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Magnetocrystalline and magnetoelastic constants determined by magnetization dynamics under static strain

Introduction

Recently, much effort has been devoted to control magnetization in nanostructures by external stress and subsequent strain, i.e. the so-called straintronics [START_REF] Roy | Hybrid spintronics and straintronics: A magnetic technology for ultra low energy computing and signal processing[END_REF][START_REF] Ahmad | Reversible strain-induced magnetization switching in FeGa nanomagnets: pathway to a rewritable, non-volatile, non-toggle, extremely low energy straintronic memory[END_REF]. Indeed, it is claimed that spintronics devices whose magnetization is switched by strain rather than by inductive means may lead to significant energy dissipation reduction. When a ferromagnetic material is deformed by an external stress it inevitably experiences a change of its magnetic configuration. This is the well-known inverse magnetostriction (or Villari) effect whereby an effective inner magnetic field originating from an external stress modifies the equilibrium direction of the sample's magnetization M . The magnetization dynamics is dictated by the torque that makes the magnetization precess around the magnetic field B, similarly to a top spinning around the gravitational force. The magnetization moves from the initial equilibrium position to the final one following an oscillating motion whose characteristics are determined by the external applied field, by the intensity of the applied stress and by intrinsic physical properties of the sample such as |M |, magnetic anisotropy and magnetoelastic coupling. Due to damping, the final equilibrium position will coincide with the direction of the total field, i.e. the external field plus the stress-induced one. In this sense, we can state that magnetization dynamics is triggered by the sudden application of a constant strain. In straintronics devices, magnetization reversal is required in order to modify significantly the status

 M  [100]
[010]

[001] of the spintronic device. In this context, the temporal evolution of the magnetization vector of a single-domain nanomagnet is ruled by the non-linear Landau-Lifshitz-Gilbert (LLG) equation.

Here, we study the motion in the case of a weak perturbation of the magnetization due to a sudden deformation of a thin film. We assume that the changes of magnetization direction induced by the applied strain are very small, permitting a linear approximation of the LLG equations. Recently, this approach has been adopted in continuous thin films to describe precession triggering due to an acoustic wave [START_REF] Linnik | Theory of magnetization precession induced by a picosecond strain pulse in ferromagnetic semiconductor (Ga,Mn)As[END_REF][START_REF] Thevenard | Irreversible magnetization switching using surface acoustic waves[END_REF]. In this article, we consider a step-like static deformation (ideally, a Heaviside step deformation) and we derive the analytical description of the magnetization motion. Interestingly, we show that by monitoring the magnetization dynamics induced by this deformation it is possible to measure the magnetic anisotropy coefficients and magnetoelastic coupling parameters. Well known methods to extract the magnetocrystalline coefficients are ferromagnetic resonance (FMR) and Brillouin scattering (BLS). Recently, an optical pump-probe method has been described and used [START_REF] Němec | The essential role of carefully optimized synthesis for elucidating intrinsic material properties of (Ga,Mn)As[END_REF]. Unfortunately, these methods do not provide information about the magnetoelastic parameters. These terms can be measured by cantilever method [START_REF] Sander | The correlation between mechanical stress and magnetic anisotropy in ultrathin films[END_REF][START_REF] Sander | Stress, strain and magnetostriction in epitaxial films[END_REF]. Here, we propose a new method to retrieve both magnetocrystalline and magnetoelastic parameters. It is close to the aforementioned optical pump-probe experiment but here magnetodynamics is triggered by strain and not by an optical laser pulse.

Energy terms

In this article, we focus on ferromagnetic thin films on piezoelectric substrates. We consider the thin film as monocrystalline with cubic symmetry. Similar calculations can

sin θ H cos ϕ H sin θ H sin ϕ H cos θ H    (2) 
The free energy density of the system can be written as follows:

F = F z + F d + F mc + F ms + F el (3) 
where the first term on the right hand side is the Zeeman energy:

F z = -µ 0 H a M = -µ 0 H a M [cos θ cos θ H + sin θ sin θ H cos(ϕ -ϕ H )] (4) 
The second term expresses the magnetic energy associated with the demagnetizing field in thin films:

F d = 1 2 µ 0 M 2 cos 2 θ (5)
The third term is the biaxial cubic magnetocrystalline energy with constant K and direction cosines of the magnetization m i :

