) + w(c, y) + w(y, s) ≥ min{1, 2β, 2} + 2 + 3β = 3β + 3 ≥ 5β + 1 (since β ≤ 1)
a contradiction to the assumption D(T) < 5β + 1.

This shows that each y ∈ Y has no children in T .

According to Claims 1 and 2, if D(T) < 5β +1, all vertices in Y must be hubs adjacent to c and each y ∈ Y has no children in T .

Claim 3. There is no v ∈ V ′ 1 ∪ V ′ 2 having a child in (V 1 ∪ V 2) \ N T (c). Proof. Suppose that there exists v ∈ V ′ 1 ∪ V ′ 2 having a child u ∈ (V 1 ∪ V 2) \ N T (c). If v ∈ V ′ i and u ∈ V i \ V ′ i , i ∈ {1, 2}, then for any y ∈ Y d T (u, y) = w(u, v) + w(v, c) + w(c, y) = 2β + 2β + 2 ≥ 5β + 1 (since β ≤ 1)
a contradiction to the assumption D(T

) < 5β + 1. If v ∈ V ′ 1 and u ∈ V 2 \ V ′ 2 , then for any y ∈ Y d T (u, y) = w(u, v) + w(v, c) + w(c, y) = (β + β 2 + 2β 3) + 2β + 2 = 2β 3 + β 2 + 3β + 2 > 5β + 1 (since β ≥ 2 3) a contradiction to the assumption D(T) < 5β + 1. If v ∈ V ′ 2 and u ∈ V 1 \ V ′ 1 , then for any y ∈ Y d T (u, y) = w(u, v) + w(v, c) + w(c, y) = (β + β 2 + 2β 3) + 2β + 2 = 2β 3 + β 2 + 3β + 2 > 5β + 1 (since β ≥ 2 3) a contradiction to the assumption the D(T) < 5β + 1. Thus, no vertex in V ′ 1 ∪ V ′ 2 is adjacent to any vertex in (V 1 ∪ V 2) \ N T (c) in T . This completes the proof. Claim 4. Let S ′′ 1 be a subset of S satisfying that for each u ∈ V ′ 1 there is exactly one set in S ′′ 1 containing u. If for all v ∈ V 1 \ V ′ 1 , d T (v, c) ≤ 2, then S ′ 1 ∪ S ′′ 1 is a set cover of U, |S ′ 1 ∪ S ′′ 1 | ≤ 2k. Proof. Since for all v ∈ V 1 \ V ′ 1 , d T (v, c) = 2, the element v must be a child of s ∈ S ′ 1 satisfying that v ∈ s. Thus S ′ 1 is a set cover of V 1 \ V ′ 1 .
For each element in u ∈ V ′ 1 , we select exactly one set in S that contains u, call the collection of sets S ′′ 1 . It is not hard to see that

|S ′′ 1 | = |V ′ 1 | and S ′′ 1 forms a set cover of V ′ 1 . Moreover, S ′ 1 ∪ S ′′ 1 is a set cover of V 1 = U satisfying that |S ′ 1 ∪ S ′′ 1 | ≤ 2k
and can be found in polynomial time. This completes the proof.

Claim 5. If there exists v ∈ V 1 \ V ′ 1 such that d T (v, c) > 2, then S ′ 2 ∪ S ′′ 2 is a set cover of U, |S ′ 2 ∪ S ′′ 2 | ≤ 2k
, where S ′′ 2 ⊂ S satisfying that for each u ∈ V ′ 2 there is exactly one set in S ′′ 2 containing u. Proof. Suppose that condition of Claim 4 is not satisfied, there exists

v ∈ V 1 \ V ′ 1 such that d T (v, c) > 2.
According to Claims 1, 2, and 3, v is not adjacent to any vertex in

V ′ 1 ∪ V ′ 2 ∪ Y . If the parent of v is in S ′ 2 , then for any y ∈ Y d T (v, y) = w(v, f (v)) + w(f (v), c) + w(c, y) = (β + 2β 2) + 1 + 2 = 2β 2 + β + 3 ≥ 5β + 1, a contradiction to the assumption D(T) < 5β + 1. Thus, the parent of v is in S ′ 1 . We see that d T (v, c) = w(v, f (v)) + w(f (v), c) = 2β + 1 where f (v) is the parent of v in T and f (v) ∈ S ′ 1 . Notice that no u ∈ V 2 \ V ′ 2 is adjacent to V ′ 1 ∪ V ′ 2 ∪
Y according to Claims 1, 2, and 3. Suppose that there exists u ∈ V 2 \ V ′ 2 adjacent to a hub in S ′ 1 . We see that for any

y ∈ Y d T (u, y) = w(u, f (u)) + w(f (u), c) + w(c, y) = (β + 2β 2) + 1 + 2 = 2β 2 + β + 3 ≥ 5β + 1, a contradiction to the assumption D(T) < 5β + 1. Thus, all vertices u ∈ V 2 \ V ′ 2 must be adjacent to vertices in S ′ 2 in T . If there exists u ∈ V 2 \ V ′ 2 adjacent to a hub f (u) ∈ S ′ 2 such that w(u, f (u)) = 2β, then d T (u, v) = w(u, f (u)) + w(f (u), c) + w(c, f (v)) + w(f (v), v) = 2β + 1 + 1 + 2β ≥ 5β + 1 (since β ≤ 1)
a contradiction to the assumption D(T

) < 5β + 1. Thus, in T each u ∈ V 2 \ V ′ 2 must be adjacent to a hub f (u) ∈ S ′ 2 satisfying that w(u, f (u)) = 1. This implies that S ′ 2 is a set cover of V 2 \ V ′ 2 . For each element x ∈ V ′ 2 , we pick a set s ∈ S satisfying that x ∈ s, call the collection of sets S ′′ 2 . It is easy to see that |S ′′ 2 | = |V ′ 2 |. Moreover, S ′ 2 ∪ S ′′ 2 , |S ′ 2 ∪ S ′′ 2 | ≤ 2k
, is a set cover of U and can be found in polynomial time. By Claims 4 and 5, if D(T) < 5β + 1, then Set Cover has a 2-approximation algorithm running in polynomial time. Notice that D(T *) ≤ 4. Thus, for any ε > 0, if ∆ β -SpHCP can be approximated to a factor (5β+1 4 ǫ) in polynomial time, then Set Cover has a 2-approximation algorithm running in polynomial time. However, for any ε > 0, to approximate Set Cover to a factor (1ε) ln n is NP-hard [START_REF] Dinur | Analytical approach to parallel repetition[END_REF]. Therefore, for any ε > 0, to approximate ∆ β -SpHCP to a factor 5β+1 4 ε is NP-hard. This completes the proof.

Next, we show that for any β ≥ 1 and for any ǫ > 0, it is NP-hard to approximate ∆ β -SpHCP to a factor β

+ 1 2 -ε. Lemma 4. Let β ≥ 1. For any ǫ > 0, to approximate ∆ β -SpHCP to a factor β + 1 2 -ε is NP-hard.
Proof. We will prove that, if ∆ β -SpHCP can be approximated within a factor β + 1 2ε in polynomial time for some ε > 0, then a 3-approximate solution of set cover problem can be found in polynomial time. This will complete the proof of the lemma, since for any ε > 0, to approximate Set Cover to within a factor (1ε) ln n is NP-hard [START_REF] Dinur | Analytical approach to parallel repetition[END_REF].

