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Magnetocrystalline and magnetoelastic constants

determined by magnetization dynamics under static

strain
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Sorbonne Université, CNRS, Institut des Nanosciences de Paris (UMR 7588), 4 place

Jussieu, 75252 Paris, France

Abstract. We consider here the magnetization dynamics induced in a ferromagnet

by magnetoelastic coupling, after application of a step like strain. We derive the

time evolution of the magnetization vector. We show that the material micromagnetic

parameters (and specifically magnetic anisotropy and magnetoelastic coupling) can be

derived from measurable quantities, i.e. the precession frequency, relaxation time and

phase lag between the precession angles. Such measurements can be performed by

state of the art time resolved Kerr experiments.

Keywords magnetoelasticity, magnetic anisotropy, time resolved Kerr effect, thin

magnetic films, magnetization dynamics

1. Introduction

Recently, much effort has been devoted to control magnetization in nanostructures by

external stress and subsequent strain, i.e. the so-called straintronics [1, 2]. Indeed, it

is claimed that spintronics devices whose magnetization is switched by strain rather

than by inductive means may lead to significant energy dissipation reduction. When

a ferromagnetic material is deformed by an external stress it inevitably experiences a

change of its magnetic configuration. This is the well-known inverse magnetostriction

(or Villari) effect whereby an effective inner magnetic field originating from an exter-

nal stress modifies the equilibrium direction of the sample’s magnetization M . The

magnetization dynamics is dictated by the torque that makes the magnetization precess

around the magnetic field B, similarly to a top spinning around the gravitational force.

The magnetization moves from the initial equilibrium position to the final one following

an oscillating motion whose characteristics are determined by the external applied field,

by the intensity of the applied stress and by intrinsic physical properties of the sample

such as |M |, magnetic anisotropy and magnetoelastic coupling. Due to damping, the

final equilibrium position will coincide with the direction of the total field, i.e. the ex-

ternal field plus the stress-induced one. In this sense, we can state that magnetization

dynamics is triggered by the sudden application of a constant strain. In straintronics

devices, magnetization reversal is required in order to modify significantly the status
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Figure 1. Spherical coordinates ϕ and θ of the magnetization M

of the spintronic device. In this context, the temporal evolution of the magnetization

vector of a single-domain nanomagnet is ruled by the non-linear Landau-Lifshitz-Gilbert

(LLG) equation.

Here, we study the motion in the case of a weak perturbation of the magnetization

due to a sudden deformation of a thin film. We assume that the changes of magnetization

direction induced by the applied strain are very small, permitting a linear approximation

of the LLG equations. Recently, this approach has been adopted in continuous thin

films to describe precession triggering due to an acoustic wave [3, 4]. In this article,

we consider a step-like static deformation (ideally, a Heaviside step deformation) and

we derive the analytical description of the magnetization motion. Interestingly, we

show that by monitoring the magnetization dynamics induced by this deformation it

is possible to measure the magnetic anisotropy coefficients and magnetoelastic coupling

parameters. Well known methods to extract the magnetocrystalline coefficients are

ferromagnetic resonance (FMR) and Brillouin scattering (BLS). Recently, an optical

pump-probe method has been described and used [5]. Unfortunately, these methods

do not provide information about the magnetoelastic parameters. These terms can be

measured by cantilever method [6, 7]. Here, we propose a new method to retrieve both

magnetocrystalline and magnetoelastic parameters. It is close to the aforementioned

optical pump-probe experiment but here magnetodynamics is triggered by strain and

not by an optical laser pulse.

2. Energy terms

In this article, we focus on ferromagnetic thin films on piezoelectric substrates. We

consider the thin film as monocrystalline with cubic symmetry. Similar calculations can
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be performed in systems exhibiting different crystalline symmetries. The magnetization

M and the applied magnetic field Ha are expressed in polar coordinates (with

coordinate axes aligned along the 〈100〉 directions) as follows (see figure 1)

M = M

sin θ cosϕ

sin θ sinϕ

cos θ

 (1)

Ha = Ha

sin θH cosϕH
sin θH sinϕH

cos θH

 (2)

The free energy density of the system can be written as follows:

