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Abstract—The development of the Semantic Web of Things
(SWoT) is challenged by the nature of IoT deployment architec-
tures, where constrained devices collect data processed remotely
by powerful Cloud servers. Such a deployment pattern introduces
bottlenecks constituting a hurdle for scalability, and increases
response time. This hinders the development of a number of
critical and time-sensitive applications. Enabling the deployment
of the Semantic Web stack closer to the constrained devices of the
IoT may foster the development of time-sensitive interoperable
applications, while reducing forwarding the user data to remote
third party Cloud servers. The approach we develop in this paper
is a contribution towards this direction, and aims to enable rule-
based reasoning closer to sensors producing IoT data. For this
purpose, we define a distributed scalable semantic processing
algorithm by dynamically propagating deduction rules on Fog
nodes. Our goal is to shorten the time needed to deliver high level
information deduced from the collected data. This approach is
evaluated on a smart building use case where both distribution
and scalability have been considered.

I. INTRODUCTION

The maturity of Internet of Things (IoT) communication
technology is leading to a wide variety of industrial and
societal applications involving responsiveness and privacy
requirements, as for e-health or home automation. However,
architecting IoT service platforms and applications faces new
challenges emerging from data heterogeneity on the one hand
and real-time decision management complexity on the other.
Such challenges can be addressed by investigating semantic
interoperability and automated reasoning techniques. Seman-
tic interoperability allows IoT systems to share a common
meaning over exchanged data. These requirements, crucial to
IoT applications, are fostering the adoption of the Semantic
Web principles and technologies as interoperability enablers
[1]. A new domain has emerged from the interaction between
the IoT and the Semantic Web, the Semantic Web of Things
(SWoT) [2], raising additional challenges. The number of
connected devices [3] and the volume of generated data to
be processed by SWoT systems are growing substantially,
requiring scalability to be addressed as an additional require-
ment. Moreover, Semantic Web technologies are resources-
consuming, and go beyond the capacities of constrained IoT
devices, leading to centralized deployment approaches. The

Semantic Web stack components are executed on the Cloud,
where powerful servers collect and process IoT data before
feeding applications with curated data, analytics results and
decision instructions [4]. In such a centralized architecture,
the Cloud becomes a single point of failure, a bottleneck for
communication and a threat for privacy. Storing and processing
a large data volume in a central place induces delay [3] and
degrades quality of service for IoT applications. It may hamper
the development of a variety of applications and inhibit the
deployment of time-critical applications. Our objective is to
face these issues by adopting the Fog computing paradigm
for the SWoT infrastructure by considering on devices located
between constrained sensors and the Cloud as initiated in [5].
The aim is not to replace the Cloud by the Fog, but to use
them as complementary computing resources providers. Even
if constrained, Fog nodes also provide computation capabilities
that are starting to be used to process data closer to the
sources it is generated from [5], [6]. These limited computation
capabilities are also leveraged by the development of dedicated
semantic web libraries, such as µJena1.

IoT applications, e.g an automatic light manager or a smart
city traffic monitor, exploit data collected by device networks
for ad-hoc purposes. These applications usually consume IoT
data from Cloud nodes, processed in order to provide high-
level information relevant to the application end user [7].
Rules can be used to capture the specific needs of applications
by representing and sharing dedicated deduction intent [8].
Existing IoT architectures mainly process rules on the Cloud
[9]. In this paper we propose an approach in which, aware
of application needs, Fog nodes can produce information of
concern for applications directly from sensor observations,
instead of being required to provide raw data to Cloud nodes
for processing and delivery to applications. Rules applied on
nodes closer to sensors can yield deductions faster compared to
a centralized approach, both because they receive data earlier
and because they process a smaller amount of observations,
reducing the end-to-end reasoning time [6] [10]. However,
identifying which Fog nodes should process which rule in
order to provide applications with the required results while

1http://poseidon.ws.dei.polimi.it/ca/?page id=59
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minimizing resource consumption is challenging, especially in
a dynamic setting which characterizes IoT networks.

Our contribution aims at distributing semantic data pro-
cessing in the Fog in order to increase application respon-
siveness in a scalable manner. We propose Emergent Dis-
tributed Reasoning (EDR), an approach to semantic processing
based on dynamic rule propagation in a device network. EDR
relies on local knowledge, where each node appropriately
propagates reasoning rules toward the edge of the device net-
work, closer to sensors, in order to accelerate their processing.