Let (S, U) be an instance of the set cover problem, where U, |U| = n, is the universal set and S, |S| = m, is a collection of subsets of U. The goal of the problem is to decide whether there exists a subset S ′ ⊆ S of size k such that

s i ∈S ′ s i = U. Construct a β-metric graph G = (V 1 ∪ V 2 ∪ S 1 ∪ S 2 ∪ Y ∪ {c}, E, w) of ∆ β -SpHCP as follows. For each element v ∈ U, construct a copy of v in V 1 and another copy of v in V 2 , i.e., V 1 = V 2 = U.
w(a, b) b ∈ S 1 b ∈ S 2 b ∈ V 1 b ∈ V 2 b ∈ Y a = c 1 1 2β 2β 2 a ∈ S 1 1 2β 1 if b ∈ a β + 2β 2 3β 2β otherwise a ∈ S 2 2β 1 β + 2β 2 1 if b ∈ a 3β 2β otherwise a ∈ V 1 1 if a ∈ b β + 2β 2 2β 4β 2 2β + 2β 2 2β otherwise a ∈ V 2 β + 2β 2 1 if a ∈ b 4β 2 2β 2β + 2β 2 2β otherwise a ∈ Y 3β 3β 2β + 2β 2 2β + 2β 2 4β
Suppose (S, U) has a set cover S ′ ⊂ S of size k. We then construct a solution of ∆ β -SpHCP according to S ′ as Fig. 4. Let S ′ 1 ⊂ S 1 be the copy of S ′ and S ′ 2 ⊂ S 2 be the copy of S ′ . Let all vertices in S ′ 1 ∪S ′ 2 ∪Y be hubs connected to c.

For each v ∈ V 1 , connect v to exactly one set s ∈ S ′ 1 such that v ∈ s. For each v ′ ∈ V 2 , connect v ′ to exactly one set s ′ ∈ S ′ 2 such that v ′ ∈ s ′ . Connect all vertices in S 1 \ S ′ 1 to any vertex in S ′ 1 and connect all vertices in S 2 \ S ′ 2 to any vertex in S ′ 2 . Since S ′ is a set cover of U, we see that for v ∈ V 1 , w(v, f (v)) = 1 where f (v) ∈ S ′ 1 is the hub adjacent to v satisfying that v ∈ f (v) and for v ′ ∈ V 2 , w(v ′ , f (v ′)) = 1 where f (v ′) ∈ S ′ 2 satisfying that v ′ ∈ f (v ′). We see that D(T) = 4. Let T * denote an optimal solution of ∆ β -SpHCP. Then D(T *) ≤ 4.
Suppose that there exists a polynomial time algorithm for ∆ β -SpHCP that computes a solution T such that D(T

) < 4β + 2. Let S ′ 1 ∪ S ′ 2 ∪ V ′ 1 ∪ V ′ 2 ∪ Y ′ be the set of children of c, i.e., N T (c) = S ′ 1 ∪ S ′ 2 ∪ V ′ 1 ∪ V ′ 2 ∪ Y ′ where S ′ 1 ⊆ S 1 , S ′ 2 ⊆ S 2 , V ′ 1 ⊆ V 1 , V ′ 2 ⊆ V 2 , and Y ′ ⊆ Y .
Claim 1. Either y 1 or y 2 is a hub.

Proof. Suppose that both y 1 and y 2 are non-hubs. Let f (y 1) (resp. f (y 2)) be the hub adjacent to y 1 (resp. y 2) in T . Note that f (y 1), f (y

2) ∈ S ′ 1 ∪ S ′ 2 ∪ V ′ 1 ∪ V ′ 2 .
There are two cases.

y 1 T c c T y 1 f (y 1) = f (y 2) y 2 f (y 1) f (y 2) y 2
Figure 6: The two cases that both y 1 and y 2 are not hubs in T .

• f (y 1) = f (y 2) as Fig. 6(a). Then

d T (y 1 , y 2) = w(y 1 , f (y 1)) + w(y 2 , f (y 2)) ≥ min{3β, 2β + 2β 2 } + min{3β, 2β + 2β 2 } = 3β + 3β ≥ 4β + 2 (since β ≥ 1)
a contradiction to the assumption D(T) < 4β + 2.

• f (y 1) = f (y 2) as Fig. 6(b). Then

d T (y 1 , y 2) = w(y 1 , f (y 1)) + w(f (y 1), c) + w(c, f (y 2)) + w(f (y 2), y 2) > w(y 1 , f (y 1)) + w(y 2 , f (y 2)) ≥ min{3β, 2β + 2β 2 } + min{3β, 2β + 2β 2 } = 3β + 3β ≥ 4β + 2 (since β ≥ 1)
a contradiction to the assumption D(T) < 4β + 2.

Thus, either y 1 or y 2 is a hub.

In the rest of the proof, we assume that y 1 is a hub in T .

Claim 2. For each y ∈ Y ′ , y has no child in (V 1 ∪ V 2 ∪ Y) \ N T (c).
Proof. Suppose y 1 ∈ Y ′ has a child x. There are two cases.

• If x = y 2 , then d T (y 2 , c) = w(y 2 , y 1) + w(y 1 , c) = 4β + 2,
a contradiction to the assumption D(T) < 4β + 2.

• If x ∈ (V 1 ∪ V 2) \ N T (c), then d T (x, c) = w(x, y 1) + w(y 1 , c) = (2β + 2β 2) + 2 ≥ 4β + 2, a contradiction to the assumption D(T) < 4β + 2.
This completes the proof of the claim.

Claim 3. All u ∈ V 1 \ V ′ 1 (resp. u ′ ∈ V 2 \ V ′ 2) are adjacent to S ′ 1 (resp. S ′ 2) in T . Proof. By Claim 2, y 1 ∈ Y ′ has no child in (V 1 ∪ V 2 ∪ Y) \ N T (c). Thus, each u ∈ V 1 \ V ′ 1 must be adjacent to some vertex in S ′ 1 ∪ S ′ 2 ∪ V ′ 1 ∪ V ′ 2 in T . Suppose that there exists u ∈ V 1 \ V ′ 1 adjacent to s ′ ∈ S ′ 2 . We see that d T (u, y 1) = w(u, s ′) + w(s ′ , c) + w(c, y 1) = (β + 2β 2) + 1 + 2 ≥ 4β + 2,
a contradiction to the assumption D(T) < 4β + 2. Suppose that there exists

u ∈ V 1 \ V ′ 1 adjacent to x ∈ V ′ 1 ∪ V ′ 2 .
We see that

d T (u, y 1) = w(u, x) + w(x, c) + w(c, y 1) ≥ min{2β, 4β 2 } + 2β + 2 = 2β + 2β + 2 (since β ≥ 1) = 4β + 2 a contradiction to the assumption D(T) < 4β + 2.
This shows that all

u ∈ V 1 \ V ′ 1 are adjacent to vertices in S ′ 1 in T . Similarly, we can show that all u ′ ∈ V 2 \ V ′ 2 are adjacent to vertices in S ′ 2 in T .
Claim 4. Let S ′′ 1 be a subset of S satisfying that for each u ∈ V ′ 1 there is exactly one set in S ′′

