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Abstract—Advanced Driver assistance systems that assist in
safe vehicle guidance require a thorough understanding of the
crossed environment. Because these systems rely on the vision
sensor’s ability to detect road boundaries and lane marking,
these systems are extremely sensitive to road conditions. It is
therefore important to take a critical look at their key aspects
and evaluate their performance and accuracy. In this work, an
evaluation framework to measure the performance of a vehicle
onboard vision system using set-membership theory is presented.
The proposed approach considers the changes that might occur
in vehicle dynamics during the maneuver. The experiment design
and evaluation of the proposed method is shown using field data
acquired using an instrumented vehicle.

I. INTRODUCTION

In the recent years much research efforts in the intelligent
transportation system community has been devoted to the
topics of lane departure warning and lane keeping assistance
[10]. Most of the developed technologies are based on a vision
system mounted on the vehicle to detect road marking and
boundaries. These vision-based systems suffer from perfor-
mance limitations and work reliably only when lane markings
are clearly visible, condition that is unlikely to be satisfied
in adverse weather and lighting conditions. Therefore, it is
necessary to evaluate the ability and performance of such
systems.
In this paper, a framework to quantify the performance of
the vehicle onboard vision systems is presented using set-
membership estimation theory. The basic references for the
technical development of the paper relies on interval estima-
tion concept which have been recently investigated (see e.g.,
[8], [6], [11], [13], [4], [5]). First, an interval observer is used
to robustly estimate the vehicle yaw rate and lateral velocity
using a vision system measurement. The road curvature is
treated as an unknown input and a linear adaptive tire model
is considered to take into account the changes of the road
adhesion. Afterwards, a second interval observer is built in
order to generate guaranteed bounds on the road curvature.
The evaluation methodology is then based on checking the
consistency between the curvature measurement and the es-
timated interval. When an inconsistency is detected, then
the measure is no longer reliable. The performance of the
proposed algorithm is evaluated using vehicle field data, results
show that the proposed scheme succeeds to appropriately
estimate the upper and lower bounds of the road curvature and
confirms the reliability of the vision system measurements.
The remainder of the paper is structured as follows: Prelim-

inaries for the synthesis of Interval Observer and for sta-
bility analysis using Multiple Quadratic Input-to-State Stable
(ISS) Lyapunov Functions (MQLF) are given in section II.
Section III introduces the lateral vehicle model with vision
system measurement used for the interval observers design
and simulation analysis. Section IV deals with the descrip-
tion of the proposed interval observer, its stability analysis
using MQLF, and its design based on optimization problem
involving Linear Matrix Inequalities (LMIs). The results of
experimental validation based on real data acquired using an
equipped prototype vehicle are presented in section V. Finally,
Section VI concludes the paper.

II. PRELIMINARIES

Left and right endpoints of an interval [x] will be denoted
by x− and x+, respectively, such as [x] = [x−, x+]. A > 0
(resp. A < 0) denotes a matrix with positive (resp. negative)
components and A � 0 (resp. A ≺ 0) means that the
matrix is positive (resp. negative) definite. AT and A† denote
respectively the transpose and the pseudo-inverse of the matrix
A. The symbol In refers to identity matrix with dimension
n × n. Let a vector x ∈ Rn or a matrix A ∈ Rn×n, one
denotes x = max{0, x}, x = x − x or A = max{0, A},
A = A−A. In the rest of this paper, all inequalities must be
understood element-wise.
Definition 1. [7] A real matrix A is called Metzler matrix if
all its elements outside the main diagonal are nonnegative.
Lemma 1. [8] A matrix A is a Metzler if and only if there
exist η ∈ R+ such that A+ ηIn ≥ 0.
Definition 2. [9] The following switched system:

ẋ(t) = Aσ(t)x(t) + δσ(t)(t) (1)

where x ∈ Rn is the state, σ(t) : R+ → I = {1, 2, ..., N} is
the switching law, is said to be positive switched system if Ai
is a n× n Metzler matrix and δi(t) ≥ 0, ∀i ∈ I, ∀t ≥ t0.
Definition 3. [8] An interval observer is a pair of estimators
providing a lower and upper bounds (x−(t) and x+(t)) of
the real state vector x(t) such that x−(t) ≤ x(t) ≤ x+(t),
∀t ≥ t0.
Lemma 3. [6] Let the vector x ∈ Rn be a variable vector with
given bounds x+(t)x−(t) ∈ Rn such that x−(t) ≤ x(t) ≤
x+(t).