F mc = K m 2 x m 2 y + m 2 x m 2 z + m 2 y m 2 z (6)
The fourth term is the cubic magnetoelastic energy determined by the magnetoelastic constants B 1 and B 2 [START_REF] O'handley | Modern magnetic materials: principles and applications[END_REF]:

F ms = B 1 ε xx (m 2 x -1 3 ) + ε yy (m 2 y -1 3 ) + ε zz (m 2 z -1 3 ) +B 2 [ε xy m x m y + ε xz m x m z + ε yz m y m z ] (7) 
The fifth term is the elastic term for a cubic system characterized by the elastic constants C ij :

F el = 1 2 C 11 ε 2 xx + ε 2 yy + ε 2 zz +2C 44 ε 2 xy + ε 2 xz + ε 2 yz +C 12 (ε xx ε yy + ε xx ε zz + ε yy ε zz ) (8) 
In [START_REF] Sander | Stress, strain and magnetostriction in epitaxial films[END_REF] and [START_REF] O'handley | Modern magnetic materials: principles and applications[END_REF], the ε ij are the components of the strain tensor. By minimizing the free energy of the system with respect to θ, ϕ and ε ij , the equilibrium values of the magnetization angles θ and φ and of the strain tensor components εij are derived (see Appendix A).

In the following, the magnetization and strain subscripts x, y and z will be replaced by 1, 2 and 3, respectively, in order to simplify the mathematical expressions.

Dynamical equations for a magnetic system prone to a strain

Let us consider a single domain ferromagnet characterized by its equilibrium magnetization vector M and internal strain. This system is prone to a static or to a dynamical deformation expressed by a strain tensor, δε ij (t), superimposed on the static equilibrium strain. The response of magnetization to the modified internal field is described by the Landau-Lifschitz-Gilbert (LLG) equations:

dm dt = -γ m × B ef f + α m × dm dt (9) 
where

m = M M (10) 
B ef f = -∇ m f (11) f = F M (12) 
γ is the absolute value of the gyromagnetic factor and α is the Gilbert damping coefficient. M is the saturation value of the magnetization (M = |M |). In the polar coordinate system, the LLG equations read (taking into account that m does not depend on the radial coordinate):

         dϕ dt = + γ sin θ ∂f ∂θ + α sin θ dθ dt dθ dt = - γ sin θ ∂f ∂ϕ -α sin θ dϕ dt (13) 
leading to:

           dϕ dt = γ 1 + α 2 1 sin θ ∂f ∂θ - αγ 1 + α 2 1 sin 2 θ ∂f ∂ϕ dθ dt = - αγ 1 + α 2 ∂f ∂θ - γ 1 + α 2 1 sin θ ∂f ∂ϕ (14)
We consider that the magnetization vector M is only slightly modified by the external strain perturbation, so that we can linearize the LLG equation ( 14) about equilibrium [START_REF] Linnik | Theory of magnetization precession induced by a picosecond strain pulse in ferromagnetic semiconductor (Ga,Mn)As[END_REF][START_REF] Thevenard | Irreversible magnetization switching using surface acoustic waves[END_REF]. It can be show that this condition is fullfilled when |Bε| << |K| where B is B 1 or B 2 and ε the sample strain. The ∂f ∂θ , 1 sin θ ∂f ∂θ , 1 sin θ ∂f ∂ϕ and 1 sin 2 θ ∂f ∂ϕ functions (which depend on θ, ϕ, ε 11 , ε 12 , ε 13 , ε 22 , ε 23 and ε 33 ) are then expressed as Taylor series about equilibrium ( θ, φ, εij ). Since the first order derivatives of f are zero at equilibrium, the expansion yields:

                                                                   ∂f ∂θ f θ,θ δθ + f θ,ϕ δϕ + i≤j f θ,ε ij δε ij 1 sin θ ∂f ∂θ 1 sin θ f θ,θ δθ + 1 sin θ f θ,ϕ δϕ + 1 sin θ i≤j f θ,ε ij δε ij 1 sin θ ∂f ∂ϕ 1 sin θ f θ,ϕ δθ + 1 sin θ f ϕ,ϕ δϕ + 1 sin θ i≤j f ϕ,ε ij δε ij 1 sin 2 θ ∂f ∂ϕ 1 sin 2 θ f θ,ϕ δθ + 1 sin 2 θ f ϕ,ϕ δϕ + 1 sin 2 θ i≤j f ϕ,ε ij δε ij (15)
where f a,b is a short hand notation for ∂ 2 f ∂a∂b . The second order derivatives f a,b are to be evaluated at the equilibrium point ( θ, φ, ε11 , ε12 , ε13 , ε22 , ε23 and ε33 ). δθ and δϕ are the deviations from the equilibrium angles θ and φ. δε ij are the deviations from equilibrium values εij : δθ = θ -θ ( 16)

