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Simultaneous Parameters Identification and State Estimation based on
Unknown Input Observer for a class of LPV Systems.

M. Fouka, L. Nehaoua, H. Arioui and S. Mammar

Abstract— A novel unknown input observer structure for
parameters and state estimation is proposed to enhance the
performance of the estimator. In this paper, we suggest how
a failed matching condition in a nonlinear unknown input
observer can be recovered by using time delayed measurement
to solve the inversing problem. Based on delayed outputs, an
augmented system is constructed from which the parameters
of the model and the system states can be simultaneously
estimated. The augmented nonlinear model is transformed into
a Takagi Sugeno (TS) form.

Sufficient conditions for the existence of the estimator are
given in terms of linear matrix inequalities (LMIs). Using
the obtained information on the unknown input observer,
unknown parameters are identified. Finally, the feasibility and
the effectiveness of the suggested approach is demonstrated on
examples.

I. INTRODUCTION

ESTIMATION is a common approach to deal with many
problems occuring in various application areas: in mo-

tion control design, signal processing, process identification
and fault detection. First theory about the state estimation
was introduced in the sixties of the previous century by
Luenberger for deterministic linear systems [1]. After this
original work, many other approaches have been proposed
for both the linear and the nonlinear cases. Among them,
one can cite sliding mode observer [2], extended Kalman
observer [3]. Nevertheless, a particular attention was paid
for the nonlinear estimation which has been the subject of an
intensive research during the last decades. However, several
challenges need more thorough investigation.

The first challenge was to consider the system environ-
ment in observer design process. Indeed, any system has
inputs and outputs but also it may be subject to various
intrinsic parameter uncertainties, external disturbances and,
unknown input. So, it is a common practice to simultaneously
reconstruct the systems states and unknown inputs. This
latter issue has become a challenging problem that received
a particular attention. Wang [4] proposes a procedure to
design a reduced-order observers without any knowledge
about the unknown inputs. Darouach [5] has presented a
simple method to design a full-order observer for a linear
system with unknown inputs where the existence of the
observer is guaranteed by a set of necessary and sufficient
conditions. For diagnosis application, Koenig [6] considers
a Proportional-Integral observer form to estimate simultane-
ously the systems states and the fault signals. Afterwards, the
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second challenge was to deal with systems parameter varia-
tions and nonlinearities. Many works have been proposed to
design UIO by considering the direct nonlinear approach [7].
Beyond the previous considerations, a forward solution was
the use of the linear system theory and numeric optimization
tools to facilitate the UIO design procedure. In this sense,
an extensive literature can be found about the UIO design
by using Linear Parameter Variation techniques (LPV) [8]
and Takagi-Sugeno models (TS) [9]. Indeed, the use of TS
models with measurable premise variables allows to describe
a nonlinear system with a good precision [10]. Even in [12],
Ichalal and al. discuss a simultaneous state and unknown
inputs estimation for nonlinear systems described by a TS
model with unmeasurable premise variables.
Until now, the discussion above concerns the simultaneous
state and unknown inputs estimation. At our best knowl-
edge, the simultaneous parameters and state estimation with
an unknown input observer has never been addressed yet.
Nonetheless, Kuhlmann, in [11], studied the feasibility of
the parameter and state estimation of nonlinear systems by
using a multi-observer technique to be used in a supervisory
framework. This work consists to design a hybrid observer
starting from a set of nominal parameters and, a switch
condition to select one of the resulting observers. However,
the problem formulation is complex even for a linear system
case, and the switch condition is based on a preliminary
probabilistic knowledge of the current parameters within the
parameter set.
In this paper, we propose a generalization of the UI observers
for nonlinear systems. In the present work, nonlinearities
are transformed into a TS exact form [13] which is used
to simultaneously estimate the unknown inputs, the models
parameters and, the systems states. We also describe our
contributions to solve the observer design problem where
the matching condition is initially not fulfilled. For this,
delayed outputs are used to write an augmented system form
and a generalization of the UI observer design even for a
system with an arbitrary relative degree is demonstrated.
Next, the observer convergence study is presented based on
the Lyapunov theory and the problem resolution will be held
by using the LMI approach. Finally, illustrative examples are
given to show the effectiveness of the proposed method.

II. PRELIMINARIES AND NOTATIONS

Throughout the paper, the following useful notations are
used:

• AT represents the transpose of matrix A.



• A > 0 means that A is a symmetric positive definite
matrix.