1) If A ∈ Rn×n is a constant matrix, then

Ax− −Ax+ ≤ Ax ≤ Ax+ −Ax− (2)



2) If A ∈ Rn×n is a variable such that A− ≤ A ≤ A+ for
some A−, A+ ∈ Rn×n, then

A+x+ −A+
x− −A−x+ +A

−
x− ≤ Ax ≤

A
+
x+ −A+x− −A−x+ +A−x−

(3)

Definition 4. [5] For a switching signal σ(t) and any t2 > t1 >
t0, let Nσ(t1, t2) be the number of switching over the interval
[t1, t2). If the condition Nσ(t1, t2) ≤ N0 + (t2−t1)

τa
holds for

N0 ≥ 1, τa > 0, then N0 and τa are called the chatter bound
and the average dwell time respectively.
Lemma 4. [11] Consider the switched system (1) and let ε > 0.
Suppose that there exist smooth functions Vσ(t) : Rn → R,
where Vσ(t)(x(t)) switches among Vi(x(t)) = xT (t)Qix(t)
in accordance with the piecewise constant switching law σ(t).
Then, if there exist γ > 0, β > α > 0 such that for each
σ(t) = i, the following conditions hold:

α‖x(t)‖ ≤ Vi(x(t)) ≤ β‖x(t)‖ (4)

V̇i(x(t)) < −εVi(x(t)) + γ‖δi‖ (5)

then the system (1) is Input-to-State Stable with respect of
the additive term δσ(t) for any switching signal with Average
Dwell Time

τa ≥ τ∗a =
ln(µ)

ε
(6)

where µ = β
α .

Proof. Due to space limitation reasons, the proof is omitted.
It can be found in [12].

III. VEHICLE MODEL DESCRIPTION

A. Vehicle Lateral Dynamics

In this work, a simple model known as the bicycle model
(Fig. 1) is used for vision system evaluation process. This
model describes the vehicle yaw and lateral motions [1], the
state equations have the following form:

Fig. 1. Bicycle model and vision system measurement.{
mv̇y +mvxr = Fyf + Fyr
Iz ṙ = lfFyf − lrFyr (7)

where description of vehicle dynamics parameters is given in
Table 1.
The lateral forces Fyf and Fyr are nonlinear and functions
of the wheel sideslip angle ( [3], [2]). Using the so-called
Pacejka magic formula [3], and under assumption of small

TABLE I
VEHICLE DYNAMICS AND VISION SYSTEM PARAMETERS

Lateral Dynamics
Fyr , Fyr Lateral tire force of front and rear tires
vy , vx Lateral and longitudinal velocities (m.s−1)
r Yaw rate (rad.s−1)
δf Front steering angle (rad)
cf , cr Cornering stiffness of front and rear tires (N.rad−1)
lf , lr Distances from front and rear axle to the CG (m)
m Vehicle mass (kg)
Iz Moment of inertia (kg.m2)
Vision System
yL Offset displacement at a look ahead distance (m)
ψL Angular displacement at a look ahead distance (rad)
ls Look ahead distance (m)
ρ Road curvature (m−1)
β Sideslip angle (rad)

sideslip angle variation, lateral forces are taken to be linear
and expressed as follows:

Fyf = cf (δf − vy
vx
− lf

vx
r), Fyr = cr(− vyvx + lr

vx
r) (8)

In the proposed model, it is assumed that the available mea-
surements are yaw rate r, longitudinal velocity vx and front
steering angle δf . Gathering equations (7) and (8) and chosen
vy and r, as state variables, leads to the following state-space
representation:

[
v̇y
ṙ

]
=

[
− cf+cr

mvx

crlr−cf lf
mvx

− vx
crlr−cf lf
Izvx

− crl
2
r+cf l

2
f

Izvx

][
vy
r

]
+

[ cf
m
cf lf
Iz

]
δf (9)

B. Vision system dynamics

The vision system model describes the evolution of the
angular and lateral displacements of the vehicle from the
centerline at a particular look-ahead distance ls (Fig. 1). The
equations describing the vision system model are given by{

ψ̇L = r − vxρ
ẏL = vy + vxψL + ls(r − vxρ)

(10)

The system (10) can be rewritten in the following state
representation form:[

ψ̇L
ẏL

]
=

[
0 0
0 vx

] [
ψL
yL

]
+

[
0 1
1 ls

] [
vy
r

]
+

[
−vx
−lsvx

]
ρ (11)

The vision systems parameters are described in Table 1.