δϕ = ϕ -φ ( 17 
)
δε ij = ε ij -εij (18) 
Plugging these expansions in [START_REF] Kelly | Inverse spin Hall effect in nanometer-thick yttrium iron garnet/Pt system[END_REF] gives:

       dδϕ dt = κ 1 δθ + κ 2 δϕ + i≤j κ ij δε ij dδθ dt = ζ 1 δθ + ζ 2 δϕ + i≤j ζ ij δε ij (19) 
The energy second derivatives, the κ and ζ terms are given in Appendix B, in the case of a thin film, with in-plane magnetization, and in-plane applied field.

Analytical solutions for the magnetization motion. Case of a step-like static strain

Now, we consider a step-like deformation. At t = 0, a strain is suddenly applied: effective field B ef f applied to the single domain, the direction of the magnetization vector M will be modified. Following a damped oscillatory motion, the magnetization angles θ and ϕ will converge towards the new equilibrium values θ and φ. Figure 2 shows a sketch of the precessional motion of the magnetization. The movement will finally stop and, according to [START_REF]We assume a high quality sample exhibiting an iron like value of α[END_REF], the new equilibrium will satisfy:

δε ij (t) = δε ij Θ(t)
     0 = κ 1 ( θ -θ) + κ 2 ( φ -φ) + i≤j κ ij δε ij 0 = ζ 1 ( θ -θ) + ζ 2 ( φ -φ) + i≤j ζ ij δε ij (20) 
Substracting [START_REF]We assume a high quality sample exhibiting an iron like value of α[END_REF] and [START_REF]Measured by FMR in a 58nm thick Fe 80 Ga 20 film[END_REF], we obtain:

d dt ϕ - φ θ -θ = P ϕ - φ θ -θ (21) 
where

P = κ 2 κ 1 ζ 2 ζ 1 (22) 
The time dependent solutions for ϕ and θ are:

ϕ - φ θ -θ = β 1 e λ 1 t U  + β 2 e λ 2 t U  ( 23 
)
where λ 1 et λ 2 are the eigenvalues of the P matrix and U  et U  the corresponding eigenvectors. By an elementary calculation we obtain: 1.18

λ 1 = -τ -1 -i Ω 0 λ 2 = -τ -1 + i Ω 0 (24)
U 1 = 1 -1 2 α 1 -fϕ,ϕ f θ,θ -i 1+α 2 γf θ,θ Ω 0 (25) U 2 = 1 -1 2 α 1 -fϕ,ϕ f θ,θ + i 1+α 2 γf θ,θ Ω 0 (26) 
with:

Ω 0 = 1 1 + α 2 ω 2 0 -τ -2 (27) 
ω 0 = γ f θ,θ f ϕ,ϕ (28) 
τ -1 = 1 2 αγ 1 + α 2 (f θ,θ + f ϕ,ϕ ) (29) 
Ω 0 , ω 0 and τ are characteristics of the eigen mode [START_REF] Thevenard | Irreversible magnetization switching using surface acoustic waves[END_REF]: damped and undamped radial frequencies and relaxation time, respectively. The reader has to notice that in a ferromagnetic material, Ω 0 is found to be real for external fields larger than a threshold values H th , leading to complex eigenvalues and a damped oscillatory motion starting from ( φ, θ) and ending to ( φ, θ). Let us consider two paradigmatic materials: YIG, on one hand, with small anisotropy and small magneto-elastic constants and Fe 80 Ga 20 , on the other hand, with larger anisotropy and larger magneto-elastic constants. It is worthwhile to notice that similar measurements performed on materials with very high magnetic anisotropy demand strong magnetic fields. Let us consider DyFe 2 (which is both a highly anisotropic and magnetostrictive material) where K = 4.2 × 10 6 J.m -3

[9] and the consequent threshold value is H th = 11 T. Even for very low damping (α 0.005), the relaxation time τ will be very short, of the order of 0.1 ns. We will see later that this is a severe constraint for actual measurements. Table 1 displays characteristics values, for thin films with in plane magnetization. Of course, the more intense the field the larger Ω 0 . The β 1 and β 2 constants are given by the initial conditions. At t = 0, we have ϕ = φ and θ = θ since the system has not yet evolved. According to (23):