F = Fz + Fd + Fmc + Fms + Fel (3)

where the first term on the right hand side is the Zeeman energy:

Fz = −µ0HaM

= −µ0HaM [cos θ cos θH
+ sin θ sin θH cos(ϕ− ϕH)]

(4)

The second term expresses the magnetic energy associated with the demagnetizing field

in thin films:

Fd =
1

2
µ0M

2 cos2 θ (5)

The third term is the biaxial cubic magnetocrystalline energy with constant K and

direction cosines of the magnetization mi:

Fmc = K
(
m2
xm

2
y +m2

xm
2
z +m2

ym
2
z

)
(6)

The fourth term is the cubic magnetoelastic energy determined by the magnetoelastic

constants B1 and B2 [8]:

Fms = B1

[
εxx(m

2
x − 1

3
) + εyy(m

2
y − 1

3
) + εzz(m

2
z − 1

3
)
]

+B2 [εxymxmy + εxzmxmz + εyzmymz]
(7)

The fifth term is the elastic term for a cubic system characterized by the elastic constants

Cij:

Fel = 1
2
C11

(
ε2xx + ε2yy + ε2zz

)
+2C44

(
ε2xy + ε2xz + ε2yz

)
+C12 (εxxεyy + εxxεzz + εyyεzz)

(8)

In (7) and (8), the εij are the components of the strain tensor. By minimizing the

free energy of the system with respect to θ, ϕ and εij, the equilibrium values of the

magnetization angles θ̄ and ϕ̄ and of the strain tensor components ε̄ij are derived (see

Appendix A).

In the following, the magnetization and strain subscripts x, y and z will be replaced

by 1, 2 and 3, respectively, in order to simplify the mathematical expressions.
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3. Dynamical equations for a magnetic system prone to a strain

Let us consider a single domain ferromagnet characterized by its equilibrium

magnetization vector M and internal strain. This system is prone to a static or to

a dynamical deformation expressed by a strain tensor, δεij(t), superimposed on the

static equilibrium strain. The response of magnetization to the modified internal field

is described by the Landau-Lifschitz-Gilbert (LLG) equations:

dm

dt
= − γ m×Beff + α m× dm

dt
(9)

where

m =
M

M
(10)

Beff = −∇mf (11)

f =
F

M
(12)

γ is the absolute value of the gyromagnetic factor and α is the Gilbert damping

coefficient. M is the saturation value of the magnetization (M = |M |). In the polar

coordinate system, the LLG equations read (taking into account that m does not depend

on the radial coordinate):
dϕ

dt
= +

γ

sin θ

∂f

∂θ
+

α

sin θ

dθ

dt

dθ

dt
= − γ

sin θ

∂f

∂ϕ
− α sin θ

dϕ

dt

(13)

leading to: 
dϕ

dt
=

γ

1 + α2

1

sin θ

∂f

∂θ
− αγ

1 + α2

1

sin2 θ

∂f

∂ϕ

dθ

dt
= − αγ

1 + α2

∂f

∂θ
− γ

1 + α2

1

sin θ

∂f

∂ϕ

(14)

We consider that the magnetization vector M is only slightly modified by the external

strain perturbation, so that we can linearize the LLG equation (14) about equilibrium

[3, 4]. It can be show that this condition is fullfilled when |Bε| << |K| where B is

B1 or B2 and ε the sample strain. The ∂f
∂θ

, 1
sin θ

∂f
∂θ

, 1
sin θ

∂f
∂ϕ

and 1
sin2 θ

∂f
∂ϕ

functions (which

depend on θ, ϕ, ε11, ε12, ε13, ε22, ε23 and ε33) are then expressed as Taylor series about

equilibrium (θ̄, ϕ̄, ε̄ij). Since the first order derivatives of f are zero at equilibrium, the
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expansion yields:

∂f

∂θ
' fθ,θ δθ + fθ,ϕ δϕ+

∑
i≤j

fθ,εijδεij

1

sin θ

∂f

∂θ
' 1

sin θ̄
fθ,θ δθ +

1

sin θ̄
fθ,ϕ δϕ

+
1

sin θ̄

∑
i≤j

fθ,εijδεij

1

sin θ

∂f

∂ϕ
' 1

sin θ̄
fθ,ϕ δθ +

1

sin θ̄
fϕ,ϕ δϕ

+
1

sin θ̄

∑
i≤j

fϕ,εijδεij

1

sin2 θ

∂f

∂ϕ
' 1

sin2 θ̄
fθ,ϕ δθ +

1

sin2 θ̄
fϕ,ϕ δϕ

+
1

sin2 θ̄

∑
i≤j

fϕ,εijδεij

(15)

where fa,b is a short hand notation for ∂2f
∂a∂b

. The second order derivatives fa,b are to

be evaluated at the equilibrium point (θ̄, ϕ̄, ε̄11, ε̄12, ε̄13, ε̄22, ε̄23 and ε̄33). δθ and δϕ

are the deviations from the equilibrium angles θ̄ and ϕ̄. δεij are the deviations from

equilibrium values ε̄ij:

δθ = θ − θ̄ (16)

δϕ = ϕ− ϕ̄ (17)

δεij = εij − ε̄ij (18)

Plugging these expansions in (14) gives:
dδϕ

dt
= κ1 δθ + κ2 δϕ+

∑
i≤j

κij δεij

dδθ

dt
= ζ1 δθ + ζ2 δϕ+

∑
i≤j

ζij δεij

(19)

The energy second derivatives, the κ and ζ terms are given in Appendix B, in the case

of a thin film, with in-plane magnetization, and in-plane applied field.

4. Analytical solutions for the magnetization motion. Case of a step-like

static strain

Now, we consider a step-like deformation. At t = 0, a strain is suddenly applied:

δεij(t) = δεijΘ(t) where Θ is the Heaviside step function. Because of the internal
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Figure 2. Sketch of the damped precessional motion of the magnetization M , in

response to a sudden static strain ε. Initial and final magnetization in plane (001).

Tensile/compressive strain ε along [010].

effective field Beff applied to the single domain, the direction of the magnetization

vector M will be modified. Following a damped oscillatory motion, the magnetization

angles θ and ϕ will converge towards the new equilibrium values ¯̄θ and ¯̄ϕ. Figure 2

shows a sketch of the precessional motion of the magnetization. The movement will

finally stop and, according to (19), the new equilibrium will satisfy:
0 = κ1 (¯̄θ − θ̄) + κ2 ( ¯̄ϕ− ϕ̄) +

∑
i≤j

κij δεij

0 = ζ1 (¯̄θ − θ̄) + ζ2 ( ¯̄ϕ− ϕ̄) +
∑
i≤j

ζij δεij
(20)

Substracting (19) and (20), we obtain:

d

dt

(
ϕ− ¯̄ϕ

θ − ¯̄θ

)
= P

(
ϕ− ¯̄ϕ

θ − ¯̄θ

)
(21)

where

P =

(
κ2 κ1
ζ2 ζ1

)
(22)

The time dependent solutions for ϕ and θ are:(
ϕ− ¯̄ϕ

θ − ¯̄θ

)
= β1e

λ1tU + β2e
λ2tU (23)

where λ1 et λ2 are the eigenvalues of the P matrix and U et U the corresponding

eigenvectors. By an elementary calculation we obtain:

λ1 = −τ−1 − i Ω0

λ2 = −τ−1 + i Ω0
(24)
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Table 1. Characteristics of YIG and Fe80Ga20 thin films, with in-plane equilibrium

magnetization: threshold field µ0Hth, precession angular frequency Ω0 and damping

time τ . Ω0 and τ are computed using µ0Ha = 38 mT (in-plane applied field). τ is

nearly independent of Ha. Material parameters: see Appendix D.