1 containing u. If for all v ∈ V 1 \ V ′ 1 , d T (v, c) ≤ 2, then S ′ 1 ∪ S ′′ 1 is a set cover of U, |S ′ 1 ∪ S ′′ 1 | ≤ 2k + 1. Proof. Since for all v ∈ V 1 \ V ′ 1 , d T (v, c) = 2, the element v must be a child of s ∈ S ′ 1 satisfying that v ∈ s. Thus S ′ 1 is a set cover of V 1 \ V ′ 1 .
For each element in u ∈ V ′ 1 , we select exactly one set in S that contains u, call the collection of sets S ′′ 1 . It is not hard to see that

|S ′′ 1 | = |V ′ 1 | and S ′′ 1 forms a set cover of V ′ 1 . Moreover, S ′ 1 ∪ S ′′ 1 is a set cover of V 1 = U satisfying that |S ′ 1 ∪ S ′′ 1 | ≤ 2k + 1
and can be found in polynomial time. This completes the proof of the claim.

Claim 5. If there exists

v ∈ V 1 \ V ′ 1 such that d T (v, c) > 2, then S ′ 2 ∪ S ′′ 2 is a set cover of U, |S ′ 2 ∪ S ′′ 2 | ≤ 2k + 1
, where S ′′ 2 ⊂ S satisfying that for each u ∈ V ′ 2 there is exactly one set in S ′′ 2 containing u. Proof. Suppose that the condition of Claim 4 is not satisfied, there exists

v ∈ V 1 \ V ′ 1 such that d T (v, c) > 2.
According to Claims 1, 2, and 3, v is not adjacent to any vertex in

S ′ 2 ∪ V ′ 1 ∪ V ′ 2 ∪ Y ′ . Thus, the parent of v is in S ′ 1 . We see that d T (v, c) = w(v, f (v)) + w(f (v), c) = 2β + 1 where f (v) is the parent of v in T and f (v) ∈ S ′ 1 . Notice that no u ∈ V 2 \ V ′ 2 is adjacent to S ′ 1 ∪ V ′ 1 ∪ V ′ 2 ∪ Y according to Claims 1, 2, and 3. If there exists u ∈ V 2 \ V ′ 2 adjacent to a hub f (u) ∈ S ′ 2 such that w(u, f (u)) = 2β, then d T (u, v) = w(u, f (u)) + w(f (u), c) + w(c, f (v)) + w(f (v), v) = 2β + 1 + 1 + 2β = 4β + 2,
a contradiction to the assumption D(T

) < 4β + 2. Thus, in T each u ∈ V 2 \ V ′ 2 must be adjacent to a hub f (u) ∈ S ′ 2 satisfying that w(u, f (u)) = 1. This implies that S ′ 2 is a set cover of V 2 \ V ′ 2 .
For each element x ∈ V ′ 2 , we pick a set s ∈ S satisfying that x ∈ s, call the collection of sets S ′′ 2 . It is easy to see that

|S ′′ 2 | = |V ′ 2 |. Moreover, S ′ 2 ∪ S ′′ 2 , |S ′ 2 ∪ S ′′ 2 | ≤ 2k + 1
, is a set cover of U and can be found in polynomial time. By Claims 4 and 5, if D(T) < 4β + 2, then Set Cover has a 3-approximation algorithm running in polynomial time. Notice that D(T *) ≤ 4. Thus, for any ε > 0, if ∆ β -SpHCP can be approximated to within a factor (β + 1 2ǫ) in polynomial time, then Set Cover has a 3-approximation algorithm running in polynomial time. However, for any ε > 0, to approximate Set Cover to within a factor (1ε) ln n is NP-hard [START_REF] Dinur | Analytical approach to parallel repetition[END_REF]. Therefore, for any ε > 0, to approximate ∆ β -SpHCP to within a factor β + 1 2ε is NP-hard. This completes the proof.

We close this section with the following theorem.

Theorem 1. Let β > 3- √ 3 2 . For any ε > 0, to approximate ∆ β -SpHCP to a factor g(β) -ε is NP-hard where 1. g(β) = 1+2β-2β 2 4(1-β) if 3- √ 3 2 < β ≤ 2 3 ; 2. g(β) = 5β+1 4 if 2 3 ≤ β ≤ 1; 3. g(β) = β + 1 2 if β ≥ 1.
Corollary 1. For any ǫ > 0, to approximate the SpHCP to a factor 3 2ε is NP-hard. Proof. Since the Star p-Hub Center Problem (SpHCP) assumes the input graph to be a metric graph, i.e., β = 1, we see g(1) = 3 2 . This completes the proof.

Polynomial time algorithms

In this section, we show that for

1 2 ≤ β ≤ 3- √ 3
2 , ∆ β -SpHCP can be solved in polynomial time. Besides, we give polynomial time approximation algorithms for ∆ β -SpHCP for β > 3-

√ 3 2 . For 3- √ 3 2 < β ≤ 2
3 , our approximation algorithm achieves the factor that closes the gap between the upper and lower bounds of approximability for ∆ β -SpHCP. Lemma 5. Let 1 2 ≤ β < 1. Then the following statements hold.

1. There exists a solution T satisfying that all non-hubs are adjacent to the same hub and D(T) ≤ max{1, 1+2β-2β 2 4(1-β) } • D(T *).

There exists a polynomial time algorithm to compute a solution T such that D(T) = D(T).

Proof. If T * is an optimal solution that all non-hubs are adjacent to the same hub, then we are done. If not, let y ′ be the vertex in T * satisfying d T * (y ′ , c) ≥ D(T *) 2 . Since there exists no optimal solution satisfying that all non-hubs are adjacent to the same hub, there exist a hub u and a non-hub y, u = f * (y ′), u = y ′ , and y = y ′ such that f * (y) = u and d T * (y, c) ≤ D(T *) 2 (see Fig. 7(a)). Let w(u, c) = a and w(u, y) = b. We see that min{a, b} ≤ D(T *) 4 . We then construct a new tree T ′ by the following steps.

Step 1. Guess the hub u adjacent to c in T * .

Step 2. Select (p -1) vertices from V \ {c, u} closest to c as hub set S adjacent to c in T ′ .

Step 3. Let all the remaining vertices as non-hubs adjacent to u in T ′ . Now we prove that for x, z in

T ′ , d T ′ (x, z) ≤ max{1, 1+2β-2β 2 4(1-β) } • D(T *).
• In T ′ , both x and z are non-hubs.