φ - φ θ -θ = β 1 U  + β 2 U  (30) 
This gives:

β 1 = - 1 2 - 1 4 αγ 1 + α 2 f θ,θ -f ϕ,ϕ Ω 0 i ∆ϕ - 1 2 γ 1 + α 2 f θ,θ Ω 0 i ∆θ (31) 
β 2 = - 1 2 + 1 4 αγ 1 + α 2 f θ,θ -f ϕ,ϕ Ω 0 i ∆ϕ + 1 2 γ 1 + α 2 f θ,θ Ω 0 i ∆θ (32) ∆ϕ = φ -φ (33) ∆θ = θ -θ (34) 
∆ϕ and ∆θ are the variation of the equilibrium angles. They can be computed from [START_REF]Measured by FMR in a 58nm thick Fe 80 Ga 20 film[END_REF], given the applied strain components δε ij . We now considerer thin magnetic films where the demagnetizing field stabilizes in-plane equilibrium magnetic configurations. Appendix C gives ∆ϕ and ∆θ in three relevant strain cases. Let us assume first that ∆θ = 0. Using (23), the time dependence of the magnetization angles can be derived straightforwardly. This permits to recover the expected solutions of a simple damped oscillator movement:

ϕ -φ = ω 0 ∆ϕ (1 + α 2 )Ω 0 e -t/τ cos(Ω 0 t -δ) (35) θ -θ = γf ϕ,ϕ ∆ϕ (1 + α 2 )Ω 0 e -t/τ sin(Ω 0 t) (36) 
where

tan δ = αγ (f θ,θ -f ϕ,ϕ ) 2 (1 + α 2 ) Ω 0 (37) cos δ < 0 (38)
Figure 3 displays the theoretical behavior of ϕ and θ, computed for thin YIG and Fe 80 Ga 20 layers with δε 11 = ε = 1 × 10 -4 . We stress that such a deformation can not modify significantly the magnetic anisotropy and is consistent with our LLG linearization procedure. These two materials are quite paradigmatic since YIG is a low damping material (long time scale in figure 3-a) and FeGa is a strong magnetoelastic alloy. In Fe 80 Ga 20 , we assumed a small, iron like, damping term α. Similar expressions can be derived in cases where ∆ϕ = 0. As expected, the movement of magnetization from the initial equilibrium position towards the final external strain-dependent position will follow a damped oscillatory motion characterized by a fast oscillation Ω 0 (the ferromagnetic resonance frequency of the magnetic system) modulated by an exponential decay characterized by the relaxation time τ . Moreover, the ϕ and θ oscillations will be out-of-phase by (π/2 -δ). Interestingly, all these measurable parameters depend on the applied external field and on intrinsic quantities of the ferromagnetic thin films, i.e. the second derivatives f ϕ,ϕ and f θ,θ of the free energy evaluated at the initial equilibrium positions of the magnetization.

Micromagnetic parameters measurements

In the following we will discuss how magnetic anisotropy parameters K and magnetoelastic coefficients B 1 and B 2 of a thin film can be extracted by monitoring the time dependence of the relaxation process of the magnetization vector prone to a sudden static strain. From (27, 28, 29, 37), we obtain:

α 2 = (Ω 0 τ ) -2 -tan 2 δ 1 + tan 2 δ (39) f θ,θ = 1 + α 2 αγ τ -1 + Ω 0 tan δ (40) f ϕ,ϕ = 1 + α 2 αγ τ -1 -Ω 0 tan δ (41) 
According to these equations, the intrinsic characteristics of the sample α, f θ,θ and f ϕ,ϕ can be derived from the measurable quantities Ω 0 , τ and δ. Hence, f θ,θ and f ϕ,ϕ can then be extracted as a function of the in-plane angles φ and ϕ H and compared to their theoretical expressions (see Appendix B):

