
HAL Id: hal-01871055
https://hal.science/hal-01871055v1

Submitted on 23 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards Cooperative Semantic Computing: a
Distributed Reasoning approach for Fog-enabled SWoT

Nicolas Seydoux, Khalil Drira, Nathalie Jane Hernandez, Thierry Monteil

To cite this version:
Nicolas Seydoux, Khalil Drira, Nathalie Jane Hernandez, Thierry Monteil. Towards Cooperative
Semantic Computing: a Distributed Reasoning approach for Fog-enabled SWoT. 26th International
Conference on Cooperative Information Systems (COOPIS 2018), Oct 2018, La Valette, Malta. 19p.
�hal-01871055�

https://hal.science/hal-01871055v1
https://hal.archives-ouvertes.fr

Towards Cooperative Semantic Computing: a

Distributed Reasoning approach for Fog-enabled

SWoT

Nicolas Seydoux1,2[0000−0002−8768−9431]Q, Khalil Drira1, Nathalie Hernandez2,
and Thierry Monteil1

1 LAAS-CNRS,
Universit de Toulouse, CNRS, INSA, Toulouse, France

email: {name.surname}@laas.fr
2 IRIT,

Maison de la Recherche, Univ. Toulouse Jean Jaurs,
5 alles Antonio Machado, F-31000 Toulouse

email: {name.surname}@irit.fr

Abstract. The development of the Semantic Web of Things (SWoT)
is challenged by the nature of IoT architectures where constrained de-
vices are connected to powerful cloud servers in charge of processing
remotely collected data. Such an architectural pattern introduces mul-
tiple bottlenecks constituting a hurdle for scalability, and degrades the
QoS parameters such as response time. This hinders the development of
a number of critical and time-sensitive applications. As an alternative
to this Cloud-centric architecture, Fog-enabled architectures can be con-
sidered to take advantage of the myriad of devices that can be used for
partially processing data circulating between the local sensors and the
remote Cloud servers. The approach developed in this paper is a con-
tribution in this direction: it aims to enable rule-based processing to be
deployed closer to data sources, in order to foster the implementation of
semantic-enabled applications. For this purpose, we define a dynamic de-
ployment technique for rule-based semantic reasoning on Fog nodes. This
technique has been evaluated according to a strategy improving infor-
mation delivery delay to applications. The implementation in Java based
on SHACL rules has been executed on a platform containing a server,
a laptop and a Raspberry Pi, and is evaluated on a smart building use
case where both distribution and scalability have been considered.

Keywords: Distributed reasoning · Cloud-Fog processing · Semantic
Web of Things · Cooperative Semantic Computing · SHACL rules

1 Introduction

The maturity of Internet of Things (IoT) communication technologies is fos-
tering a wide variety of industrial and societal applications with responsiveness
and privacy requirements, especially useful for home automation or industry

4.0 scenarios. However, the development of IoT service platforms and related
applications faces new challenges emerging from data heterogeneity on the one
hand and real-time decision management on the other. Such challenges can be
addressed by investigating semantic interoperability and automated rea-
soning techniques that respectively allow IoT systems to exchange data with
a shared understanding, and to infer new information from existing data and
formalized knowledge. These requirements, crucial to IoT applications, are fos-
tering the adoption of the Semantic Web (SW) principles and technologies as
interoperability enablers [9]. A new domain has emerged from the interaction
between the IoT and the SW, the Semantic Web of Things (SWoT)[15]. The
number of connected devices [21] and the volume of generated data to be pro-
cessed by SWoT systems are growing substantially, requiring scalability to be
addressed as an additional requirement. Moreover, SW technologies are resource-
consuming, and go beyond the capacities of constrained IoT devices, leading to
centralizing processing on remote powerful nodes. The SW stack components are
often executed on the Cloud, where servers collect and process IoT data before
feeding applications with curated data, analytics results and decision instruc-
tions [16]. In such a centralized architecture, the Cloud becomes a single point
of failure, a bottleneck for communication and a threat for privacy. Storing and
processing a large data volume in a central place induces delay [21] and degrades
quality of service for IoT applications. It may hamper the development of a vari-
ety of applications and inhibit the implementation of time-critical applications.
Our objective is to face these issues by applying the Fog computing paradigm
to the SWoT infrastructure by considering devices located between constrained
sensors and the Cloud as initiated in [13]. Even if constrained, Fog nodes also
provide computation capabilities that are starting to be used to process data
closer to the sources it is generated from [13] [11]. These limited computation
capabilities are also leveraged by the development of dedicated SW libraries,
such as µJena3. The purpose here is not to replace the Cloud by the Fog, but
to complement their capabilities to overcome their respective limits, thus
achieving Cloud-Fog cooperative semantic computing.