YIG Fe80Ga20

ϕH (rd) ϕ̄ ( rd ) µ0Hth (mT) Ω0 (rd.s−1) τ (ns) µ0Hth (mT) Ω0 (rd.s−1) τ (ns)

π/4 π/4 0 17× 109 193 35 14× 109 1.25

0 0 9 2.2× 109 211 0 68× 109 1.18

U1 =

(
1

−1
2
α
(

1− fϕ,ϕ
fθ,θ

)
− i 1+α2

γfθ,θ
Ω0

)
(25)

U2 =

(
1

−1
2
α
(

1− fϕ,ϕ
fθ,θ

)
+ i 1+α2

γfθ,θ
Ω0

)
(26)

with:

Ω0 =

√(
1

1 + α2

)
ω2
0 − τ−2 (27)

ω0 = γ
√
fθ,θfϕ,ϕ (28)

τ−1 =
1

2

αγ

1 + α2
(fθ,θ + fϕ,ϕ) (29)

Ω0, ω0 and τ are characteristics of the eigen mode [4]: damped and undamped radial

frequencies and relaxation time, respectively. The reader has to notice that in a

ferromagnetic material, Ω0 is found to be real for external fields larger than a threshold

values Hth, leading to complex eigenvalues and a damped oscillatory motion starting

from (ϕ̄, θ̄) and ending to ( ¯̄ϕ, ¯̄θ). Let us consider two paradigmatic materials: YIG,

on one hand, with small anisotropy and small magneto-elastic constants and Fe80Ga20,

on the other hand, with larger anisotropy and larger magneto-elastic constants. It is

worthwhile to notice that similar measurements performed on materials with very high

magnetic anisotropy demand strong magnetic fields. Let us consider DyFe2 (which is

both a highly anisotropic and magnetostrictive material) where K = 4.2 × 106 J.m−3

[9] and the consequent threshold value is Hth = 11 T. Even for very low damping

(α ' 0.005), the relaxation time τ will be very short, of the order of 0.1 ns. We will see

later that this is a severe constraint for actual measurements.

Table 1 displays characteristics values, for thin films with in plane magnetization.

Of course, the more intense the field the larger Ω0.

The β1 and β2 constants are given by the initial conditions. At t = 0, we have ϕ = ϕ̄
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and θ = θ̄ since the system has not yet evolved. According to (23):(
ϕ̄− ¯̄ϕ

θ̄ − ¯̄θ

)
= β1U + β2U (30)

This gives:

β1 =

[
−1

2
− 1

4

αγ

1 + α2

fθ,θ − fϕ,ϕ
Ω0

i

]
∆ϕ

−1

2

γ

1 + α2

fθ,θ
Ω0

i ∆θ

(31)

β2 =

[
−1

2
+

1

4

αγ

1 + α2

fθ,θ − fϕ,ϕ
Ω0

i

]
∆ϕ

+
1

2

γ

1 + α2

fθ,θ
Ω0

i ∆θ

(32)

∆ϕ = ¯̄ϕ− ϕ̄ (33)

∆θ = ¯̄θ − θ̄ (34)

∆ϕ and ∆θ are the variation of the equilibrium angles. They can be computed from

(20), given the applied strain components δεij. We now considerer thin magnetic films

where the demagnetizing field stabilizes in-plane equilibrium magnetic configurations.

Appendix C gives ∆ϕ and ∆θ in three relevant strain cases. Let us assume first that

∆θ = 0. Using (23), the time dependence of the magnetization angles can be derived

straightforwardly. This permits to recover the expected solutions of a simple damped

oscillator movement:

ϕ− ¯̄ϕ =
ω0 ∆ϕ

(1 + α2)Ω0

e−t/τ cos(Ω0t− δ) (35)

θ − ¯̄θ =
γfϕ,ϕ ∆ϕ

(1 + α2)Ω0

e−t/τ sin(Ω0t) (36)

where

tan δ =
αγ (fθ,θ − fϕ,ϕ)

2 (1 + α2) Ω0

(37)

cos δ < 0 (38)

Figure 3 displays the theoretical behavior of ϕ and θ, computed for thin YIG and

Fe80Ga20 layers with δε11 = ε = 1 × 10−4. We stress that such a deformation

can not modify significantly the magnetic anisotropy and is consistent with our LLG

linearization procedure. These two materials are quite paradigmatic since YIG is a low

damping material (long time scale in figure 3-a) and FeGa is a strong magnetoelastic

alloy. In Fe80Ga20, we assumed a small, iron like, damping term α. Similar expressions

can be derived in cases where ∆ϕ = 0. As expected, the movement of magnetization

from the initial equilibrium position towards the final external strain-dependent position

will follow a damped oscillatory motion characterized by a fast oscillation Ω0 (the
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Figure 3. Calculation of the precession angles ϕ and θ, in response to a tensile strain

Heaviside step along [100]. Thin films, normal to [001]. Applied field: 0.1 T along

[110] (ϕH = π/4, θH = π/2). Equilibrium angles: ϕ̄ = π/4, θ̄ = π/2. Applied strain

ε = 1 × 10−4. Material parameters: see appendix Appendix D. Left panel (a): YIG.