The remainder of this paper is organized as such: Section
II describes existing approaches. Section III details the EDR
approach, with the associated hypothesis and knowledge rep-
resentations. EDR is evaluated in Section IV, using a smart
building use case to drive the experiments. Finally, the paper
is concluded in Section V.

II. RELATED WORK

As the concern of the proposed approach is to improve re-
sponsiveness when deducing application dedicated information
from IoT data, state-of-the-art work dealing with logical rules
for the Semantic Web, logical rules for the IoT, distributed
reasoning and processing on constrained nodes is presented.

Complementary to domain knowledge representation
through ontologies, logical rules can be seen as a paradigm
for knowledge modeling dedicated to specific usages. Logical
rules are purely used for deduction: if their preconditions
are true, the engine deduces their postconditions. With the
goal of facilitating rule reuse, Linked Rules principles have
been proposed [11]. They apply to rules the basic principles
of Linked Open Data and Linked Open Vocabularies: rules
are designated by dereferencable URIs, expressed in W3C-
compliant standards, and they can be linked to each other.
Different formalisms are available to represent logical rules,
such as SWRL2 and SPIN3. SHACL4 and its extension5 are
the latest W3C recommendations for rules representation.
SHACL aims to represent constraints on an RDF graph, called
“shapes”, as well as deduction rules. SHACL rules, similarly
to SPIN, can be based on SPARQL: it is possible to express a
production rule in SHACL as a SPARQL CONSTRUCT query.
SHACL rules are used in the EDR approach we propose.

Logical rules being explicit deduction representations, they
have been considered in IoT networks to express and share
the correlation between sensor observations and high-level
symptoms since early work on the SWoT [12]. [8] lists
numerous works using rules for context-awareness in the IoT.
Inspired from the Linked Rules, the Sensor-based Linked
Open Rules (S-LOR) [9] is dedicated to rules re-usability
for deductions based on sensor observations. Deduction rules
are a mechanism similar to Complex Event Processing (CEP)
approaches such as [13], but the rule representation shifts from
an ad-hoc rule format in CEP to a unified format in the SWoT.

In most existing approaches [9] [14], rules are handled by
Cloud nodes. Such architecture raises multiple issues, such

2https://www.w3.org/Submission/SWRL/
3https://www.w3.org/Submission/spin-modeling/
4https://www.w3.org/TR/shacl/
5https://www.w3.org/TR/shacl-af/

as the cost of semantic reasoning that increases rapidly with
the size of the Knowledge Base (KB) [6], and the impact
on resiliency, since the Cloud node constitutes a single point
of failure. A way of overcoming these issues is to consider
Fog computing, defined by the open Fog consortium6 as a
“system-level horizontal architecture that distributes resources
and services [...] anywhere along the continuum from Cloud
to Things”. The applicability of such a paradigm to the IoT,
compared to pure Cloud computing, is particularly studied, e.g.
by [5]. This work identifies key IoT requirements tackled by
the Fog computing paradigm, namely low latency, network
topology dynamism, and scalability. The constrained nature
of Fog nodes (compared to Cloud nodes) must be taken into
account: processing power or bandwidth are critical resources.

Most approaches for processing on constrained nodes focus
on optimizations at the individual scale, and in distributed
cases processing is statically assigned. [15] shows how gate-
ways are Fog nodes capable of enriching data: observations are
initially produced by legacy devices in ad-hoc formats. It is the
gateway, communicating with devices using protocols adapted
to constrained environments, such as CoAP, that enriches
the data before forwarding it towards the Cloud. Therefore,
observations are enriched on the edge of the network, and only
the Fog nodes in direct contact with legacy devices have to
perform data enrichment. [16] proposes to execute a different
type of rules in the Fog. Event Condition Action (ECA) rules
associate a deduction with an action, which is used to automate
the response of the system to a stimulus. However in this work,
only one gateway executing the rules is considered, and the
ad-hoc rule format is not suited for rule exchange. Regarding
processing distribution in existing work, the dynamic nature
of IoT deployments should be considered. The topology of
a network evolves as devices connect, disconnect, or move
geographically. Therefore, a viable distribution of rules at a
given moment is not guaranteed to remain optimal in the fu-
ture, and the distribution strategy should be adapted to the
evolution of the deployment. [6] does not detail the mobility
strategy used for its mobile nodes, and each node applies
all the rules regardless of their relevance to the messages
it aggregates. In [10], rules are statically assigned to either
Cloud or Fog nodes. [17] focuses on resource placement in a
Fog-enabled IoT. The authors compute optimal deployment of
application modules based on the representation of available
resources on the Fog compared to requirements expressed by
applications. Module positions are static, and computed at the
time of deployment. EDR differs from previous proposals in
its focus on the dynamic reconfiguration of rule deployment
at runtime involving all the managed system’s nodes.