• ρ represents the vector of nρ known time-varying pa-
rameters which are sufficiently smooth and bounded.

• Θ : is the set of unknown parameters of dimension nθ ,
θi ∈Θ parameters to be identified (i = 1, ...,nθ ).

• In denotes the n×n identity matrix.
• 0n×m represents the n×m matrix whose entries elements

are all null.
• (.)† =

[
(.)T (.)

]−1
(.)T is the left pseudo-inverse of the

matrix (.).
We are interested by the Linear Parameter Varying (LPV)
structure expressed by:

∑

{
ẋ(t) = A(ρ)x(t)+Bu(t)+F(y, ẏ, ..,y(n),θ)

y =Cx(t)
(1)

where x(t) ∈ Rn, u(t) ∈ Rm, F(y, ẏ, ..,y(n),θ) ∈ Rp and
y(t)∈Rny are the state vector, the input vector, the unknown
part and the output of the system, respectively. ρ is the
vector of time-varying parameters. The matrix A(ρ) ∈ Rn×n

is parameter varying, the matrices C ∈ Rny×n, B ∈ Rn×m are
considered constant but the extension of the approach for
parameter varying output matrix is straightforward.

Assumption 1: In this study, θ is the vector of constant
parameters θ̇ = 0.

Definition 1: A state observer or state reconstructor
converges asymptotically when the following condition
‖x(t)− x̂(t)‖ → 0, t → ∞ holds, where x(t) is the real state
and x̂ is the estimated state.

Definition 2: Kalman Criterion of observability:
We say that the pair (A,C) is observable when rank(O) = n,
with :

O =
(

C CA CA2 . . . CA(n−1)
)T

Definition 3: Frequency Criterion of detectability :
The system (1) is observable if and only if :

rank(R(s)) = n, ∀s ∈ C and R(s) =
(

sI−A
C

)
where, R(s) is the Rosenbrock matrix of system ∑(A,C).
In practice, it is enough to verify it for the eigenvalues
s =

(
l1 l1 . . . ln

)
of the A matrix.

III. PROBLEM STATEMENT

In equation (1), system’s states and parameters need to be
estimated. For this, we reformulate the unknown part F of
the model in order to test the matching condition:

Assumption 2: In equation (3), it will be assumed that F
can be factorized into

F(y, ẏ, ..,y(n),θ) = D(y, ẏ, ..,y(n)) f (θ) (2)

The matrix D ∈ Rn×p is the measurement matrix of full
column rank, i.e. rank(D) = p. For the rest of the paper,

D(y, ẏ, ..,y(n)) is written D(y), f (θ) is the vector of unknown
parameters; thus the system (1) takes the form{

ẋ(t) = A(ρ)x(t)+Bu(t)+D(y) f (θ)
y =Cx(t) (3)

The objective is to design an UI observer for LPV systems
written in a TS form in order to decouple the unknown
part F(y, ẏ, ..,y(n),θ), to estimate the unmeasurable state
variables, then to identify parameters from the estimated
unknown input.
Note that in our case, the decoupling condition is not satisfied
dim(y) = ny < p. This is what we aim to recover this
condition.

IV. EXACT T-S MODEL FOR NONLINEAR SYSTEMS

The aim of this section is to find an equivalent linear form
for the system in equation (3). An effective choice is the
use of sector nonlinearity approach as described in [13]. We
obtain a TS representation with 2nρ sub-models.{

ẋ(t) = ∑
nρ

i=1 µi(ρ)Aix(t)+Bu(t)+D(y) f (θ)
y =Cx(t)

(4)

Where, the premise variables depend only on measured
signals. Firstly, we suppose that the varying parameter ρ is
bounded within the interval [ρmin ρmax].
The variables µi(ρ) are called the weighing functions, they
must satisfy the following convex sum property:{

0≤ µi(ρ) ≤ 1
∑

2nρ

i=1 µi(ρ) = 1
(5)

The variables µi(ρ) are computed as follows [14]:
hi

0(t) = ρimax−ρi(t)
ρimax−ρimin

, hi
1(t) = ρi(t)−ρimin

ρimax−ρimin

⇒ µi(ρ(t)) =
nρ

∏
j=1

hi
i j(ρ(t))

(6)
General Overview :
• In the general case when ny > p, it is clear that if the

observability condition of the couple (A(ρ),C) and the
condition (rank(CD) = rank(D)) is verified (the output
y(t) has a uniform relative degree with respect to the
unknown input), a state observer (UIO) for nonlinear
system can be designed.