C. Combined Model and Problem formulation

Combining the vehicle lateral dynamics (9) and the vision
system model (11) leads to a single dynamical system subject
to the road curvature as a disturbance input and describing as
follows: {

ẋ(t) = Ax(t) +Bu(t) + Ed(t)
y(t) = Cx(t) (12)



with the state vector x =
[
vy r ψL yL

]T
, the control

input u(t) = δf , the unknown input d(t) = ρ and the matrices
A, B, and C defined by

A =


− cf+cr

mvx

crlr−cf lf
mvx

− vx 0 0
crlr−cf lf
Izvx

− crl
2
r+cf l

2
f

Izvx
0 0

0 1 0 0
1 ls vx 0

 ,

B =


cf
m
cf lf
Iz
0
0

 , E =

 0
0
−vx
−lsvx

 , C =

[
0 1 0 0
0 0 1 0
0 0 0 1

]

Note that the model (12) describing the vehicle lateral dynam-
ics is subject to several variations and uncertainties. When road
friction changes or when the nonlinear tire domain is reached,
the tire forces Fyf and Fyr are no longer linearly proportional
to slip angles due to the tire saturation property.
Taking into account this variation, the linear tire model (8)
could correct the cornering stiffness by adding two uncertain
terms ∆cf and ∆cr as:

cf = cf0 + ∆cf , cr = cr0 + ∆cr (13)

where the linear part, denoted by ci0, i ∈ {f, r}, presents a
known nominal value and the uncertainty term, denoted by
∆ci, i ∈ {f, r}, is assumed to be unknown but bounded with
a priori known bounds. Moreover, to deal with longitudinal
velocity variations, a switched representation of the vehicle
model is used and vx is assumed to be piecewise constant.
Then, system (12) is transformed into a Switched Uncertain
System given as follows:{

ẋ(t) = (A0,σ(t) + ∆Aσ(t)(ξ(t)))x(t)+
(B0 + ∆B(ξ(t)))u(t) + Eσ(t)d(t)
y(t) = Cx(t)

(14)

where x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rp, d(t) ∈ Rq
represent respectively the state, the control input, the out-
put vector and the unknown input. ξ(t) = [∆cf ∆cr]

T

is the vector of parameters uncertainty. σ : R+ →
I = {1, 2, ..., N} is the switching signal. A0,σ(t), B0,
Eσ(t) and C are constant matrices of appropriate dimension.
∆Aσ(t)(ξ(t)) ∈ {∆A1(ξ(t)),∆A2(ξ(t)), ...,∆AN (ξ(t))} and
∆B are bounded time-varying matrices. N is the number
of subsystems known a priori. For further developments,
let define δσ(t)(t) = ∆Aσ(t)(ξ(t))x(t) + ∆B(ξ(t))u(t), the
system (14) becomes{

ẋ(t) = Aσ(t)x(t) +Bu(t) + Eσ(t)d(t) + δσ(t)(t)
y(t) = Cx(t) (15)

IV. PERFORMANCE EVALUATION

Vision systems use points interpolation to compute road
curvature. However, this measure can be corrupted by different
elements: occlusion, weather, noise on the image. We propose
in the following a method to provide an observer based on
board indicator for road curvature quality provided par the
vision system. A block diagram of the evaluation procedure is
illustrated in Figure 2. It includes:

1) A first switched interval observer which uses the mea-
sured variables, longitudinal velocity, yaw rate, steering
angle, angular and offset displacements to estimate guar-
anteed bounds of the state vector considering the road
curvature as unknown input;

2) A second interval observer based on the estimated
bounds is built in order to reconstruct upper and lower
bounds of the road curvature.

3) An evaluation block in which the road curvature measure
is compared to the upper and lower estimated bounds.
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Fig. 2. Schematic overview of estimation methodology.