The purpose of distributing data processing is to provide
scalability and to prevent the appearance of a single point
of failure. Processing should therefore be distributed based
on local decisions made by each node, rather than based on
a central controller (which would still be a single point of
failure). The algorithm proposed in Section III is only based
on either common knowledge, or knowledge local to the node
making the decision to delegate processing to another node.

6http://openfogconsortium.org/
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III. DISTRIBUTING SEMANTIC PROCESSING BY RULE
PROPAGATION IN AN IOT CONTEXT

The core principle of EDR is to propagate semantic pro-
cessing in an IoT network to enable decentralized rule-based
reasoning. Rules are propagated between nodes in order to be
processed as close as possible to sensors producing the data,
so that deductions are directly provided to applications.

A. Assumptions and underlying architecture

EDR is based on the hypothesis of a hierarchical network
topology: nodes are organised in a tree-like structure, and
only communicate with neighboring nodes, i.e. their parent
or children. This assumption is made because such topologies
are frequent in IoT networks, represented in studies such as
[18], [19] (based on the oneM2M standard7), [20], or [10].
The tree root is the Cloud, leaves are devices, and nodes in
between are Fog nodes. Applications are not part of the Cloud
integrated to the IoT deployment: they are executed remotely
on personal devices such as smartphones or laptops. Rules
represent applicative needs: when an application requires
deductions to be made from sensor observations, instead of
being provided with raw data by the network and apply the
rules themselves, they inject the rule in the network to be
provided directly with the deductions. It is assumed therefore
that Fog nodes can communicate with applications directly.
Rules are initially submitted by applications to the Cloud node,
so it is the only node they know a priori. It prevents them from
encountering issues when communicating with Fog nodes,
by nature dynamic and not guaranteed to be permanently
available.

In order to ensure decentralization, the algorithm of the
EDR approach is executed in parallel on each node able to
perform reasoning in the topology, i.e. Cloud and semantic
computing-enabled Fog nodes. It is based on a peer-to-peer
approach, where each node only communicates with its direct
neighbours, i.e. its parent and children in the hierarchical
topology. A parent node propagates a rule to its child if the
parent considers that the child is able to apply the rule. In the
same way, a node sends back a rule to its parent if it considers
it can no longer apply it. This decision process is described
in Section III-C. It relies on the local knowledge a node has
about its neighbors. The content of nodes KBs is described in
Section III-B, and the decision-making algorithm is detailed
in Section III-D. The expressiveness of the supported rules
is described in Section III-C, once the rules themselves have
been introduced in Section III-B1.

B. Knowledge considered by nodes applying EDR

1) Rules representation: The rules considered by EDR are
predicate logic rules used to deduce high-level information.
Let rx be such a rule noted as rx : Γ1 ∧ ...∧Γn → ∆1 ∧ ...∧
∆m, where Γ1 ∧ ... ∧ Γn, designated as the body of rx, is a
conjunction of conditions and ∆1∧ ...∧∆m, designated as the
head of rx, is a conjunction of deductions. To represent and
store rules in each node’s KB, SHACL formalism is used.

7http://onem2m.org/

Let us consider a home automation example application
needing to be informed about the level of comfort of each
room. The high level information useful for this application
can be expressed in a rule, made simple for the sake of clarity,
such as “If in a room the observed luminosity is above 400Lx
and the observed temperature is between 20 and 25 degrees,
then this room is comfortable”. This rule rcomfort can be
represented with predicates as room(x) ∧ luminosity(y) ∧
observation(x, y) > 400 ∧ temperature(z) ∧ 20 <=
observation(z, x) <= 25 ⇒ confortable(x). This rule
expressed in SHACL is available online8.