f θ,θ = µ 0 H a cos( φ -ϕ H ) + µ 0 M + K M 2 -sin 2 2 φ +2 B 2 1 M (C 11 -C 12 ) (cos 4 φ + sin 4 φ) + B 2 2 8M C 44 sin 2 2 φ (42) f ϕ,ϕ = µ 0 H a cos( φ -ϕ H ) +2 K M cos 4 φ +2 B 2 1 M (C 11 -C 12 ) cos 2 2 φ + B 2 2 4M C 44 sin 2 2 φ (43)
It is cumbersome to determine the equilibrium angle φ, for an arbitrary field. Hence, we assume that we apply an in-plane external field H strong enough to saturate the sample along the field, i.e. φ = ϕ H (ϕ H is the angle between H and the crystal axis [100]). From an experimental point of view, Ω 0 , τ and δ are recorded as a function of ϕ H . In order to retrieve K, |B 1 | and |B 2 | with good accuracy, many measurements angles are considered and a regression analysis of f θ,θ and f ϕ,ϕ can be performed by fitting the experimental records to their theoretical expressions. We notice that the signs of B 1 and B 2 can be inferred from the signs of ∆θ = θθ and ∆ϕ = φ -φ, provided the sign of ε is known (see table C1 in Appendix C). Figure 4 displays f ϕ,ϕ and f θ,θ versus ϕ H , computed using YIG and Fe 80 Ga 20 parameters (black circles). It also displays the modifications induced by parameters changes. These simulations permit to enlighten the contributions of K, B 1 and B 2 to f ϕ,ϕ and f θ,θ . In particular, K plays an important role for both materials ; B 1 gives an important contribution in magnetoelastic FeGa. It appears that B 2 cannot be retrieved by fitting f ϕ,ϕ and f θ,θ , because its contribution to those terms is negligeable with respect to the B 1 term contribution. Indeed, direct measurements of B 1 and B 2 could be performed by measuring the absolute magnitude of the ϕ and θ oscillations. According to Appendix C, tensile or compressive strain along [100] and along [110] will induce amplitudes quasi-proportional to B 1 and B 2 , respectively.

From an experimental point of view, the strain is to be applied by means of the piezoelectric substrate on which the thin ferromagnetic layer is attached. When submitted to a voltage, the substrate will strain the film. Indeed, the experiment demands a sudden strain modification, ideally the Heaviside strain step. In actual experiments, it can be replaced by a rapid strain modification, on a time scale shorter than the relaxation time τ . It can be shown that, after a transient regime, (35) and (36) are recovered. The time dependence of the ϕ and θ angles can be recorded by time-resolved magneto-optical polar Kerr effect (TR-MOKE) experiments, synchronized to the applied strain, in the longitudinal and polar configurations, respectively (see for example [START_REF] Kuszewski | Resonant magneto-acoustic switching: influence of rayleigh wave frequency and wavevector[END_REF] or [START_REF] Bombeck | Excitation of spin waves in ferromagnetic (Ga,Mn)As layers by picosecond strain pulses[END_REF]). This experiment opens a new way to characterize magnetic anisotropies and magnetoelastic properties of ferromagnetic materials.

Conclusion

We have studied the magnetization dynamical response of a thin film when suddenly strained. The dynamics is characterized by damped oscillations and phase lag of the polar and azimuthal angles. Measuring Ω 0 , τ and δ by time-resolved magneto-optical experiments, as a function of the angle of the external saturating field (applied in the film plane) provides a new way to measure the micromagnetic parameters K, B 1 and B 2 . The method presented in this article could be an alternative way to measure the magnetoelastic parameters. If compared with the cantilever method [START_REF] Sander | The correlation between mechanical stress and magnetic anisotropy in ultrathin films[END_REF][START_REF] Sander | Stress, strain and magnetostriction in epitaxial films[END_REF], we notice that both magneto-crystalline and magneto-elastic constants can be retrieved. If compared with the optical pump-probe set-up [START_REF] Němec | The essential role of carefully optimized synthesis for elucidating intrinsic material properties of (Ga,Mn)As[END_REF], our method avoids the difficulties of handling two laser beams and avoids heating of the sample.
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M ε11 cos 2 φ + ε22 sin 2 φ -ε33 - δε ij . We consider here three relevant cases, displayed in table C1. 

Figure 1 .

 1 Figure 1. Spherical coordinates ϕ and θ of the magnetization M

Figure 2 .

 2 Figure 2. Sketch of the damped precessional motion of the magnetization M , in response to a sudden static strain ε. Initial and final magnetization in plane (001). Tensile/compressive strain ε along [010].

Figure 3 .