If both x and z are adjacent to u in T * , then

d T ′ (x, z) = w(x, u) + w(z, u) = d T * (x, z) ≤ D(T *).
Otherwise, one of x, z is not adjacent to u in T * , say z, as Fig. 7(b). We see that

w(u, z) ≤ β • (d T * (z, y) -w(u, y)) ≤ β • (D(T *) -b).
By Lemma 1, we see that

w(x, u) ≤ β 1 -β • w(u, c) = β 1 -β • a and w(x, u) ≤ β 1 -β • w(u, y) = β 1 -β • b.
Thus, w(u, x) ≤ β 1-β • min{a, b}. Next, we obtain that

d T ′ (x, z) = w(x, u) + w(z, u) ≤ β • (D(T *) -b) + β 1-β • min{a, b} ≤ β • D(T *) + β 1-β -β • min{a, b} ≤ β • D(T *) + β 1-β -β • D(T *) 4 = 4β-3β 2 4(1-β) • D(T *) ≤ 1+2β-2β 2 4(1-β) • D(T *).
• In T ′ , x is a hub and z is a non-hub as Fig. 8.

Notice that in T * , any non-hub v not adjacent to u (see Fig. 7(c)), i.e., f If v is a non-hub adjacent to u (see Fig. 7

* (v) = u, must satisfy w(v, c) ≤ β • (w(v, f * (v)) + w(f * (v), c)) = β(d T * (v, z) -a -b) ≤ β • (D(T *) -a -b). T ′ c z u a b x y ≤ β • (D(T *) -a -b) ≤ β 1-β • min{a, b}
(d)), f * (v) = u, in T * , then w(v, c) ≤ β • (w(v, u) + w(u, c)) = β • (d T * (v, y ′) -d T * (y ′ , c)) ≤ β • D(T *) 2 (using d T * (v, y ′) ≤ D(T *) and d T * (y ′ , c) ≥ D(T *) 2) ≤ β • (D(T *) -a -b) (using a + b ≤ D(T *) 2)
Note that |V | ≥ 2p + 1. We see that in T * , there are at least p non-hubs v satisfying that

w(v, c) ≤ β • (D(T *) -a -b).
Since the algorithm chooses the (p -1) vertices closest to c as hubs in T ′ and u is a hub in T * , we see that for all hubs s in T ′ , w(s, c)

≤ β • (D(T *) -a -b). Thus, w(x, c) ≤ β • (D(T *) -a -b)
. By definition w(u, c) = a. We have

d T ′ (x, z) = w(x, c) + w(u, c) + w(z, u) ≤ β • (D(T *) -a -b) + a + β 1-β • min{w(u, c), w(u, y)} = a • (1 -β) -b • β + β • D(T *) + β 1-β • min{a, b} = a • (1 -β) + b • (1 -β) -b + β • D(T *) + β 1-β • min{a, b} ≤ (a + b) • (1 -β) + β • D(T *) + β 1-β -1 • min{a, b} ≤ D(T *) 2 • (1 -β) + β • D(T *) + β 1-β -1 • D(T *) 4 (using a + b ≤ D(T *) 2) = D(T *) 4 • 2 -2β + 4β + β 1-β -1 = D(T *) 4 • 2β + 1 1-β = D(T *)•(1+2β-2β 2) 4(1-β)
.

• In T ′ , both x and z are hubs. Notice that u is also a hub in T * and all the other (p -1) hubs in T ′ are selected as hubs since they are closer to c than other vertices. Thus,

d T ′ (x, z) = w(x, c) + w(z, c) ≤ D(T *).
This completes the proof of (i).

Let T be the collection of solutions of ∆ β -SpHCP satisfying that all non-hubs are adjacent to the same hub. Suppose that T is of minimum diameter among all trees in T . We give the following algorithm to find a solution T and show that D(T) = D(T). Step 1. Guess the unique hub that is adjacent to non-hubs in T , call the hub v 1 .

T c v v 1 ℓ x v i u ≤ ℓ v j T c v 1 ℓ x v i ≤ ℓ v j T c v 1 ℓ x v i ≤ ℓ v j ≤ ℓ u v (a) (b) (c) x ′
Let v 1 be a hub adjacent to c in T .

Step 2. Guess a non-hub x that w(x, v 1) = ℓ = max v∈N T (v 1)\{c} w(v, v 1), i.e., (x, v 1) is the longest edge between non-hubs and v 1 in T . Let x be a non-hub adjacent to v 1 in T .

Step 3. For the remaining vertices y ∈ V \ {c, v 1 , x}, if w(y, v 1) ≤ ℓ, let y be a non-hub adjacent to v 1 in T ; otherwise let y be a hub adjacent to c in T .

Step 4. If all vertices are assigned as hubs and non-hubs but the number of hubs j < p, select (pj) non-hubs that are closest to c as hubs.

It is easy to see that the above algorithm runs in O(n 3) time. It is easy to see that D(T) ≥ D(T). Now we show that D(T) ≤ D(T). Suppose that ℓ is the longest edge between hubs and non-hubs in T . Let x be the non-hub adjacent to v 1 in T satisfying that w(x, v 1) = ℓ. For any non-hub u, u = x, in

T , d T (u, v 1) = w(u, v 1) ≤ D(T) -ℓ. For any hub v i , v i = v 1 , d T (v i , v 1) ≤ D(T) -ℓ since v i is
either a hub in T or v i is selected as a hub in T in Step 4 since it is closer to c than some hub in T . For any two hubs v i , v j , i = 1 and j = 1, we see d T (v i , v j) ≤ D(T *). Thus, for any two vertices u, v in T ,

d T (u, v) ≤ max{D(T), 2D(T) -2ℓ}. If ℓ ≥ D(T) 2 , then D(T) ≤ D(T).
Suppose that ℓ < D(T) 2 . We have the following three cases. • For any two non-hubs u, v in T (see Fig. 9(a)),

d T (u, v) = w(u, v 1) + w(v, v 1) ≤ 2ℓ < D(T).
• For any non-hub u and any hub v i in T (see Fig. 9(a)), there are two cases.

-

If v i is a hub in T , then d T (u, v i) = w(u, v 1) + w(v 1 , c) + w(c, v i) = w(u, v 1) + d T (v i , v 1) ≤ ℓ + d T (v i , v 1) = ℓ + (d T (v i , x) -ℓ) = d T (v i , x) ≤ D(T)
where x is the non-hub adjacent to v 1 in T satisfying w(x, v 1) = ℓ.

-The vertex v i is a non-hub in T as Fig. 9(b). Since w(v 1 , v i) ≤ ℓ, v i must be selected as a hub in T in Step 4. The reason that v i is selected as a hub in T rather than the other vertex x ′ which is a hub in T and a non-hub in T is because of w(v i , c) ≤ w(x ′ , c). Thus,

d T (u, v i) = w(u, v 1) + w(v 1 , c) + w(c, v i) ≤ ℓ + w(v 1 , c) + w(c, x ′) = ℓ + d T (v 1 , x ′) = ℓ + (d T (x, x ′) -ℓ) = d T (x, x ′) ≤ D(T)
where x is the non-hub adjacent to v 1 in T satisfying w(x, v 1) = ℓ.