Additionally to SHACL standard vocabulary, the EDR ap-
proach uses dedicated metadata in order to manage rules,
noted with the prefix edr:9 from now on. EDR is driven by
the rules’ predicates expressing types of properties of the
environment. These properties can be either environmental
properties captured by sensor observations (e.g. luminosity) or
higher level properties deduced by other rules (e.g. comfort).
Triples indicating the types of properties involved in the rule’s
body and head are added to the rule description. The intuition
is that, based on this description, a node will be able to
compare the type of properties needed to apply the rule to
the property types it manages, without needing to process it.

To manipulate these types in the following, we use the
notations body t(rx) = {γ1, ..., γn′} and head t(rx) =
{δ1, ..., δm′} where γi designates the property type of
Γi, and δj the property type of the deduction ∆j . It
should be noted that not all Γi or ∆j used in the rule
are relevant to the EDR approach. For our illustrative
rule, body t(rcomfort) = {luminosity, temperature}, and
head t(rcomfort) = {comfortable}. Property types in rules’
head and body are represented respectively with the predicates
edr:hasRuleBody and edr:hasRuleHead in the rule description.

The description also contains information about the applica-
tion(s) interested in the rule. When an application app submits
a rule rx to the network, app is called the originator of rx. It is
attached to the rule metadata with the edr:ruleOriginatedFrom
predicate. r’s description also contains an HTTP endpoint
denoted with the predicate edr:originatingEndpoint. With this
information, a node applying the rule is able to deliver the
deductions directly to the consuming application.

The rule’s metadata introduced in this section are used by
nodes in the propagation process at the core of EDR. They
are compared as described in Section III-D to the knowledge
nodes have on themselves and their neighbors, which are
respectively described in Sections III-B2 and III-B3.

2) Node’s knowledge on itself: A node n has in its KB
information about the property types of the data it produces,
denoted own productions(n). Data produced by node n is
either collected by sensors to which n is directly connected,
or obtained as deductions when n applies a rule. When a
reasoning-enabled node is connected to a sensor, it enriches
the raw observation, and propagates the enriched observation
on the network, which ensures that the observation is only
enriched once. Fig. 1 is an example of topology in which EDR

8https://w3id.org/laas-iot/rules/comfort/comfortableSpot.ttl
9https://w3id.org/laas-iot/edr
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Fig. 1: Example of propagation for rcomfort

is used to execute the rcomfort rule in the Fog, used in this
section for illustrative purposes. In this topology, the Fog node
n6 is connected to a luminosity sensor and enriches its pro-
duction therefore own productions(n6) = {luminosity}.
An example of enriched observation is available online10.
Observations and devices are described in each node’s KB
using the IoT-O ontology11 [21] for our experiments (Section
IV), but the proposed algorithm does not depend on the
ontology used to describe data, as long as the same ontology
is used to express the rules and their metadata.

3) Node’s knowledge on the topology: The transmission
of rules among nodes organized by EDR is driven by the
knowledge each node has on the network around itself. Node
n knows its parent in the network tree-like hierarchy, noted
Upper(n), and its children, referred to as Lower(n). On Fig.
1, Lower(n5) = {n6, n7}, and Upper(n5) = {n2}.

In [22], reasoning nodes act as proxy for the capa-
bilities of legacy nodes unable to process enriched data.
In EDR, each reasoning-enabled node n has a simi-
lar role, with respect to both its sensors and Lower(n)
that are proxied toward Upper(n). This mechanism makes
a node aware of the types of properties produced by
any node below its lower nodes while communicating
only with its lower nodes, therefore ensuring the local-
ity of its decisions. Let us define productions(n) =
own productions(n)∪productions(Lower(n)). Node n an-
nounces itself to Upper(n) as a producer of ρi,∀ρi ∈
productions(n) (ρi being the property type of data produced
by a sensor or a lower node connected to n). For instance, on
Fig. 1, productions(n5) = {temperature, luminosity}

In order to limit unnecessary exchanges of data, data is ex-
changed lazily: node n has to explicitly advertise its interest for
a property type ρj to Lower(n) in order to be notified when
new observations are received or new deductions are made.
In Fig. 1, n6 announced to n5 that it produced luminosity,
and n5 notified n6 of its interest in luminosity to receive
observations. The interest of node n in a property of type ρi
is only propagated to node n′ such that n′ ∈ Lower(n)∧ρi ∈
productions(n′). The set of property types in which node n is
interested is denoted consumptions(n). A node is interested

10https://w3id.org/laas-iot/rules/observations/enriched data.ttl
11https://www.irit.fr/recherches/MELODI/ontologies/IoT-O

in a property type ρi when it is in charge of applying a rule
whose body includes ρi. Identifying if ρi ∈ body t(r) is based
on URI comparisons. Furthermore, to make data propagation
possible and based on local knowledge only, the proxying
approach used for nodes productions is also used for node
consumptions. Therefore, node n is also interested in ρi if its
upper node notifies n that it consumes ρi.