Ω0/2π = 4.8 GHz, τ = 130 ns, δ = 3.1417 rd. Right panel (b): Fe80Ga20. Ω0/2π =

9.8 GHz, τ = 1.2 ns. δ = 3.1545 rd

ferromagnetic resonance frequency of the magnetic system) modulated by an exponential

decay characterized by the relaxation time τ . Moreover, the ϕ and θ oscillations will be

out-of-phase by (π/2− δ). Interestingly, all these measurable parameters depend on the

applied external field and on intrinsic quantities of the ferromagnetic thin films, i.e. the

second derivatives fϕ,ϕ and fθ,θ of the free energy evaluated at the initial equilibrium

positions of the magnetization.

5. Micromagnetic parameters measurements

In the following we will discuss how magnetic anisotropy parameters K and

magnetoelastic coefficients B1 and B2 of a thin film can be extracted by monitoring

the time dependence of the relaxation process of the magnetization vector prone to a
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sudden static strain. From (27, 28, 29, 37), we obtain:

α2 =
(Ω0τ)−2 − tan2 δ

1 + tan2 δ
(39)

fθ,θ =
1 + α2

αγ

(
τ−1 + Ω0 tan δ

)
(40)

fϕ,ϕ =
1 + α2

αγ

(
τ−1 − Ω0 tan δ

)
(41)

According to these equations, the intrinsic characteristics of the sample α, fθ,θ and fϕ,ϕ
can be derived from the measurable quantities Ω0, τ and δ. Hence, fθ,θ and fϕ,ϕ can

then be extracted as a function of the in-plane angles ϕ̄ and ϕH and compared to their

theoretical expressions (see Appendix B):

fθ,θ = µ0Ha cos(ϕ̄− ϕH) + µ0M

+K
M

(
2− sin2 2ϕ̄

)
+2

B2
1

M(C11−C12)
(cos4 ϕ̄+ sin4 ϕ̄)

+
B2

2

8MC44
sin2 2ϕ̄

(42)

fϕ,ϕ = µ0Ha cos(ϕ̄− ϕH)

+2K
M

cos 4ϕ̄

+2
B2

1

M(C11−C12)
cos2 2ϕ̄

+
B2

2

4MC44
sin2 2ϕ̄

(43)

It is cumbersome to determine the equilibrium angle ϕ̄, for an arbitrary field. Hence, we

assume that we apply an in-plane external field H strong enough to saturate the sample

along the field, i.e. ϕ̄ = ϕH (ϕH is the angle between H and the crystal axis [100]).

From an experimental point of view, Ω0, τ and δ are recorded as a function of ϕH . In

order to retrieve K, |B1| and |B2| with good accuracy, many measurements angles are

considered and a regression analysis of fθ,θ and fϕ,ϕ can be performed by fitting the

experimental records to their theoretical expressions. We notice that the signs of B1

and B2 can be inferred from the signs of ∆θ = ¯̄θ − θ̄ and ∆ϕ = ¯̄ϕ − ϕ̄, provided the

sign of ε is known (see table C1 in Appendix C). Figure 4 displays fϕ,ϕ and fθ,θ versus

ϕH , computed using YIG and Fe80Ga20 parameters (black circles). It also displays the

modifications induced by parameters changes. These simulations permit to enlighten

the contributions of K, B1 and B2 to fϕ,ϕ and fθ,θ. In particular, K plays an important

role for both materials ; B1 gives an important contribution in magnetoelastic FeGa. It

appears that B2 cannot be retrieved by fitting fϕ,ϕ and fθ,θ , because its contribution

to those terms is negligeable with respect to the B1 term contribution. Indeed, direct

measurements of B1 and B2 could be performed by measuring the absolute magnitude

of the ϕ and θ oscillations. According to Appendix C, tensile or compressive strain

along [100] and along [110] will induce amplitudes quasi-proportional to B1 and B2,
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Figure 4. fϕ,ϕ and fθ,θ versus the in-plane applied field angle ϕH for YIG

and Fe80Ga20 thin films. The applied field (50 mT) is large enough to align the

magnetization along the field (ϕ̄ = ϕH). Black circles : YIG and Fe80Ga20 parameters