• In the case when (p > ny hence rank(CD) 6= rank(D)),
a solution is proposed to overcome this issue by con-
sidering a new structure of the UI observer and also a
design procedure to identify parameters even if we have
more parameters than output, as it will be shown below.

V. OBSERVER DESIGN PROCEDURE

Assumption 3: .
• The state x is bounded (stable or stabilized),
• The pairs (Ai,C) are observable or detectable,
• The output y and its derivatives ẏ...y(n) are available.

Let us denote τ the time delay applied on the system
output and xa(t)= [x,xτ ]

T the augmented state vector, and
ya(t)= [y,yτ ]

T the augmented measurement vector, where



yτ =Cxτ = y(t− τ).

Remark 1: The time delay τ is carefully chosen in such
a way to have signals y and yτ different, (the augmented
ya(t) is of full rank and (p ≥ nθ )). This can be ensured by
choosing a Persistent Excitation.

Hence, the augmented model is given by state space
representation as following:

ẋa(t) =
[

A(ρ) 0n×n
0n×n Aτ (ρτ )

]
︸ ︷︷ ︸

A

xa(t)+
[

B
B

]
︸ ︷︷ ︸

B

u(t)+
[

D(y)
D(yτ )

]
︸ ︷︷ ︸

D

f (θ)

ya(t) =
[

C 0ny×n
0ny×n C

]
︸ ︷︷ ︸

C

xa(t)
(7)

Remark 2: The matching condition for the augmented
model holds: rank(CD) = rank

[
CD(y)
CD(yτ )

]
= rank(D).

The increase of the rank(CD) comes from the matrix Dτ .
If the matching condition is not satisfied, the model is
augmented with other delayed outputs until the condition
is satisfied. In the following, and for the sake of simplicity,
we expose only the case with one single delay. The general
case is straightforward.
From the output equation ya = Cxa(t), the time derivative of
ya(t) is : ẏa(t) = CA(ρ)xa(t)+CBu(t)+CD f (θ).
The unknown part can be expressed, by model inversion, as
follows :

F(y,θ) =D(CD)†(ẏa(t)−CAxa−CBu(t))

An observer for system (7) can be given by a dynamical
system under the form:

ż(t) =
[

N1 0n×n
0n×n N2

]
︸ ︷︷ ︸

N(ρ)

z(t)+
[

L1 0n×ny
0n×ny L2

]
︸ ︷︷ ︸

L(ρ)

ya(t)+
[

G1
G2

]
︸ ︷︷ ︸

G(ρ)

u(t)

x̂a(t) =
[

x̂(t)
x̂τ (t)

]
= z(t)−

[
H1 0n×ny

0n×ny H2

]
︸ ︷︷ ︸

H(y)

ya(t)
(8)

where matrices N, L, G are to be determined to guarantee
a minimal bounded of the estimation error e = xa− x̂a. On
the other hand, the observer gains H are computed to ensure
that the estimation error converges asymptotically to zero.
In equation (8), N(ρ) and L(ρ) have the same quasi-LPV
form as the matrix A(ρ) and can be written in a TS form as
follows:

N(ρ) =
r1

∑
i=1

µi(ρ)Ni, L(ρ) =
r1

∑
i=1

µi(ρ)Li, G(ρ) =
r1

∑
i=1

µi(ρ)Gi, H(y) =
r2

∑
i=1

µi(y)Hi (9)

where, r1 = 2nρ , r2 = 2ny

According to equations (7) and (8), the state estimation error
is given by:

e = xa− x̂a = (I +H(y)C)︸ ︷︷ ︸
P(y(t))

xa− z (10)

From equations (7), (8) and 10), the dynamics of the state
estimation error is expressed by the following differential
equation:

ė(t) = Ne(t)+(Ṗ+PA−NP−LC)xa(t)+PD f (θ)
+ (PB−G)u(t) (11)

Under the conditions:

Ṗ+PA−NP−LC= 0 (12)
PD= 0 (13)

PB−G = 0 (14)

The estimation error dynamics will be reduced to:

ė(t) = Ne(t) (15)

in which, N(ρ) must be Hurwitz.