C. Combining topology knowledge and rules metadata

The purpose of EDR is to transfer each rule to the
lowest possible node in the architecture, to be applied
as early as possible. The propagation of a rule rx from
node n to node n′ is considered relevant in two cases.
Either the rule rx is brought closer to sensors if n′ ∈
Lower(n) ∧ body t(rx) ⊂ productions(n′), or it is sent
toward a node able to apply it if n′ ∈ Upper(n) ∧
body t(rx) 6⊂ productions(n). Incrementally, the rule will
converge toward nodes that can no longer propagate it, i.e.
∀n′ ∈ Lower(n), body t(rx) 6⊂ productions(n′), but that
are able to apply it, i.e. body t(rx) ⊂ productions(n). These
are the nodes able to apply the rule that are the closest to
the original data producing: propagating the rule lower in the
hierarchy is not necessary. Such a node is represented in red on
Fig.1. This figure represents the submission of rcomfort to the
Cloud node by its originator, and its subsequent propagation
toward n5. It is also shown that the node applying rcomfort

directly provides its originator with its deductions.
Propagating a rule to a lower node does not necessarily en-

tails the inability to apply this rule locally: a node may be both
connected to sensors and reasoning nodes. Therefore, after
having propagated the rule, a node considers its ability to apply
it locally thanks to the types of the properties provided by
sensors and lower nodes that are unable to apply the rule them-
selves. Each node locally adds metadata to the rule to make
its status explicit, with the predicate edr:isRuleActive. We
refer to this property with the functions mark rule active(r)
and mark rule inactive(r) in Algorithm 1. The activity of
the rule is evaluated dynamically when the topology of the
network evolves (see Section III-D).

The rule propagation policy supported by EDR is based
on the assumption that the correlation between pieces of
data is embedded in the network topology. IoT data is
strongly bound to a spacio-temporal context [23], and the
distribution of Fog nodes reflects the distribution of features
observed by sensors. From this hypothesis, it can be inferred
that the context of a node is a subset of the context of
its parent. To illustrate this claim with rcomfort previously
introduced, it means that if it is possible to apply rcomfort

with luminosity and temperature observations collected by the
same gateway, it is not necessary to compare the same lu-
minosity observations with temperature observations collected
elsewhere. IoT data being highly contextual, many applications
do not need to reason over a complete KB to get relevant
results. EDR is therefore suitable for rules exploiting this
context by correlating data sharing an identical context, e.g.
the correlation of temperature and luminosity in the context of
a single room for rcomfort. This behavior is adapted to rules
supporting deductions for time-sensitive applications, which is
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the focus of the present contribution, and cannot be applied
to aggregation rules, where time series or multiple instances
of the same property types are considered. This choice is
motivated by the assumption that aggregation rules are more
likely to be used in applications supporting long-term reporting
and decision support, where the time constraint is not strong,
and thus outside the scope of this contribution. To ensure
decidability, only DL-safe rules are considered, and EDR
is only suitable for stratified rule sets. Cyclic dependencies
between rules are not resolved. When a node applies rule r, it
is considered as producer of the head t(r), and this production
information is used for the deployment of any rule r′ such as
body t(r′)∩head t(r) 6= ∅. However, a non stratified rule set
where rules r and r′ coexist such that body t(r′) ⊆ head t(r)
and body t(r) ⊆ head t(r′) cannot be processed successfully
by EDR, and neither r nor r′ will be propagated or applied.

D. An event-driven algorithm at the core of EDR

Nodes executing the EDR algorithm maintain a coherent
view of their neighborhood, and propagate rules with respect
to this perception of their environment. The neighborhood of a
node is modified when a new node connects or a known node
disconnects, and when the productions or consumptions of a
node are modified. The main events impacting the exchanges
of a node with its neighbors are therefore: when its capabilities
are changed (which includes startup and disconnection), when
receiving a new rule, and when receiving a new piece of data.