• Both v i , v j are hubs in T . In the following, we show that for any two hubs v i , v j , d T (v i , v j) ≤ D(T). There are three cases.

v i and v j are both hubs in T . We have

d T (v i , v j) = d T (v i , v j) ≤ D(T).
-One of v i and v j is a non-hub in T , say v i (see Fig. 9

(b)). Since v i is a non- hub in T , w(v 1 , v i) ≤ ℓ. Notice that if w(v 1 , v i) > ℓ, v i must be a hub in T .
According to the fact that w(v 1 , v i) ≤ ℓ, v i must be selected as a hub of T in Step 4. The reason that v i is selected as a hub in T rather than the other vertex x ′ which is a hub in T and a non-hub in T is because of w(v i , c) ≤ w(x ′ , c). Thus

d T (v i , v j) = w(v i , c) + w(v j , c) ≤ w(x ′ , c) + w(v j , c) = d T (x ′ , v j) ≤ D(T).
-Both v i and v j are non-hubs in T as Fig. 9(c). Note that w(v i , v 1) ≤ ℓ and w(v j , v 1) ≤ ℓ. We see that v i and v j must be selected as hubs in Step 4. It means there exist two hubs u, v in T which are non-hubs in T satisfying that w(u, c) ≥ w(v i , c) and w(v, c) ≥ w(v j , c). Thus,

d T (v i , v j) = w(v i , c) + w(v j , c) ≤ w(u, c) + w(v, c) = d T (u, v) ≤ D(T).
Since for all u, v ∈ T , we have shown that d T (u, v) ≤ D(T), together with the fact D(T) ≥ D(T), we obtain that D(T) = D(T). This completes the proof of (ii). Lemma 6. Let 1 2 ≤ β ≤ 0.7737.... Then the following statements hold.

1. If β ≤ 3- √ 3
2 , then ∆ β -SpHCP can be solved in polynomial time.

If 3-

√ 3 2 < β ≤ 0.7737..., there is a 1+2β-2β 2 4(1-β) -approximation algorithm for ∆ β - SpHCP.
Proof. Let T * denote an optimal solution of the ∆ β -SpHCP problem. By Lemma 5, there is a polynomial time algorithm for ∆ β -SpHCP to compute a solution T such that

D(T) ≤ max{1, 1+2β-2β 2 4(1-β) } • D(T *). For β ≤ 3- √ 3 2 , D(T) ≤ max{1, 1+2β-2β 2 4(1-β) } • D(T *) = D(T *). For 3- √ 3 2 < β ≤ 0.7737..., D(T) ≤ max{1, 1+2β-2β 2 4(1-β) } • D(T *) = 1+2β-2β 2 4(1-β) • D(T *
). This completes the proof.

Algorithm 1 Approximation algorithm for ∆ β -SpHCP (G, c) if β ∈ [0.7737..., 2]
1: Run Algorithm APX1. 2: Run Algorithm APX2. 3: Return the best solution found by Algorithms APX1 and APX2.

Algorithm APX1

1: Guess the correct edge (y, z) where w(y, z) = ℓ is the largest edge cost in an optimal solution T * with y as a hub and z as a non-hub. Let U := V \ {c} and h 1 = y. Let T 1 be the tree found by the following steps and H be the children of c in T 1 . Initialize

H = ∅. 2: Add edge (h 1 , c) in the tree T , let H := H ∪ {h 1 }, and let U := U \ {h 1 }. 3: For x ∈ U, if w(h 1 , x) ≤ ℓ, add edges (x, h 1) in T and let U := U \ {x}. 4: while i = |H| + 1 ≤ p and U = ∅ do 5: choose v ∈ U, let h i = v, add edge (h i , c) in T , let U := U \ {v}, and let H := H ∪ {h i }; 6:
for x ∈ U, if w(x, h i) ≤ 2βℓ, then add edge (x, h i) in T and U := U \ {x}. 7: end while 8: If |H| < p and U = ∅, we change the shape of T by selecting p -|H| vertices closest to c from the second layer to be the children of c, call the new tree T 1 ; otherwise let T 1 := T . 9: return T 1 .

Algorithm APX2

1: Guess the correct edge (y, z) where w(y, z) = ℓ is the largest edge cost in an optimal solution T * with y as a hub and z as a non-hub. Let T 2 be the tree found by the following steps. 2: Let y be the child of c in T * .

3: Pick (p -1) vertices {v 1 , v 2 , . . . , v p-1 } closest to c from U \ {y, z}. Let N T 2 (c) = {y, v 1 , v 2 , . . . , v p-1 }. 4: Let all vertices in U \ {v 1 , v 2 , . . . , v p-1 , y} be the children of y. Lemma 7. Let 0.7737... ≤ β ≤ 1. Then, there is a (1 + 4β 2 5β+1)-approximation algorithm for ∆ β -SpHCP.
Proof. It is not hard to see that Algorithm 1 runs in polynomial time. Let T * be an optimal solution of ∆ β -SpHCP and ℓ be the largest edge cost in T * with one end vertex as a hub and the other end vertex as a non-hub. Note that both Algorithm APX1 and Algorithm APX2 guess all possible edges (y, z) to be the longest edge in T * with y is a hub and z is a non-hub. Let T 1 and T 2 be the best solutions returned by Algorithm APX1 and Algorithm APX2, respectively. Next, we show that for 0.7737... ≤ β ≤ 1, Algorithm 1 returns a solution T such that D(T) ≤ (1 + 4β 2 5β+1) • D(T *) where T * is an optimal solution. Let T 1 and T 2 be the best solution returned by Algorithm APX1 and Algorithm APX2, respectively. Proof. We first show that for any two hubs u, v in T 1 , d T 1 (u, v) = w(u, c) + w(v, c) ≤ D(T *). Let T * be an optimal solution of ∆ β -SpHCP. Let f * (u) and f * (v) be the parents of u and v in T * , respectively.

If f * (u) = f * (v), there are three cases.

• Suppose that f * (u) = c and f * (v) = u. Then

d T 1 (u, v) = w(u, c)+w(v, c) ≤ w(u, c)+w(c, f * (v))+w(f * (v), v) = d T * (u, v) ≤ D(T *).
• Suppose that f * (u) = c and f * (v) = u. Since w(u, v) ≤ 2βℓ, v is selected as a hub in Step (iv) of Algorithm APX1. Since in Step (iv), the algorithm select (p -|H|) vertices closest to c from the second layer as hubs, there exists y ′ which is a hub in T * and a non-hub in T 1 satisfying w(y ′ , c) ≥ w(v, c). Thus,

d T 1 (u, v) = w(u, c) + w(v, c) ≤ w(u, c) + w(y ′ , c) = d T * (u, y ′) ≤ D(T *).
• Suppose that f * (u) = c. Then

d T 1 (u, v) = w(u, c) + w(v, c) ≤ w(u, f * (u)) + w(f * (u), c) + w(c, f * (v)) + w(f * (v), v) = d T * (u, v) ≤ D(T *). If f * (u) = f * (v) = c, d T 1 (u, v) = d T * (u, v) ≤ D(T *). If f * (u) = f * (v) = c
, then at most one of u, v is selected as a hub in Step (iii) of Algorithm APX1 since w(u, v) ≤ 2βℓ, or both u and v are selected as hubs in Step (iv).