(see Appendix D). Red up triangles and blue down triangles curves are computed

for modified K or B1 values, as indicated in the panels. Materials parameters: see

Appendix D.
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respectively.

From an experimental point of view, the strain is to be applied by means of

the piezoelectric substrate on which the thin ferromagnetic layer is attached. When

submitted to a voltage, the substrate will strain the film. Indeed, the experiment

demands a sudden strain modification, ideally the Heaviside strain step. In actual

experiments, it can be replaced by a rapid strain modification, on a time scale shorter

than the relaxation time τ . It can be shown that, after a transient regime, (35) and

(36) are recovered. The time dependence of the ϕ and θ angles can be recorded by

time-resolved magneto-optical polar Kerr effect (TR-MOKE) experiments, synchronized

to the applied strain, in the longitudinal and polar configurations, respectively (see

for example [10] or [11]). This experiment opens a new way to characterize magnetic

anisotropies and magnetoelastic properties of ferromagnetic materials.

6. Conclusion

We have studied the magnetization dynamical response of a thin film when suddenly

strained. The dynamics is characterized by damped oscillations and phase lag of the

polar and azimuthal angles. Measuring Ω0, τ and δ by time-resolved magneto-optical

experiments, as a function of the angle of the external saturating field (applied in the

film plane) provides a new way to measure the micromagnetic parameters K, B1 and

B2. The method presented in this article could be an alternative way to measure the

magnetoelastic parameters. If compared with the cantilever method [6, 7], we notice that

both magneto-crystalline and magneto-elastic constants can be retrieved. If compared

with the optical pump-probe set-up [5], our method avoids the difficulties of handling

two laser beams and avoids heating of the sample.
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Appendix A. Equilibrium strains ε̄ij

At equilibrium, the strain derivatives of the free energy are zero. Then, we obtain a set

of 6 equations:
∂F

∂εij
= 0 (A.1)
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where i and j are in (1,2,3) (and i ≤ j), leading to (bars denotes the equilibrium values)

: 

C11ε̄11 + C12ε̄22 + C12ε̄33 = −B1(m̄
2
1 − 1

3
)

C12ε̄11 + C11ε̄22 + C12ε̄33 = −B1(m̄
2
2 − 1

3
)

C12ε̄11 + C12ε̄22 + C11ε̄33 = −B1(m̄
2
3 − 1

3
)

4 C44ε̄12 = −B2m̄1m̄2

4 C44ε̄13 = −B2m̄1m̄3

4 C44ε̄23 = −B2m̄2m̄3

(A.2)

Hence: 
ε̄ii = − B1

C11 − C12

(
m̄2
i −

1

3

)

ε̄ij = − B2

4C44

m̄im̄j if i 6= j

(A.3)

Notice these equilibrium strain values are written in the standard frame ([100], [010],

[001]).

Appendix B. Energy second derivatives, κ and ζ terms

Let us assume the sample is a thin film parallel to the (x,y) plane (with [100], [010], [001]

parallel to x, y and z, respectively). We consider in-plane magnetization (i.e. m̄3 = 0 or

θ̄ = π/2) and in-plane applied magnetic field (i.e. θ̄H = π/2). Then, the second order

derivatives read:
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fθ,θ = µ0Ha cos(ϕ̄− ϕH) + µ0M

+K
M

(
2− sin2 2ϕ̄

)
−2B1

M

(
ε̄11 cos2 ϕ̄+ ε̄22 sin2 ϕ̄− ε̄33

)
−B2

M
ε̄12 sin 2ϕ̄

fϕ,ϕ = µ0Ha cos(ϕ̄− ϕH)