1) When changing capability: Sensors are the primary
source of data for the network. The data they produce is
collected by their reasoning-enabled parent. When semantic
computing-enabled nodes start, they try to connect to their
sensors children of which they have a priori knowledge. How
nodes discover and gather information about sensors is outside
the scope of this paper, as it can be a process tightly related
to the underlying technology, or hard-coded in the node KB.
Nodes connected to sensors announce the property types they
produce to their parent node. As explained in Section III-B3,
nodes propagate production information by proxying their
children productions. When node n is informed that one of its
lower nodes produces a new property type ρi, it checks its own
productions. If node n already produces ρi, the notification is
not propagated to Upper(n), supposing it is already aware
of the production of ρi by n. Otherwise, node n announces
itself to Upper(n) as a producer of data of type ρi. Similarly,
when a sensor or a lower node providing data of type ρi
to node n disconnects, n announces its updated capabilities
if they have been transformed, i.e. if the disconnected node
was the sole producer of ρi. Announcing both appearance and
disappearance of production capabilities ensures the dynamic
nature of EDR: nodes’ perception of the network topology
remains consistent with its evolution over time.

2) When receiving a rule: When node n receives a new
rule r, n evaluates whether it can apply r directly, and/or if
it should propagate r to some of its children, as described
in Algorithm 1. The conditions in which a node locally
applies a rule are detailed at line 14. In particular, if node
n has both a set of lower nodes producing partially the
body t(r) (denoted I), and another set of children producing

completely body t(r) (denoted C), n forwards the rule to
n′ ∈ C, but also applies the rule locally by notifying its
consumption of the rule body to n′′ ∈ I. In the case where
A =

⋃
n′′∈I

productions(n′′) is such that body t(r) 6⊂ A, node

n notifies its interest for the missing rule body elements to its
children in C as detailed l. 25 of Alg. 1. That is why on l. 14,
node n determines if it is an aggregator for rule r by checking
if body t(r) ⊂ A and if neither I and C are empty.

The moments involving communications between different
nodes are at lines 7, 16, 20 and 28 of Alg. 1, where node
n respectively propagates a rule (send rule(n′, r)), announces
a new production (send productions(n′, {δj}) and advertises
for a new interest (send consumption(n′, ρi)). The knowledge
required to run the algorithm is local to node n. When node
n sends rule r to a lower node and does not apply it itself,
r is kept in the n’s KB. Local metadata is added to rule r in
order to keep track of the lower nodes to which it has been
transmitted with the predicate edr:ruleTransmittedTo.

Algorithm 1 Node n behavior when receiving a new rule
1: function PROCESS NEW RULE(r)
2: C ← ∅ . Set of children producing all rule’s body
3: I ← ∅ . Set of children producing some rule’s body
4: A ← ∅ . Set of types produced by nodes in I
5: for all nl ∈ Lower(n) do
6: if body t(r) ⊆ productions(nl) then
7: send rule(nl, r)
8: C ← C ∪ {nl}
9: else if body t(r) ∩ productions(nl) 6= ∅ then

10: I ← I ∪ {nl}
11: A ← A∪ productions(nl)
12: end if
13: end for
14: if body t(r) ⊂ A∪own productions(n)∨∅ /∈ {I, C}

then
15: mark active(r)
16: send productions(Upper(n), head t(r))
17: for all γi ∈ body t(r) do
18: for all nl ∈ I do
19: if γi ∈ productions(nl) then
20: . New consum. notified to producers
21: send consumption(nl, γi)
22: end if
23: end for
24: end for
25: for all γi ∈ (body t(r) \ A) do
26: for all nl ∈ C do
27: if γi ∈ productions(nl) then
28: send consumption(nl, γi)
29: end if
30: end for
31: end for
32: else
33: mark inactive(r)
34: end if
35: end function
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Fig. 2: Reference simulation architecture
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3) When receiving new data: Different kinds of data can be
received by node n: raw observations directly produced by a
sensor connected to n, and enriched observation or deduction
sent to n by node nl ∈ Lower(n). If the received observation
is raw, node n enriches it by annotating it with an ontology
before its processing as a new enriched observation. If the
piece of data is either an enriched observation or a deduction,
it is directly integrated to its KB and processed. The data, of
property type ρi, is in the first place sent to Upper(n) if it is
a consumer of ρi. Then, node n checks if new deductions can
be obtained by applying the rules it has marked up as active
and whose body includes ρi. If the rule body matches the KB
of node n, and postconditions of type δj are deduced, these
deductions are propagated to Upper(n) if it is consumer of
δj . Since rules are applied on the local KB of node n, there
is no impact of data distribution on reasoning complexity. A
new reasoning loop is simply applied each time new data is
received. The deductions yielded by rule r are also directly
sent to r’s originator(s). Therefore, applications are notified
continuously by the nodes as those nodes apply the rules,
instead of being notified by a restricted set of central nodes.