Equations (12) to (14) form a set of conditions to be
resolved to compute the observer gains. To achieve this,
the following steps in the design approach are followed. We
replace the matrix P in the equality (12) which leads to:

Ṗ+PA−NP−LC= 0 ⇔ Ṗ+PA−N− (NH +L)C= 0
⇔ Ṗ+PA︸ ︷︷ ︸

Γ

−N− (NH +L︸ ︷︷ ︸
K

)C= 0

⇔ N = Γ−KC (16)

Γ and K are function of the parameters varying signals
ρ(t) and/or the measurement output y(t). Then the sector
nonlinear approach is used to transform the problem into a
(TS) form where, r = 2(nρ+ny). Γ(ρ,y) = Ṗ+PA= ∑

r
i=1 µi(ρ,y)Γi

K(ρ,y) = ∑
r
i=1 µi(ρ,y)Ki

(17)

The dynamics of the state estimation error’s become:

ė(t) = (Γ−KC)e(t) (18)

In this paper, the stability analysis of the system (7) is
studied in order to obtain the observer gains that satisfy LMI
conditions. This analysis is performed using the Lyapunov
theorem, by considering the following Lyapunov function:

V (e(t)) = e(t)T Qe(t), Q = QT > 0 (19)

By using the error dynamics in equation (18), the time
derivative of the lyapunov function can be written by the
following expression:

V̇ (t) = e(t)T (NT Q+QN
)

e(t) (20)

where, N = ∑
r
i=1 µi(ρ,y)(Γi−KiC).

Using the convex sum property of the weighting functions
and from (20), sufficient BMI conditions ensuring asymptotic
stability are obtained as follows :
(Γi−KiC)

T Q+Q(Γi−KiC)< 0, i = 1, ...,r
By considering Ri = QKi, the BMI condition will be equiv-
alent to the following LMI condition:

Γ
T
i Q+QΓi−CTRT

i −RiC< 0, Γi = PiAi + Ṗi

where, Pi = I +HiC, Ṗi = ( dP
dy )i× ẏi

Theorem 1: The state estimation error converges asymp-
totically toward zero if there exist a symmetric positive
definite matrix Q ∈ Rn×n and a matrix R ∈ Rn×ny such that
the following linear matrix inequality holds

Γ
T
i Qi +QiΓi−RiCi−CT

i R
T
i < 0, Ri = QKi (21)



which can be solved easily by using the Yalmip toolbox (see
[12] for more details).
When the state estimation error e(t) converges toward zero,
we have x̂(t)→ x(t), then the following UI estimation F̂ is
obtained by the following equation :

F̂(y,θ) =D(CD)†(ẏa(t)−CAx̂a(t)−CBu(t))

in which, the convergence of f̂ toward f can be analyzed by
defining the unknown input estimation error

eF(t) = F(y,θ)− F̂(y,θ) =−D(CD)†CAe(t)

knowing that e(t) converges asymptotically to zero, then
eF(t) also converges asymptotically to zero.
The UI observer design procedure is summarized by the
following steps:

1) The observability condition of the couple (A,C) is
verified following definition 2 and the rank condition
(rank(CD) = rank(D)) is satisfied.

2) The LMI problem includes the following condition to
compute the matrices H as follows:{

(I +HiC)Di = 0⇒ Hi =−Di(CDi)
†, Gi = (I +HiC)B

Pi = I +HiC⇒ Γi = PiAi + Ṗi

3) Find gain matrices Q and Ri satisfying LMI equation
(21) to ensure asymptotic convergence toward zero of
the state estimation (definition 1).

4) The gains of the observer N, L and H are computed
as follows: 

Ki = Q−1Ri
Ni = Γi−KiC
Pi = I +HiC

Li = Ki−NiHi

(22)

Parameters estimation from the unknown input :
In order to estimate the parameters of the model, let us
consider the following expression Fi, i = 1, ..., p:

F̂i(y(t), ẏ(t), ..,y(n), θ̂) = D(y(t)ẏ(t), ..,y(n)) f̂i(θ) (23)

This is a linear system of p equations with nθ unknowns pa-
rameters, in which (p< nθ , fewer equations than unknowns).
An augmented system of equation which is defined from
(Eq.23) with delayed values (F̂i and y(t)ẏ(t − τ), ..,y(n)),
is well posed to identify parameters. The observer (8) is
synthesized to ensure the stability and convergence of the
unknown inputs (F̂i(t), F̂i(t − τ)) taking into account the
delay on the outputs presented in the augmented model.

VI. NUMERICAL EXAMPLES AND SIMULATIONS

In this section, the proposed method is highlighted through
an academic LTI example and an LPV model.