A. SUIIO Design

Consider the Switched Uncertain System described in (15).
The aim is to design an Interval Observer to generate two
trajectories x−(t) and x+(t) such that x−(t) ≤ x(t) ≤ x+(t),
∀t ≥ t0 and x−(t0) ≤ x(t0) ≤ x+(t0) despite the presence
of Unknown Input. To this end, the following assumptions are
required.
Assumption 1. The state of the system x(t) and the input vector
u(t) are all bounded.
Assumption 2. Assume that the input vector u(t) is bounded
as follows u−(t) ≤ u(t) ≤ u+(t), such that u−(t) = u(t)− ζ
and u+(t) = u(t) + ζ, where ζ is a priori known bound.
Assumption 3. There exist known constants matrices ∆A+

σ(t),
∆A−σ(t), ∆B+, ∆B− ∀σ(t) such that:

∆A−σ(t) ≤ ∆Aσ(t) ≤ ∆A+
σ(t)



∆B− ≤ ∆B ≤ ∆B+

Assumption 4. Assume that the rank condition
rank(CEσ(t)) = rank(Eσ(t)), q ≤ p, holds ∀σ(t).
Assumption 5. Assume that the following condition

rank

([
sIn −Aσ(t) Eσ(t)

C 0

])
= n+ q, ∀σ(t) (16)

holds for all complex number s with Re(s) ≥ 0.
Assume that x(t0)− ≤ x(t0) ≤ x(t0)+. Let us introduce
observer gains matrices Ni ∈ Rn×n, Ki ∈ Rn×p, Hi ∈ Rn×p,
Gi ∈ Rn×m and Pi ∈ Rn×n ∀i ∈ I, whose values will
be specified later. Then, a Switched Unknown Input Interval
Observer (SUIIO) structure for the lateral dynamics system
(15) is given by:

ẋ+(t) = Nσ(t)x
+ +Kσ(t)y +Gσ(t)u−Hσ(t)ẏ+

Pσ(t)δ
+
σ(t)(t)− Pσ(t)δ

−
σ(t)(t)

ẋ−(t) = Nσ(t)x
− +Kσ(t)y +Gσ(t)u−Hσ(t)ẏ+

Pσ(t)δ
−
σ(t)(t)− Pσ(t)δ

+
σ(t)(t)

(17)

where δ+σ(t)(t) and δ−σ(t)(t) are defined using Definition 2,
Assumptions 2 and 3 such that δ−σ(t)(t) ≤ δσ(t)(t) ≤ δ

+
σ(t)(t).

The dynamics of the upper and lower estimation errors e+(t)
and e−(t) is given by:

ė+(t) = Nσ(t)x
+(t)− (Pσ(t)Aσ(t) −Kσ(t)C)x(t)+

(Gσ(t) − Pσ(t)B)u(t)− Pσ(t)Eσ(t)d(t) + ∆+
σ(t)(t)

ė−(t) = (Pσ(t)Aσ(t) −Kσ(t)C)x(t)−Nσ(t)x−(t)+
(Pσ(t)B −Gσ(t))u(t) + Pσ(t)Eσ(t)d(t) + ∆−σ(t)(t)

where Pσ(t) = Hσ(t)C + In, ∆+
σ(t)(t) = (Pσ(t)δ

+
σ(t)(t) −

Pσ(t)δ
−
σ(t)(t))− Pσ(t)δσ(t)(t) and ∆−σ(t)(t) = Pσ(t)δσ(t)(t)−

(Pσ(t)δ
−
σ(t)(t) − Pσ(t)δ

+
σ(t)(t)). Assume that the matrices

Nσ(t), Kσ(t), Gσ(t) and Hσ(t) are solutions of:

Nσ(t) = Pσ(t)A0,σ(t) −Kσ(t)C (18a)

Gσ(t) − Pσ(t)B = 0 (18b)

Pσ(t) = Hσ(t)C + In (18c)

Hσ(t) = −Eσ(t)(CEσ(t))† (18d)

If the constrains (18) are fulfilled under Assumptions 4 and 5,
which allows to cancel the unknown input d(t), the dynamics
of upper and lower estimation errors can be rewritten as:{

ė+(t) = Nσ(t)e
+(t) + ∆+

σ(t)(t)

ė−(t) = Nσ(t)e
−(t) + ∆−σ(t)(t)

(19)

It is easy to verify that ∆+
σ(t)(t) ≥ 0 and ∆−σ(t)(t) ≥ 0, ∀i ∈ I

using Lemma 3. In addition, the initial state x(t0) verifies by
construction x−(t0) ≤ x(t0) ≤ x+(t0). Thus, Definition 2
implies that e+(t) ≥ 0 and e−(t) ≥ 0 if the gain Kσ(t) is
chosen such that Nσ(t) is a Metzler matrix ∀σ(t).
In the other hand, let define the interval error e(t) = x+(t)−
x−(t), the dynamics of e(t) is given by:

ė(t) = Nσ(t)e(t) + ∆σ(t)(t) (20)

where ∆σ(t)(t) = ∆+
σ(t)(t)−∆−σ(t)(t).