Suppose that u is selected as a hub in Step (iii) and and v is selected as a hub in Step (iv). We see that in Step (iv), the algorithms select (p -|H|) vertices closest to c from the second layer as hubs. Thus, there exists y ′ which is a hub in T * and a non-hub in T 1 satisfying w(y ′ , c) ≥ w(v, c). We obtain that

d T 1 (u, v) = w(u, c) + w(v, c) ≤ d T * (u, c) + w(y ′ , c) = d T * (u, y ′) ≤ D(T *).
Suppose that both u, v are selected as hubs in Step (iv). We see that in Step (iv), the algorithm selects (p -|H|) vertices closest to c from the second layer as hubs. Thus, there exist y 1 , y 2 which are hubs in T * and non-hubs in T 1 satisfying w(y 1 , c) ≥ w(u, c) and w(y 2 , c) ≥ w(v, c). We obtain that Proof. Let T * be an optimal solution. For a vertex v, use f * (v) to denote the parent of v in T * . Notice that Algorithm APX2 guesses all possible edges (y, z) to be a longest hubnonhub edge in T * . In the following we assume that w(y, z) = ℓ is the cost of a longest hub-nonhub edge in T * with y as a hub and z is a non-hub in T * . Since Algorithm APX2 picks (p -1) vertices closest to c, y is a hub in both T * and T 2 , and (y, z) is the longest hub-nonhub edge in T * , we see that for any hub v in T 2 , d T 2 (v, y) ≤ D(T *)ℓ.

d T 1 (u, v) = w(u, c) + w(v, c) ≤ w(y 1 , c) + w(y 2 , c) = d T * (y 1 , y 2) ≤ D(T *). Notice that each non-hub v in T 1 is adjacent to a hub f (v) in T 1 if w(v, f (v)) ≤ 2βℓ. Thus, for u, v in T 1 , d T 1 (u,
For two non-hubs u, v in T 2 , we have the following three cases.

• f * (u) = f * (v) = y, we see that d T 2 (u, v) = d T * (u, v) ≤ D(T *).
• f * (u) = y and f * (v) = y, we see that

d T 2 (u, v) = w(u, y) + w(v, y) ≤ ℓ + β • d T * (v, y) ≤ ℓ + β • (D(T *) -ℓ) ≤ D(T *).
• f * (u) = y and f * (v) = y, we see that

d T 2 (u, v) = w(u, y) + w(v, y) ≤ β • d T * (u, y) + β • d T * (v, y) ≤ 2β(D(T *) -ℓ) ≤ (D(T *) -ℓ) + β(D(T *) -ℓ)
For a non-hub u and a hub v in T 2 , there are two cases.

• If f * (u) = y, we see that d T 2 (u, v) = w(u, y) + d T 2 (v, y) ≤ ℓ + D(T *) -ℓ = D(T *).
• If f * (u) = y, we see that d We obtain that ℓ D(T *) = β 5β+1 . Thus,

r(β) = min{ D(T 1) D(T *) , D(T 2) D(T *) } ≤ min{1 + 4β 2 5β+1 , 1 -β 5β+1 + β(1 -β 5β+1)} = 1 + 4β 2 5β+1 .
This completes the proof.

Lemma 8. Let 1 ≤ β ≤ 2. Then, there is a (β + 4β 2 -2β 2+β)-approximation algorithm for ∆ β -SpHCP.
Proof. It is not hard to see that Algorithm 1 runs in polynomial time. Let T * be an optimal solution of ∆ β -SpHCP and ℓ be the largest edge cost in T * with one end vertex as a hub and the other end vertex as a non-hub. Note that both Algorithm APX1 and Algorithm APX2 guess all possible edges (y, z) to be the longest edge in T * with y is a hub and z is a non-hub. Let T 1 and T 2 be the best solutions returned by Algorithm APX1 and Algorithm APX2, respectively. In this lemma, we show that for 1 ≤ β ≤ 2, Algorithm 1 returns a solution T such that D(T) ≤ (β + 4β 2 -2β 2+β) • D(T *) where T * is an optimal solution.

Claim 1. D(T 1) ≤ β • D(T *) + 4βℓ.
Proof. We first show that for any two hubs u, v in T

1 , d T 1 (u, v) = w(u, c) + w(v, c) ≤ β • D(T *
). Let T * be an optimal solution of ∆ β -SpHCP. Let f * (u) and f * (v) be the parents of u and v in T * respectively.

If f * (u) = f * (v), then there are three cases.

• Suppose that f * (u) = c and f * (v) = u. Then

d T 1 (u, v) = w(u, c) + w(v, c) ≤ w(u, c) + β • (w(c, f * (v)) + w(f * (v), v)) ≤ β • d T * (u, v) ≤ β • D(T *).
• Suppose that f * (u) = c and f * (v) = u. Since w(u, v) ≤ 2βℓ, v is selected as a hub in Step (iv) of Algorithm APX1. Since in Step (iv), the algorithm select (p -|H|) vertices closest to c from the second layer as hubs, there exists y ′ which is a hub in T * and a non-hub in T 1 satisfying w(y ′ , c) ≥ w(v, c). Thus,

d T 1 (u, v) = w(u, c) + w(v, c) ≤ w(u, c) + w(y ′ , c) = d T * (u, y ′) ≤ D(T *) ≤ β • D(T *). • Suppose that f * (u) = c. Then d T 1 (u, v) = w(u, c) + w(v, c) ≤ β • (w(u, f * (u)) + w(f * (u), c)) + β • (w(c, f * (v)) + w(f * (v), v)) = β • d T * (u, v) ≤ β • D(T *). If f * (u) = f * (v) = c, d T 1 (u, v) = d T * (u, v) ≤ D(T *) ≤ β • D(T *). If f * (u) = f * (v) = c
, then at most one of u, v is selected as a hub in Step (iii) of Algorithm APX1 since w(u, v) ≤ 2βℓ, or both u and v are selected as hubs in Step (iv). Suppose that u is selected as a hub in Step (iii) of Algorithm APX1 and v is selected as a hub in Step (iv) of Algorithm APX1. We see that in Step (iv), the algorithm selects (p -|H|) vertices closest to c from the second layer as hubs. Thus, there exists y ′ which is a hub in T * and a non-hub in T 1 satisfying w(y ′ , c) ≥ w(v, c). We obtain that

d T 1 (u, v) = w(u, c) + w(v, c) ≤ β • d T * (u, c) + w(y ′ , c) ≤ β • d T * (u, y ′) ≤ β • D(T *).
Suppose that both u, v are selected as hubs in Step (iv). We see that in Step (iv), the algorithms select (p -|H|) vertices closest to c from the second layer as hubs. Thus, there exist y 1 , y 2 which are hubs in T * and non-hubs in T 1 satisfying w(y 1 , c) ≥ w(u, c) and w(y 2 , c) ≥ w(v, c). We obtain that