A. Academic LTI Example
Consider the following tutorial model parameters: ẋ(t) = Ax(t)+Bu(t)+F(y,θ)

F(y,θ) = D(y) f (θ)
y =Cx(t)

(24)

The state matrices of the system are presented as

Ā =

 −1 4 a13
−5 −2 0

−5+a31 0 −1+a33

= A+Aθ (25)

A =

 −1 4 0
−5 −2 0
−5 0 −1

B =

 1
1
1

C =

[
1 0 0
0 0 1

]
(26)

Aθ is the unknown part of this model, to keep the same
structure studied above, we considered Aθ in F(y,θ) and the
nominal parameters values are :

a13 = 0.5, a31 = 0.8, a33 =−2.9

F(y,θ) =

 F1 = y2.a13
F2 = 0
F3 = y1.a31 + y2.a33

⇐⇒ F =

 y2 0 0
0 0 0
0 y1 y2


︸ ︷︷ ︸

D(y)

×

 a13
a31
a33


︸ ︷︷ ︸

f (θ)
(27)

One has dim(y) = 2 < dim(θ) = 3. In this case, let us
consider the augmented model described by equation (7),
and τ is chosen on the simulation program in SIMULINK
MATLAB (Transport Delay block).

We consider the UI observer described by
equation (8) which satisfy rank(CD) = rank(D)
(dim(y,yτ) = 4 >= dim(θ)), then the observer gain
are described as follow:

H1 = H2 =

 −1 0
0 0
0 −1

 , N1 = N2 =

 −0.5 0 0
−0 −2 0
−0 0 −0.49

 (28)

L1 = L2 =

 0 0
−5.0 0

0 0

 , G1 = G2 =

 0
1
0

 (29)

The unknown part can be estimated by a simple dynamic
system inversion, since the condition rank(CD) = rank(D):

F̂ =D(CD)†(ẏa(t)−CAxa−CBu(t))

From the estimate F̂ and knowing that F is written as a
function of the parameter vector f̂ (θ) and the measurement
matrix D(y) : F̂ = D f̂ (Eq.27), one can remark in this
equation, we have three parameters and two equations (p =
2 < nθ = 3), thus to estimate parameter, we augment the
equations system (p = nθ = 3).

Then, the following system of equations is used to estimate
the unknown parameters θ :

 a13
a31
a33

=

 y2(t) 0 0
0 y1(t) y2(t)
0 y1(t− τ) y2(t− τ)

−1

×

 F̂1(t)
F̂2(t)

F̂2(t− τ)

 (30)

Figures (1-3) shows test simulation results of a (TS-UIO)
observer, synthesized under the same conditions as before,
the actual variables are given with curves in red and the
estimated ones with curves in blue.
Fig. (1) shows the input (u), output (y) and its delayed value
(yτ ), unknown part with delay (F-Fτ ) and the error between
nominal and estimated values of unknown part.
The estimated states using the designed observer are shown
in Fig. 2 and Fig. 3 shows estimated parameters.
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Fig. 3. Parameters estimation a13−a31−a33.

Remark 3: The singularities in Fig. 3 are mainly due
to the observer transient state and the conditioning of the
inverse matrix of the equation (30) which sometimes passes
through zero.

B. Dynamic LPV descriptor Model

Consider a continuous-time LPV descriptor system de-
scribed by:{

Eẋ(t) = M(ρ(t))x(t)+R(ρ)u(t)+F(y,ρ,θ)
y(t) = Cx(t) (31)

whereas, the matrix M(ρ)=[mi j]6×6, R(ρ)=[ri j]6×1 are
parameter varying, F(y,θ) is the unknown part of the
model, and C is the observation matrix E=[ei j]6×6 is a
constant nonsingular matrix, its inverse E−1 exists. The
system state matrices are :

M(ρ) =


0 m1ρ 0 0 1 1
0 0 0 m2ρ m3 m4
0 0 0 1 0 0
0 m5ρ m6 0 0 0

m7 m8 m9ρ 0 m10ρ 0
m11 m12 m13ρ 0 0 m14ρ

 (32)

R(ρ) =


0
0
0
0

r1ρ

0

 E =


e1 0 0 0 0 0
0 e2 0 0 0 0
0 0 1 0 0 0

e3 0 0 e4 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 C =


0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1



F(ρ,y,θ) =



F1 = 0
F2 = a24ρy4 +a25y5 +a26y6
F3 = 0
F4 = a42ρy2 +a43y3
F5 = a52y2
F6 = a62y2

(33)