IoT applications, such as an automatic light manager or a smart city traffic
monitor, exploit data collected by device networks for ad-hoc purposes. These
applications usually consume IoT data from Cloud nodes, processed to provide
high-level information relevant to the application end user [2]. Rules can be used
to capture the specific needs of applications by representing and sharing dedi-
cated deduction intent [19]. Existing IoT architectures mainly process rules on
the Cloud [4]. In this paper we propose an approach in which Fog nodes pro-
duce information of concern for applications directly by applying rules
on sensor observations, instead of simply forwarding raw data to remote Cloud
nodes. Moreover, the diversity of IoT applications implies multiple strategies
for rule deployment: applications may favor response time, privacy, or energy
consumption, and rules should be deployed in the Fog accordingly. For instance,
rules applied on nodes closer to sensors can yield deductions faster compared to

3 http://poseidon.ws.dei.polimi.it/ca/?page id=59

http://poseidon.ws.dei.polimi.it/ca/?page_id=59

a centralized approach, both because they receive data earlier and because they
process a smaller amount of observations, reducing the end-to-end reasoning
time[11][22]. Identifying such Fog nodes is a possible rule deployment strategy.
However, identifying which node should process which rule in order to provide
applications with the required results while minimizing resource consumption is
challenging, especially in a dynamic setting which characterizes IoT networks

Our contribution aims at distributing semantic data processing in the
Fog, according to adaptable rule and data deployment strategies defining
an optimal rule deployment among nodes. We propose Emergent Distributed
Reasoning (EDR), a scalable, strategy-agnostic approach to semantic process-
ing based on dynamic rule deployment in a device network. The core approach
is based on a deployment technique enabled by dedicated knowledge represen-
tations, and the various strategies are implemented based on modular rules ex-
pressed in SHACL, a recent W3C formalism. EDR relies on knowledge local to
nodes: each node propagates reasoning rules toward the device network edge.
In this paper, EDR is instantiated with a strategy aiming at increasing ap-
plication responsiveness, EDRPT , based on property types of observations
produced by sensors (e.g., temperature or luminosity).

The remainder of this paper is organized as such: §2 describes a smart factory
use case. In §3, existing approaches are studied and compared to identify the
innovations in EDR. The core contribution is detailed in §4, with the associated
hypothesis and knowledge representations. EDR and EDRPT are evaluated in
§5, based on the smart factory use case. Finally, the paper is concluded in §6.

2 Motivating use case
Let us consider a production plant divided into two floors, processing different
kind of products as illustrated in Fig. 1. These floors are modular: the structure
described thereafter is subject to change to adapt to new productions. Each floor
is equipped with conveyor belts carrying products from machine to machine for
transformation. Devices are organized hierarchically: machines are connected to
conveyors that are connected to the floor gateway, that collects and delivers
data to the factory datacenter. The factory is equipped with sensors to ensure
the safety of workers: each floor is equipped with presence, luminosity parti-
cle and temperature sensors, and the workers are equipped with wearables that
automatically communicate in BLE4 with nearby conveyors. Observations from
the different sensors are used to identify potentially harmful situations, and then
notify the control center, where actions can be taken remotely. Unsafe situations
are described with deduction rules, based on the semantic description of ob-
servations and of the environment. Examples of rules include “the activation
of a machine creating sparks in an atmosphere loaded with particles creates a
detonation hazard”, or “The presence of a worker near an operating machine
in a low luminosity environment is a personal security hazard”. Some rules are
also dedicated to quality insurance: sensors available in the factory, such as tem-
perature sensors, or sensors integrated to machines and to the conveyor, enable

4 https://en.wikipedia.org/wiki/Bluetooth Low Energy

https://en.wikipedia.org/wiki/Bluetooth_Low_Energy

Fig. 1: Fog-enabled smart factory

the continuous control of production quality. Some operations are temperature-
sensitive, and a quality insurance rule is “The detection of a temperature above
a certain threshold is a break in the cold chain”. Adapting the speed of conveyors
to the speed of machines is also part of quality enforcement. All the rules are
summarized in Tab. 1, and their SHACL representation is available online5.