d T 1 (u, v) = w(u, c) + w(v, c) ≤ w(y 1 , c) + w(y 2 , c) = d T * (y 1 , y 2) ≤ D(T *) ≤ β • D(T *). Notice that each non-hub v in T 1 is adjacent to a hub f (v) in T 1 if w(v, f (v)) ≤ 2βℓ. Thus, for u, v ∈ T 1 , d T 1 (u, v) ≤ β • D(T *) + 4βℓ and D(T 1) ≤ β • D(T *) + 4βℓ. This completes the proof of the claim. Claim 2. D(T 2) ≤ max{ℓ + β 2 • (D(T *) -ℓ), 2β 2 • (D(T *) -ℓ)}.
Proof. Let T * be an optimal solution. For a vertex v, use f * (v) to denote the parent of v in T * . Since Algorithm APX2 picks (p -1) vertices closest to c, y is a hub in both T * and T 2 , and (y, z) is the longest hub-nonhub edge in T * , we see that for any hub

v in T 2 , d T 2 (v, y) ≤ D(T *) -ℓ.
For two non-hubs u, v in T 2 , we have the following three cases.

• f * (u) = f * (v) = y, we see that d T 2 (u, v) = d T * (u, v) ≤ D(T *) ≤ ℓ + β 2 • (D(T *) -ℓ).
• f * (u) = y and f * (v) = y, we see that

d T 2 (u, v) = w(u, y) + w(v, y) ≤ ℓ + β 2 • d T * (v, y) ≤ ℓ + β 2 • (D(T *) -ℓ).
• f * (u) = y and f * (v) = y, we see that

d T 2 (u, v) = w(u, v) + w(v, y) ≤ β 2 • d T * (u, y) + β 2 • d T * (v, y) ≤ 2β 2 • (D(T *) -ℓ)
For a non-hub u and a hub v in T 2 , there are two cases.

• If f * (u) = y, we see that

d T 2 (u, v) = w(u, y) + d T 2 (v, y) ≤ ℓ + D(T *) -ℓ ≤ ℓ + β 2 (D(T *) -ℓ). • If f * (u) = y, we see that d T 2 (u, v) = w(u, y) + d T 2 (v, y) ≤ β 2 • (D(T *) -ℓ) + (D(T *) -ℓ) ≤ 2β 2 • (D(T *) -ℓ). Thus, D(T 2) ≤ max{ℓ + β 2 • (D(T *) -ℓ), 2β 2 • (D(T *) -ℓ)}.
This completes the proof of the claim.

The worst case approximation ratio is

r(β) = min{β + 4β • ℓ D(T *) , max{ ℓ D(T *) + β 2 • (1 - ℓ D(T *)), 2β 2 • (1 - ℓ D(T *))}}. Algorithm 2 Approximation algorithm for ∆ β -SpHCP (G, c) if β ≥ 2 1:
Guess the correct values of ℓ 0 , ℓ 1 and ℓ 2 (ℓ 1 and ℓ 2 will be used in Algorithm 3). Their meanings are provided in the proof. 2: H ← {v ∈ V \ {c} | w(v, c) ≤ ℓ 0 }. 3: Create an instance J of the k-center problem with forbidden centers, in which V \{c} is the set of input vertices, H is the set of allowed centers, k = p, and the distance function (satisfying the β-triangle inequality) is the restriction of w to V \ {c}. 4: Apply the greedy approximation algorithm for the k-center problem with forbidden centers (Algorithm 3), to obtain an approximate solution of J . Assume that H * ⊆ H is the set of centers opened in the solution. This completes the proof.

Lemma 9. Let β ≥ 2. Then, there is a (2β +1)-approximation algorithm for ∆ β -SpHCP.

Proof. Let T * be an optimal solution of ∆ β -SpHCP. Let (c, q) be the longest edge incident to c in T * , w(c, q) = ℓ 0 , i.e., ℓ 0 = max v∈N T * (c) {w(v, c)}. Let ℓ 1 and ℓ 2 be the largest and second largest edge costs in T * with one end vertex as a hub and the other end vertex as a non-hub. Note that it is possible that ℓ 1 = ℓ 2 . Our algorithm is presented as Algorithm 2. Line 1 of Algorithm 2 guesses the values of ℓ 0 , ℓ 1 , and ℓ 2 . There are only polynomial many possible values of ℓ 0 , ℓ 2 , ℓ 3 . In the following we assume that we know ℓ 0 , ℓ 1 and ℓ 2 .

It is easy to see that D(T *) ≥ ℓ 0 + ℓ 1 and D(T *) ≥ ℓ 1 + ℓ 2 . Let T denote the solution returned by Algorithm 2. We next prove that Algorithm 2 is indeed a (2β + 1)-approximation algorithm for ∆ β -SpHCP by establishing an upper bound of D(T). According to our choice of ℓ 0 , the set H defined in line 2 contains all hub nodes in the optimal solution N T * (c), i.e., N T * (c) ⊆ H. In Line 3, we create an instance J of the k-center problem with forbidden centers. This problem is defined as follows: The Algorithm 3 Approximation algorithm for k-center with forbidden centers. Choose an arbitrary vertex v ∈ C ′ ∩ R. that the maximum distance between any vertex in C and its nearest center among the k opened centers is minimized. This problem is a generalization of the ordinary k-center problem (in which C ′ = C), and is a special case of the k-supplier problem (in which C ′ may not be a subset of C) [START_REF] Gonzalez | Clustering to Minimize the Maximum Intercluster Distance[END_REF][START_REF]Approximation Algorithms for NP-hard Problems[END_REF][START_REF] Hochbaum | A unified approach to approximation algorithms for bottleneck problems[END_REF]. There is a simple greedy approximation algorithm for this problem, which is presented in Algorithm 3. Its analysis is standard and is similar to that of the traditional k-center problem (see [START_REF] Gonzalez | Clustering to Minimize the Maximum Intercluster Distance[END_REF][START_REF]Approximation Algorithms for NP-hard Problems[END_REF][START_REF] Hochbaum | A unified approach to approximation algorithms for bottleneck problems[END_REF]), and thus is omitted here.

Hence, by applying the greedy approximation algorithm (Algorithm 3) to implement line 4 of Algorithm 2, we obtain a solution H * of J with objective value at most β(ℓ 1 +ℓ 2), that is, max

v∈V \{c} min h∈H * w(v, h) ≤ β(ℓ 1 + ℓ 2). (1)
Line 5 returns a solution that opens H * as the set of p hubs. For each v ∈ V \(H * ∪{c}), let f ′ (v) := arg min h∈H * w(v, h); i.e., f ′ (v) is the hub in H * assigned to v in the solution returned by the algorithm. Let ℓ ′ 1 and ℓ ′ 2 be the largest value and second-largest value in the multiset {w(v, f ′ (v)) | v ∈ V \ {c}}. By inequality (1), we have

ℓ ′ 1 + ℓ ′ 2 ≤ 2β(ℓ 1 + ℓ 2).