IV. EXPERIMENTATIONS

A. Motivational use case: living laboratory

To evaluate our approach, we have considered an experi-
mental smart building automation use-case inspired from the
real-world example of the ADREAM building12, an auto-
mated smart building and living lab. The use-case building
is instrumented with multiple sensors whose observations are
transported through a Fog layer constituted of gateways to
a Cloud where the data is stored. The building is used for
experimental purposes: its behavior is analyzed by multi-
ple applications run by different research teams, and it is
also automated by the building administrators. Each research
team runs its applications on its own machines (potentially
smartphones), and the administrators also monitor and control
the building from a dedicated machine, all distinct from the
Cloud where data is collected and stored. The applications
encompass their logic in rules such as rcomfort (as described
in Section III-B1), rsolar:“With a pyranometry over 430W/m2,
and a temperature over 23.0oC, an energy production under
15000W is abnormal” or rconsumption: “A difference of over
5 oC between the requested temperature and the measured
temperature in a room will consume a lot of energy”. An
example energy production analysis application submits to
the network rules such as renergy and rconsumption, while

12https://w3id.org/laas-iot

TABLE I: Experimental setup

RAM Cores CPU
Server 32GB 32 3.0GHz
Laptop 16GB 8 2.6GHz
RPi 3 1GB 4 1.4GHz
RPi 2 1GB 4 900MHz

a comfort monitoring application would submit rules such as
rcomfort and rconsumption to make suggestions to the user.

The fact that the building behaviour is automated based
on rules motivates their processing as early as possible. The
decision process performed by the building administrators
based on rule deductions could rely on autonomic computing
as explained in our earlier work [21].

B. Experimental setup and implementation

Variations of a reference building’s device network topol-
ogy, described in the use case in Section IV-A and displayed
in Fig. 2, are simulated. The root node at depth 0 is the
Cloud server while other nodes are Fog nodes. Sensors, not
represented on the figure, may be connected under any node.
Each sensor pushes a random observation to its parent every
two seconds. In order to assess the distributed nature of the
algorithm, and its suitability for constrained Fog nodes, the
experimental setup includes a Raspberry Pi 2 and a Raspberry
Pi 3, a laptop and a server, described in Table I. Each physical
machine hosts multiple virtual nodes, composed of an HTTP
server, a KB, a SPARQL engine, and a code base13.

Two aspects of EDR have been evaluated: the validity of our
hypothesis, assuming that the distribution of rules increases
responsiveness, and the scalability of the proposed approach.
Experimental measures also showed that, for each simulation,
the number of deductions is consistant between the centralized
and the distributed approach: there is no knowledge loss when
applying EDR under our assumptions.

To measure the responsiveness of applications enabled by
EDR, the response time between the reception of the piece
of data and the reception of the deductions they triggered
is measured. Precisely, the response time for the processing
of a rule is characterized as the time difference between the
moment when the most recent data used in the body of the rule
is produced, and the moment when the rule head is received
by the application. A dedicated timestamp is associated to
each observation once it has been enriched, in order to avoid
any impact of the enrichment process on the measure. For
instance, if a luminosity observation observed at t1 and a
temperature observation observed at t2 match rcomfort and
trigger a deduction received by the originating application
at t3, the response time for this particular deduction will be
t3 −max(t1, t2).

C. Impact of the distribution on responsiveness

To measure how distribution impacts responsiveness, four
topologies were distinguished, labeled d1 to d4 and further
on simply denoted d*. Each of these topologies is constituted
of 47 identical nodes, and processes data according to four
rules, r1 to r4. The difference between the four d* topologies

13The code is available at https://framagit.org/nseydoux/edr
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Fig. 3: d1 topology
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Fig. 4: d2 topology
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Fig. 5: Performances regarding distribution
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is the location of sensors, as depicted in Fig. 3 and 4. Sensors
producing data of the type γ1 are directly attached to the top
node in d1, while they are attached to its children in d2. Since
body t(r1) = {γ1, γ4}, r1 is applied at a maximum depth of
1 in d1, but is propagated to nodes of depth 2 in d2, hence a
more decentralized execution is performed in the latter. Rule
execution depths are given in Table II: in d4, all sensors are
connected to leaf nodes, and the distribution is maximal.