+2K
M

cos 4ϕ̄

+2B1

M
(−ε̄11 + ε̄22) cos 2ϕ̄

−2B2

M
ε̄12 sin 2ϕ̄

fθ,ϕ = B2

M
(ε̄13 cos ϕ̄− ε̄23 sin ϕ̄)

fθ,ε11 = 0

fθ,ε22 = 0

fθ,ε33 = 0

fθ,ε12 = 0

fθ,ε13 = −B2

M
cos ϕ̄

fθ,ε23 = −B2

M
sin ϕ̄

fϕ,ε11 = −B1

M
sin 2ϕ̄

fϕ,ε22 = B1

M
sin 2ϕ̄

fϕ,ε33 = 0

fϕ,ε12 = B2

M
cos 2ϕ

fϕ,ε13 = 0

fϕ,ε23 = 0

(B.1)
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Using the static strain (A.3), fθ,θ, fϕ,ϕ and fθ,ϕ read:

fθ,θ = µ0Ha cos(ϕ̄− ϕH) + µ0M

+K
M

(
2− sin2 2ϕ̄

)
+2

B2
1

M(C11−C12)
(cos4 ϕ̄+ sin4 ϕ̄)

+
B2

2

8MC44
sin2 2ϕ̄

fϕ,ϕ = µ0Ha cos(ϕ̄− ϕH)

+2K
M

cos 4ϕ̄

+2
B2

1

M(C11−C12)
cos2 2ϕ̄

+
B2

2

4MC44
sin2 2ϕ̄

fθ,ϕ = 0

(B.2)

The κ and ζ terms are given by:

κ1 = γ
1+α2fθ,θ

κ2 = − αγ
1+α2fϕ,ϕ

κ11 = + αγ
1+α2

B1

M
sin 2ϕ̄

κ12 = − αγ
1+α2

B2

M
cos 2ϕ̄

κ13 = − γ
1+α2

B2

M
cos ϕ̄

κ22 = − αγ
1+α2

B1

M
sin 2ϕ̄

κ23 = − γ
1+α2

B2

M
sin ϕ̄

κ33 = 0

(B.3)



ζ1 = − αγ
1+α2fθ,θ

ζ2 = − γ
1+α2fϕ,ϕ

ζ11 = + γ
1+α2

B1

M
sin 2ϕ̄

ζ12 = − γ
1+α2

B2

M
cos 2ϕ̄

ζ13 = + αγ
1+α2

B2

M
cos ϕ̄

ζ22 = − γ
1+α2

B1

M
sin 2ϕ̄

ζ23 = + αγ
1+α2

B2

M
sin ϕ̄

ζ33 = 0

(B.4)

Appendix C. Equilibrium angles ¯̄ϕ and ¯̄θ

We assume here that the sample is a thin film with in-plane magnetization (same

assumptions as in Appendix B). (20) can be easily solved for specific applied strains
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δεij. We consider here three relevant cases, displayed in table C1.

Table C1. Equilibrium angles

applied strain ∆θ = ¯̄θ − θ̄ ∆ϕ = ¯̄ϕ− ϕ̄

uniaxial tensile/compressive strain along [100]

ε 0 0

0 0 0

0 0 0

 0 +ε
B1

M

sin 2ϕ̄

fϕ,ϕ

uniaxial tensile/compressive strain along [110]

ε/2 ε/2 0

ε/2 ε/2 0

0 0 0

 0 −ε
2

B2

M

cos 2ϕ̄

fϕ,ϕ

x-z shear

0 0 ε

0 0 0

ε 0 0

 +ε
B2

M

cos ϕ̄

fθ,θ
0

Appendix D. Material constants

Table D1 displays the elastic and micromagnetic parameters used for computation.

Table D1. Material constants

C11 C12 C44 M α K B1 B2

(GPa) (GPa) (GPa) (A.m−1) (J.m−3) (J.m−3) (J.m−3)

YIG 269 76.4 107.7 1.4× 105 2.3× 10−4 −6.10× 102 3.48× 105 6.96× 105

[12] [12] [12] [13] [14] [15] [16] [16]

Fe80Ga20 196 156 123 14× 105 50× 10−4 241× 102 −160× 105 −60× 105

[17] [17] [17] [18] [19] [20] [21] [21]
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