Figure 1 :

 1 Figure 1:The curves depict the functions in Table1.

Figure 3 :

 3 Figure 3: The three cases that there exists y ∈ Y \ Y ′ not adjacent to c.

 For each set s ∈ S, construct a vertex in S 1 and a vertex in S 2 , |S 1 | = |S 2 | = |S|. Construct two vertices in Y , Y = {y 1 , y 2 }. Add a vertex c in G as the specified center. Let p = 2k + 2. The edge cost of G is defined in Table4. It is not hard to see that any three vertices in G satisfying β-triangle inequality.

2 Figure 7 : 2 ;

 272 Figure 7: In T * (a) d T * (y ′ , c) ≥ D(T *) 2 ; (b) z is not adjacent to u in T * ; (c) z is adjacent a hub f * (z) = u; (d) z is adjacent to u

Figure 8 :

 8 Figure 8: In T ′ , z is a non-hub adjacent to u and x is a hub. The dashline is an edge in T * .

Figure 9 :

 9 Figure 9: (a) In T , u, v are non-hubs and v i , v j are hubs; in T (b) v i is a non-hub and v j is a hub; (c) both v i and v j are non-hubs.

Claim 1 .

 1 D(T 1) ≤ D(T *) + 4βℓ

 v) ≤ D(T *)+4βℓ and D(T 1) ≤ D(T *)+4βℓ. This completes the proof of the claim.

Claim 2 .

 2 D(T 2) ≤ max{D(T *), (D(T *)ℓ) + β(D(T *)ℓ)}.

 T 2 (u, v) = w(u, y)+d T 2 (v, y) ≤ β•(D(T *)-ℓ)+(D(T *)-ℓ). For two hubs u, v in T 2 , u = y and v = y, we see that d T 2 (u, v) ≤ D(T *) since y is a hub in T * and Algorithm APX2 picks the other (p -1) vertices closest to c as hubs. Thus, D(T 2) ≤ max{D(T *), (D(T *)ℓ) + β(D(T *)ℓ)}. This completes the proof of the claim. Notice that if ℓ D(T *) ≥ β 1+β , D(T 2) = D(T *). Thus, the worst case approximation ratio happens when ℓ D(T *) < β 1+β . If ℓ D(T *) < β 1+β , D(T 2) ≤ D(T *)ℓ + β(D(T *)ℓ). We see that the approximation ratio of Algorithm 1 is r(β) = min{ D(T 1) D(T *) , D(T 2) D(T *) }. The worst case approximation ratio of Algorithm 1 happens when D(T 1) = D(T 2), i.e., D(T *) + 4βℓ = (D(T *)ℓ) + β • (D(T *)ℓ)

5 :

 5 return the solution that opens H * as the set of p hubs and assigns each vertex in V \ {c} to its nearest hub in H * .If ℓ D(T *) > 1 2 , then r(β) ≤ D(T 2) D(T *) ≤ max{ ℓ D(T *) + β 2 • (1 -ℓ D(T *)), 2β 2 • (1 -ℓ D(T *))} ≤ max{1 + β 2 2 , β 2 } ≤ β + 4β 2 -2β 2+β for 1 ≤ β ≤ 2. If ℓ D(T *) ≤ 1 2 , we have D(T 2) ≤ max{ℓ + β 2 • (D(T *)ℓ), 2β 2 • (D(T *)ℓ)} = 2β 2 • (D(T *)ℓ). Thus, r(β) = min{β + 4β • ℓ D(T *) , 2β 2 • (1 -ℓ D(T *))}. Let β + 4β • ℓ D(T *) = 2β 2 • (1 -ℓ D(T *)). Then, we obtain that ℓ D(T *) = 2β-1 2β+4 . Hence r(β) ≤ min{β + 4β • 2β-1 2β+4 , 2β 2 • (1 -2β-1 2β+4)} = β + 4β 2 -2β2+β .

1 :

 1 // Let C be the input vertex set, C ′ ⊆ C be the set of allowed centers, and w be the distance function on C satisfying the β-triangle inequality. Assume w.l.o.g. that k ≤ |C ′ |. 2: R ← C; S ← ∅. 3: while R = ∅ and |S| < k do 4:

5 :

 5 B(v) ← {u ∈ R | w(u, v) ≤ β(ℓ 1 + ℓ 2)}.

6 :R

 6 ← R \ B(v); S ← S ∪ {v}. 7: end while 8: if |S| < k and R = ∅ then 9: select an arbitrary vertex set S ′ ⊆ (C ′ \ S) of size k -|S|; S ← S ∪ S ′ . 10: end if 11: return S input consists of a set C of demand points in a space satisfying the β-triangle inequality, a set C ′ ⊆ C of allowed centers, and an integer k. The goal is to open k centers in C ′ such

2 .

 2 Let x, y ∈ V \ {c} be the nodes achieving the maximum path length in T , i.e.,d T (x, y) = D(T). It suffices to show that D(T) ≤ (2β + 1) • D(T *). If f ′ (x) = f ′ (y), then D(T) = w(x, f ′ (x)) + w(y, f ′ (y)) ≤ ℓ ′ 1 + ℓ ′ If f ′ (x) = f ′ (y), then D(T) = w(x, f ′ (x)) + w(f ′ (x), c) + w(f ′ (y), c) + w(y, f ′ (y)) ≤ ℓ ′ 1 + 2ℓ 0 + ℓ ′ 2where we use w(h, c) ≤ ℓ 0 for all h ∈ H by our choice of H. Combine with the fact that

Table 4 :

 4 The cost of edges (a, b) in G

Acknowlegements

The authors would like to thank the anonymous referees for their careful reading of the manuscript and the valuable comments that greatly improve the quality of the paper.

-2218-E-006-019-MY3. Part of this work was done while Ralf Klasing was visiting the Department of Computer Science and Information Engineering at National Cheng Kung University. This study has been carried out in the frame of the "Investments for the future" Programme IdEx Bordeaux -CPU (ANR-10-IDEX-03-02). Research supported by the LaBRI under the "Projets émergents" program.

D(T *) ≥ ℓ 0 + ℓ 1 and D(T *) ≥ ℓ 1 + ℓ 2 , we always have

which indicates that Algorithm 2 is a (2β + 1)-approximation algorithm for ∆ β -SpHCP. This completes the proof.

We close this section with the following theorem.

Theorem 2. Let β ≥ 1 2 . There exists a polynomial time r(β)-approximation algorithm for ∆ β -SpHCP where

Corollary 2. There exists a polynomial time 5 3 -approximation algorithm for SpHCP. Proof. Since the Star p-Hub Center Problem (SpHCP) assumes the input graph to be a metric graph, i.e., β = 1, we see r(1) = 5 3 . This completes the proof.

Conclusion

In this paper, we have studied ∆ β -SpHCP for all β ≥ 1 2 . We showed that for any ǫ > 0, to approximate ∆ β -SpHCP to a ratio g(β)ǫ is NP-hard where g

Moreover, we gave r(β)approximation algorithms for the same problem.

2+β , 2β + 1}. In the future work, it is of interest to extend the range of β for ∆ β -SpHCP such that the gap between the upper and lower bounds of approximability can be reduced.