Fig. 5 summarizes the aggregated response time measures
for the four rules applied in d* topologies. The data shows

TABLE II: d* topologies

Maximum
depth r1 r2 r3 r4

d1 1 2 3 4
d2 2 2 3 4
d3 3 3 3 4
d4 4 4 4 4

TABLE III: s* topologies

Nodes
s1 17
s2 27
s3 41
s4 65
s5 78

that the response time remains stable for the four topologies
with a centralized approach (Fig. 5a), which is our baseline.
Since all computations are performed in the upper node in
the centralized case, it is coherent that the distribution of
sensor nodes in the network does not impact the response time.
With the decentralized approach (Fig. 5b) based on EDR, as
expected, the augmentation of the depth at which rules are
applied is correlated with the improvement of the response
time. Due to the tree-like nature of the network, the deeper a
rule can be processed, the more distributed its processing is.
Our hypothesis that bringing rules closer to data-producing
sensors reduces response time of applications is therefore
supported by experimental evidence.

It is clear that not all rules can be processed at the very
edge of the network, and that the case depicted in d4 is
both purely theoretical and ideal for the EDR approach. This
experiment is designed to show that the gain in quality of
service is correlated with the possibility to distribute rules,
even at a scale where the centralized approach is not clearly
outperformed by EDR (as described in Section IV-D).

D. Scalability of the proposed approach

The scalability of the proposed approach is assessed by
measuring response time in five topologies, s1 to s5 (denoted
s*), with an increasing number of nodes stated in Table
III. Nine rules are deployed on s* topologies. Compared to
previous d* topologies, the depth at which rules can be applied
in s* is constant, as sensors’ depth is fixed. The number of
nodes is increased by cloning branches in the topologies.

Fig. 6a shows how the response time increases with the
number of nodes in the baseline approach. The median re-
sponse time is stable from s1 to s3, but both the median and
the extreme response times increase dramatically in s4 and
s5. On Fig. 6b, the response times measured when EDR is
applied remains stable from s1 to s4, and the increase observed
in s5 is less than the increase observed in the baseline: the
two graphics are at very different scales. The experimental
evidence supports the claim that rule distribution is scalable.

V. CONCLUSION, PERSPECTIVES AND FUTURE WORK

The presented EDR approach implements a distributed rule
processing algorithm that enables the scalable deployment of
time-sensitive IoT applications. The approach goes beyond
the state-of-the-art work with regard to two aspects. First, it
avoids the central control by implementing the distribution of
rules on the appropriate Fog nodes, and second, it considers
the dynamism of the IoT networks by adapting at runtime
the distribution of the rules. Rule-based reasoning is hence
performed as close as possible to the sensors that produce
the data, and the resulting deductions are directly delivered
to the concerned applications. Our approach was evaluated
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Fig. 6: Performance regarding scalability
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by conducting experiments in a simulated smart building
use-case. Experimental results support our claim that first,
distributing rule execution improves the responsiveness of the
system, and second, the associated algorithm is scalable.

Our results are encouraging for exploring Fog-based
semantic-enabled architectures to improve knowledge manage-
ment in the SWoT, and promote related applications. Enabling
the deployment of the Semantic Web stack closer to the con-
strained devices of the IoT fosters the possibility for reactive
time-sensitive interoperable applications, while keeping the
data away from centralized Cloud servers. Moreover, shifting
from Cloud computing, where the whole produced data is
uploaded on remote, potentially third-party servers, to Fog
computing, where processing power is brought close to data
producers and owners, opens a range of perspectives including
privacy-aware distributed semantic reasoning. In our future
work, we will investigate how to extend EDR in this direction
by considering explicit privacy information in nodes’ context.
Our algorithm can hence be modified to allow rule propa-
gation in the network for performance and scalability, while
data forwarding is constrained by privacy requirements. This
constitutes a long term perspective for our work. At a shorter
term, we will, first, consider scenarios that go beyond the two
extreme configurations of total centralization and distribution
of rule processing that are proposed in the present paper.
They will be extended in future work to include intermediary,
more varying approaches to distribution that we will have to
characterize. We will then reconsider our approach in a real
deployment scenario at LAAS’s ADREAM smart building.
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