The robust state estimation problem is reduced to determine
the observer gain Kσ(t) such that the interval error e(t)
asymptotic convergence towards zero if ∆σ(t)(t) = 0, ∀σ(t)
and to ensure an input-to-state stability (ISS) property of
interval error with respect to the uncertainties in the case when
∆σ(t)(t) 6= 0.
Note that the conditions imposed to the gains matrix Kσ(t)

can be formalized in terms of Linear Matrix Inequalities
using Piecewise Quadratic ISS-Lyapunov function of the form
Vσ(t)(e(t)) = eT (t)Qσ(t)(t) described in Lemma 4. Then, it
is required to find positive diagonal matrix Qi, matrix Wi,
β > α > 0, γ > 0 for a given η ≥ 0, ε > 0, such that for all
i ∈ I,

α In � Qi � β In (21)

A0,i
TPTQTi − CTWT

i +
QiPA0,i −WiC + εQi Qi

Qi −γIn

 ≺ 0 (22)

QiPA0,i −WiC + ηQi ≥ 0 (23)

holds for the smallest value of γ, then the system (17) can
estimate the lower and upper bounds of the state vector x(t)
with Ki = Q−1i Wi.

Furthermore the interval error (20) is Input-to-State
Stable with respect to ∆σ(t)(t) for any switching signal
with Average Dwell Time satisfying condition (6), then if
sup‖∆i(t)‖∞ ≤ ∆max, (20) satisfies

lim
t→∞

sup‖e‖ ≤
√

γ

αε
∆max (24)

For brevity of presentation, all proofs are omitted.

B. Unknown Input Interval reconstruction

In this subsection, we will provide an unknown input
interval reconstruction method based on previous estimated
bounds of the state vector.
Under Assumptions 2-5, the Switched Unknown Disturbance
Interval Observer (SUDIO) is built as follows:

d+(t) = Kσ(t)y(t)−Hσ(t)ẏ(t) +Hσ(t)CB0,σ(t)u(t)
+%+σ(t)(t)− (Kσ(t)C −Hσ(t)CA0,σ(t))x

−(t)

d−(t) = Kσ(t)y(t)−Hσ(t)ẏ(t) +Hσ(t)CB0,σ(t)u(t)
+%−σ(t)(t)− (Kσ(t)C −Hσ(t)CA0,σ(t))x

+(t)

(25)

where Kσ(t) and Hσ(t) are the gains matrices to be designed.
%+σ(t)(t) and %−σ(t)(t) are upper and lower bounds of %σ(t)(t) =

Hσ(t)Cδσ(t)(t) which can be constructed after determination
of Hσ(t) using Lemma 2.
Let define the upper and lower estimation errors, e+d(t)(t) =



d+(t)− d(t) and e−d(t)(t) = d(t)− d−(t), from (25) and (15),
it follows that

e+d(t)(t) = −Hσ(t)C(A0,σ(t)x(t) +B0,σ(t)u(t)+

Eσ(t)d(t) + δσ(t)(t)) +Kσ(t)Cx(t)− (Kσ(t)C
−Hσ(t)CA0,σ(t))x

−(t) +Hσ(t)CB0,σ(t)u(t) + %+σ(t)(t)− d(t)

e−d(t)(t) = Hσ(t)C(A0,σ(t)x(t) +B0,σ(t)u(t)+

Eσ(t)d(t) + δσ(t)(t))−Kσ(t)Cx(t) + (Kσ(t)C
−Hσ(t)CA0,σ(t))x

+(t)−Hσ(t)CB0,σ(t)u(t)− %−σ(t)(t) + d(t)

since e+(t) = x+(t)− x(t) and e−(t) = x(t)− x−(t), then,
e+d(t)(t) = (Kσ(t)C −Hσ(t)CA0,σ(t))e