For further details on model parameters value (ei j,mi j,ri j)
refer to Table 1.
The Linear Parameter Varying (LPV) structure is expressed
by: {

ẋ(t) = A(ρ)x(t)+Bu(t)+E−1F(y,ρ,θ)
y =Cx(t)

(34)

B = E−1R and A(ρ(t)) = E−1M(ρ) are parameter-varying
matrix related to ρ , the unknown part can be factorized into
F(y,θ) = D(y) f (θ).
One notices that rank(CE−1D)) 6= rank(E−1D) (ny = 4 <
nθ = 7), the matching condition is not fulfilled. Let us
consider the augmented model described by equation (7) and
the global observer described by equation (8) applied on the
system (34) which satisfy rank(CE−1D) = rank(E−1D) as
described before.
The effectiveness of the proposed observer is illustrated
with the system studied in open-loop. The input vector is
presented in Fig. 5 with the varying parameters ρ(t) : a
measurable signal, which is used over the operating range
ρ ∈ [5 13]. The estimated states using the designed observer
are shown in Fig. 5, it can be appreciated that the observer
errors reach to zero.
Since asymptotic convergence, we estimate the unknown
input F̂(y,ρ,θ), then the unknown parameters of the model

a24
a25
a26
a42
a43
a52
a62


=

 y1 0ny1×ny2
0ny1+ny3

0ny2×ny1
y2 0ny2×ny3

0ny3×ny1
0ny2×ny3

y3

−1

×



F̂2(t)
F̂2(t− τ1)
F̂2(t− τ2)

F̂3(t)
F̂3(t− τ1)

F̂5(t)
F̂6(t)


(35)

The expressions (y1,y2,y3) are as follow:

y1 =

 y1(t) y4(t) y5(t)
y1(t− τ1) y4(t− τ1) y5(t− τ1)
y1(t− τ2) y4(t− τ2) y5(t− τ2)

−1

(36)

y2 =

[
y1(t) y2(t)

y1(t− τ1) y2(t− τ1)

]−1

, y3 =

[
y1(t) 0

0 y1(t)

]−1

(37)

Parameters estimation is done assuming that all the states
are available (either measurable or estimated), we applied
the delay on the outputs and the estimated unknown input
to reconstruct the augmented model, the unknown vector of
parameters is also well estimated from the model inversion
given by equations (36-37) and depicted in Fig. 6 with the
error between nominal and estimated value.
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C. Result and Interpretation
From simulations above, we can draw the following con-

clusions :
The proposed observer shows a good estimation accuracy and
proves the reliability of the approach. It is clearly highlight
that the observer converges to the actual states despite the
initial conditions of the model. The states and parameters are
then well estimated with minimal error in the figure (5-6).
These results show the ability of the method to estimate
simultaneously the dynamic states and the unknown param-
eters of the model.
The vector parameters is sensitive to states and outputs
variations when we use a fairly poor excitation, The estima-
tion of these parameters, using measurement corresponding
to low excitation tests, will be difficult. So, it must be
ensured that the excitation makes it possible to cover all the
dynamics taken into account in the model and the appropriate
parameters will be well excited.

TABLE I
NUMERICAL VALUES LPV MODEL

m1 =−220, m2 =−5.3056,m3 = 0.9,m4 =−0.3,m5 = 115,
m6 = 103,m7 =−92960,m8 =−88312,m9 = 5976,
m10 =−5, m11 =−94,m12 = 34,m13 = 43,m14 =−5
e1 = 220, e2 = 24, e3 =−110, e4 = 67, r1 = 98936
a24 =−2.43, ,a25 = 0.04, a26 =−0.015,
a42 = 18.96, a43 = 16.13 a52 =−88312, a62 = 33616.76

l

VII. CONCLUSION

This paper presents an observer approach (UIO) for jointly
reconstruct the state variables and the unknown parameters
for a large class of nonlinear systems. An augmented un-
known input observer based on delayed measurements and
Takagi sugeno transformation is proposed to reconstruct state
and unknown part of the model.
Sufficient conditions for the existence of the estimator are
given in terms of (LMIs) to ensure the asymptotic state and
parameters estimation error convergence. Using the obtained
information of the unknown input estimation, the unknown
parameters are well estimated.
Illustrative examples are presented to verify the effectiveness
of the proposed method.
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