 3 Figure 3. Calculation of the precession angles ϕ and θ, in response to a tensile strain Heaviside step along [100]. Thin films, normal to [001]. Applied field: 0.1 T along [110] (ϕ H = π/4, θ H = π/2). Equilibrium angles: φ = π/4, θ = π/2. Applied strain ε = 1 × 10 -4 . Material parameters: see appendix Appendix D. Left panel (a): YIG. Ω 0 /2π = 4.8 GHz, τ = 130 ns, δ = 3.1417 rd. Right panel (b): Fe 80 Ga 20 . Ω 0 /2π = 9.8 GHz, τ = 1.2 ns. δ = 3.1545 rd

Figure 4 .

 4 Figure 4. f ϕ,ϕ and f θ,θ versus the in-plane applied field angle ϕ H for YIG and Fe 80 Ga 20 thin films. The applied field (50 mT) is large enough to align the magnetization along the field ( φ = ϕ H ). Black circles : YIG and Fe 80 Ga 20 parameters (see Appendix D). Red up triangles and blue down triangles curves are computed for modified K or B 1 values, as indicated in the panels. Materials parameters: see Appendix D.

B 2 M 2 M

 22 ε12 sin 2 φf ϕ,ϕ = µ 0 H a cos( φ -ϕ H ) (ε 13 cos φ -ε23 sin φ) f θ,ε 11 = 0 f θ,ε 22 = 0 f θ,ε 33 = 0 f θ,ε 12 = 0 f θ,ε 13 = -B 2 M cos φ f θ,ε 23 = -B 2 M sin φ f ϕ,ε 11 = -B 1 M sin 2 φ f ϕ,ε 22 = B 1 M sin 2 φ f ϕ,ε 33 = 0 f ϕ,ε 12 = B 2 M cos 2ϕ f ϕ,ε 13 = 0 f ϕ,ε 23 = 0 (B.1)

  the elastic and micromagnetic parameters used for computation.

Table 1 .

 1 Characteristics of YIG and Fe 80 Ga 20 thin films, with in-plane equilibrium magnetization: threshold field µ 0 H th , precession angular frequency Ω 0 and damping time τ . Ω 0 and τ are computed using µ 0 H a = 38 mT (in-plane applied field). τ is nearly independent of H a . Material parameters: see Appendix D.YIGFe 80 Ga 20 ϕ H (rd) φ ( rd ) µ 0 H th (mT) Ω 0 (rd.s -1 ) τ (ns) µ 0 H th (mT) Ω 0 (rd.s -1 ) τ (ns)

	π/4	π/4	0	17 × 10 9	193	35	14 × 10 9	1.25
	0	0	9	2.2 × 10 9	211	0	68 × 10 9	

Table C1 .

 C1 Equilibrium angles

Table D1 .

 D1 Material constants × 10 5 2.3 × 10 -4 -6.10 × 10 2 3.48 × 10 5 6.96 × 10 5

		C 11	C 12	C 44	M	α	K	B 1	B 2
		(GPa) (GPa) (GPa) (A.m -1 )		(J.m -3 )	(J.m -3 )	(J.m -3 )
	YIG	269 107.7 1.4 [12] 76.4 [12] [12] [13]	[14]	[15]	[16]	[16]
	Fe 80 Ga 20	196	156	123	14 × 10 5 50 × 10 -4	241 × 10 2	-160 × 10 5 -60 × 10 5
		[17]	[17]	[17]	[18]	[19]	[20]	[21]	[21]
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Appendix A. Equilibrium strains εij At equilibrium, the strain derivatives of the free energy are zero. Then, we obtain a set of 6 equations:

∂F ∂ε ij = 0 (A. [START_REF] Roy | Hybrid spintronics and straintronics: A magnetic technology for ultra low energy computing and signal processing[END_REF] where i and j are in (1,2,3) (and i ≤ j), leading to (bars denotes the equilibrium values) :

Hence:

Notice these equilibrium strain values are written in the standard frame ([100], [010],

[001]).

Appendix B. Energy second derivatives, κ and ζ terms

Let us assume the sample is a thin film parallel to the (x,y) plane (with [100], [010], [001] parallel to x, y and z, respectively). We consider in-plane magnetization (i.e. m3 = 0 or θ = π/2) and in-plane applied magnetic field (i.e. θH = π/2). Then, the second order derivatives read:

Using the static strain (A.3), f θ,θ , f ϕ,ϕ and f θ,ϕ read:

The κ and ζ terms are given by:

M cos 2 φ

M cos φ

M sin φ We assume here that the sample is a thin film with in-plane magnetization (same assumptions as in Appendix B). ( 20) can be easily solved for specific applied strains