−(t)

−(Iq +Hσ(t)CEσ(t))d(t) + Υ+
σ(t)(t)

e−d(t)(t) = (Kσ(t)C −Hσ(t)CA0,σ(t))e
+(t)

+(Iq +Hσ(t)CEσ(t))d(t) + Υ−σ(t)(t)

(26)

where Υ+
σ(t)(t) = %+σ(t)(t)−%σ(t)(t) and Υ−σ(t)(t) = %σ(t)(t)−

%−σ(t)(t).
Note that e+(t) ≥ 0, e−(t) ≥ 0, Υ+

σ(t)(t) ≥ 0 and
Υ−σ(t)(t) ≥ 0 by construction. Furthermore, if the matrix
(Kσ(t)C−Hσ(t)CA0,σ(t)) is nonnegative and the matrixHσ(t)
is chosen such that

Iq +Hσ(t)CEσ(t) = 0 (27)

then, the upper and lower errors (26) are positive ∀σ(t), i.e.
e+d(t) ≥ 0 and e−d(t) ≥ 0 which imply that

d−(t) ≤ d(t) ≤ d+(t) (28)

If Assumption 4 holds, then a particular solution of (27) can
be given as follows

Hσ(t) = −Iq(CEσ(t))† (29)

Then, the switched unknown disturbance interval observer (25)
estimate the upper and lower bounds of unknown input vector
d(t), i.e. (28) holds, if there exist matrices Ki, ∀i ∈ I such
that

KiC −HiCA0,i ≥ 0, ∀i ∈ I (30)

C. Evaluation System
The goal is to use the two reliable computed bounds which

are consistent with model structure, measurements and consid-
ered uncertainty in order to detect whether we can trust or not
the measure given by the vehicle vision system. In fact, the
proposed road curvature interval observer allows us to obtain
curvature limits as they are reflected in the vehicle dynamics.
In other words, the bounded error approach presented in this
paper allow a characterization of the set of all admissible
values of the road curvature. Therefore, one may test whether
the interval includes the measured curvature or not

ρm ∈ [ρ−, ρ+] (31)

If the constraint (31) holds, then the measurement provided by
the vehicle onboard vision system is trustable. Otherwise, an
abnormal situation appears which may correspond to a lane
departure or a falsely measurement.
The design procedure of the evaluation benchmark can be
summarized in the following design Algorithm 1.

Algorithm 1 Design Procedure
1: Warning ←− FALSE;
2: Check if the conditions in Assumptions 4 and 5 holds. If

not, then SUIIO and SUDIO do not exist. Otherwise, go
to the next step;

3: Compute the matrix Hi from (18d) and then compute Pi
from (18c), ∀i ∈ I;

4: Compute the matrix Gi from (18b), ∀i ∈ I;
5: Solve LMIs (21-23) for the variables Wi, Qi and γ, ∀i ∈
I;

6: Compute Ki from solutions of LMIs (21-23) using Ki =
Q−1i Wi;

7: Obtain and store Input-Output data {u(t), y(t)};
8: Compute upper and lower bounds x+(t) and x−(t) of the

vehicle lateral dynamics state from (17);
9: Compute Hi from (29);

10: Solve LMI (30) for the variable Ki, ∀i ∈ I;
11: Compute the lower and upper bound of the road curvature

from (25);
12: if ρm /∈ [ρ−, ρ+] then
13: Warning ←− TRUE
14: end if

V. SIMULATIONS RESULTS

In this section, the proposed evaluation methodology is
applied to experimental data acquired using an instrumented
vehicle. The yaw rate r is measured using an inertial unit, the
steering angle δf is measured by an absolute optical encoder
while an odometer provides the vehicle longitudinal speed.
A vision system provides road curvature, lateral offset and
angular displacements measures. The steering angle, longi-
tudinal velocity and vehicle trajectory profiles are shown in
Figure 3. We assume that the cornering stiffness parameters
are affected by 10% uncertainty in their nominal value. As
mentioned above, the switching law σ(t) depends on the
varying longitudinal velocity vx which is accessible in real
time, such that:

σ(t) =

{
1 if vx ∈ [V 0

x , V
1
x [

2 if vx ∈ [V 1
x , V

2
x [

3 if vx ∈ [V 2
x , V

3
x ]

(32)

with vkx =
V k
x −V

k−1
x

2 for k = 1, 2, 3.
The numerical simulation was carried out by using Matlab
optimization tools (Yalmip or Sedumi). Due to space limita-
tion, the gains matrices are omitted and the results of interval
estimation of the lateral velocity, yaw rate, offset and angular
displacements are depicted in Figure 4. The curvature measure
and the corresponding upper and lower bounds are shown
in Figure 5. It should be noted that in order to test the
performance of the Algorithm 1, inaccurate measurements of
the road curvature are generated during data acquisition from
time instant 83 to 90.5 (light blue zone) by ironing hand in
front of the camera. As shown in Figure 5, the test criteria (31)
is satisfied outside the faulty zone, demonstrating the reliability
of the measurement. Whereas, zooming on the light blue area,



shows that the curvature is sometimes outside the estimated
interval proving that the measurement is not trustable.

Fig. 3. Steering angle, Longitudinal velocity and Vehicle trajectory.

Fig. 4. Interval estimation of lateral velocity, yaw rate, offset and angular
displacements.

VI. CONCLUSION

An evaluation methodology of vehicle onboard vision sys-
tem has been presented in this paper. The fundamental eval-
uation is made by estimating the guaranteed lower and upper

Fig. 5. Interval estimation of road curvature with a zoomed view of the light
blue zone.

bounds for vehicle-state at any instant. The method takes into
account the variations which might occur during the vehicle
maneuver. Performance of the proposed Algorithm is evaluated
using vehicle real data, simulation results demonstrate that the
proposed evaluation scheme succeeds to appropriately estimate
the upper and lower bounds of vehicle lateral dynamics and
road curvature.

REFERENCES

[1] Rajamani, R. (2011). Vehicle dynamics and control. Springer Science
& Business Media.

[2] Dugoff, H., Fancher, P. S., & Segel, L. (1970). An analysis of tire
traction properties and their influence on vehicle dynamic performance
(No. 700377). SAE Technical Paper.

[3] Pacejka, H. B., & Bakker, E. (1992). The magic formula tyre model.
Vehicle system dynamics, 21(S1), 1-18.

[4] Gucik-Derigny, D., Rassi, T., & Zolghadri, A. (2014). Interval state
and unknown inputs estimation for linear time-invariant systems. IFAC
Proceedings Volumes, 47(3), 7375-7381.

[5] Ifqir, S., Ait-Oufroukh, N., Ichalal, D., & Mammar, S. (2017, July).
Synchronous interval observer design for switched LPV systems us-
ing multiple quadratic ISS-Lyapunov functions. IEEE. In Control and
Automation (MED), 2017 25th Mediterranean Conference on (pp. 388-
393).

[6] Efimov, D., Fridman, L., Raissi, T., Zolghadri, A., & Seydou, R. (2012).
Interval estimation for LPV systems applying high order sliding mode
techniques. Automatica, 48(9), 2365-2371.

[7] Minc, H. (1988). Nonnegative matrices (p. 152). J. Wiley.
[8] Rami, M. A., Cheng, C. H., & De Prada, C. (2008, December). Tight

robust interval observers: an LP approach. 47th IEEE Conference on
Decision and Control. CDC 2008. (pp. 2967-2972).

[9] Blanchini, F., Colaneri, P., & Valcher, M. E. (2015). Switched linear
positive systems. Found. Trends Syst. Control, 2(2), 101-273.

[10] Mammar, S., Glaser, S., & Netto, M. (2006). Time to line crossing
for lane departure avoidance: A theoretical study and an experimental
setting. IEEE Transactions on Intelligent Transportation Systems, 7(2),
226-241.

[11] Ifqir, S., Ait-Oufroukh, N., Ichalal, D., & Mammar, S. Switched
unknown inputs interval observer design for vehicle lateral dynamics
estimation with wind gusts rejection. In : Proc. 14th International
Workshop on Advanced Control and Diagnosis, (2017).

[12] Ifqir, S., Ait-Oufroukh, N., Ichalal, D., & Mammar, S. Robust interval
observer for switched systems with unknown inputs : application to
vehicle dynamics estimation. To be published in European Journal of
Control [Preprint], 2018.

[13] Efimov, D., Rassi, T., Chebotarev, S., & Zolghadri, A. (2013). Interval
state observer for nonlinear time varying systems. Automatica, 49(1),

200-205.