Safety and quality insurance are time-sensitive applications, which is why
the processing of the rules should be as fast as possible. Moreover, the mobility
of some sensors (workers wearable), combined to the modularity of the factory
floors, are suitable for a dynamic solution adaptative to their evolution over
time.

3 Related work

As the concern of the proposed approach is to deploy reasoning rules among Fog
nodes to enable the deduction of application-dedicated information from IoT
data, state-of-the-art work dealing with logical rules for the SW, logical rules for
the IoT, distributed reasoning and processing on constrained nodes is presented.

Complementary to domain knowledge representation through ontologies, log-
ical rules can be seen as a paradigm for knowledge modeling dedicated to specific
usages. Logical rules are purely used for deduction: if their preconditions are
true, the engine deduces their postconditions. With the goal of facilitating rule

5 https://w3id.org/laas-iot/edr/iiot/iiot.tar.gz

https://w3id.org/laas-iot/edr/iiot/iiot.tar.gz

Rule ID Rule core

R1:
Low Machine
Visibility

Location(l) ∧ Presence(l, o1) ∧ o1 = True ∧ Luminosity(l, o2)
∧o2 < 300L ∧Machine(m) ∧Activity(m,o3)
∧o3 = True ∧ locatedIn(m, l) → LowMachineV isibility(m)

R2:
Low Conveyor

Visibility

Location(l) ∧ Presence(l, o1) ∧ o1 = True ∧ Luminosity(l, o2)
∧o2 < 300L ∧ Conveyor(c) ∧ Activity(c, o3)
∧o3 = True ∧ locatedIn(c, l) → LowConveyorV isibility(c)

R3:
No

supervision

Location(l) ∧ Presence(l, o1) ∧ o1 = False

∧Conveyor(c) ∧ Activity(c, o3) ∧ o3 = True ∧ locatedIn(c, x)
∧SupervisorPost(s) ∧ supervises(s, c) → NoSupervision(c)

R4:
Fire

hazard

Location(l) ∧ ParticleLevel(l, o1) ∧ o1 > 25%
∧SparkMachine(m) ∧Activity(m,o3) ∧ o3 = True

∧locatedIn(m, l) → Firehazard(m)
R5:

Cold chain
broken

Location(l) ∧ Temperature(l, o1) ∧ o1 > 6oC
∧TemperatureSensitiveMachine(m)∧Activity(m,o3)
∧o3 = True ∧ locatedIn(l,m) → ColdChainBroken(m)

R6:
Conveyor
too fast

Conveyor(c) ∧Machine(m) ∧ onConveyor(m, c)
∧MachineSpeed(m, sm) ∧ ConveyorSpeed(c, sc) ∧ sc > sm
→ ConveyorTooFast(c)

R7:
Low quality
product

Machine(m) ∧ ProductQuality(m,o1) ∧ o1 < 98.5
→ LowQualityProduct(m)

Table 1: Safety and quality rules

reuse, Linked Rules principles have been proposed [8]. They apply to rules the
basic principles of Linked Open Data and Linked Open Vocabularies: rules are
designated by dereferencable URIs, expressed in W3C-compliant standards, and
they can be linked to each other. Different formalisms are available to represent
logical rules, such as SWRL6 and SPIN7. SHACL8 and its extension9 are the
latest W3C standard for rules representation. SHACL aims to represent con-
straints on an RDF graph, called “shapes”, as well as deduction rules. SHACL
rules, similarly to SPIN, can be based on SPARQL: it is possible to express a
production rule in SHACL as a SPARQL CONSTRUCT query. Rules expressed
in the SHACL formalism are used in the EDR approach we propose to provide
an interoperable rule representation.

Logical rules being explicit deduction representations, they have been con-
sidered in IoT networks to express and share the correlation between sensor
observations and high-level symptoms since early work on the SWoT[20]. [19]
lists numerous works using rules for context-awareness in the IoT. Inspired from
the Linked Rules, the Sensor-based Linked Open Rules (S-LOR)[4] is dedicated
to rules re-usability for deductions based on sensor observations. Deduction rules
are a mechanism similar to Complex Event Processing (CEP) approaches such

6 https://www.w3.org/Submission/SWRL/
7 https://www.w3.org/Submission/spin-modeling/
8 https://www.w3.org/TR/shacl/
9 https://www.w3.org/TR/shacl-af/

https://www.w3.org/Submission/SWRL/
https://www.w3.org/Submission/spin-modeling/
https://www.w3.org/TR/shacl/
https://www.w3.org/TR/shacl-af/

as [10], but the rule representation shifts from an ad-hoc rule format in CEP to
a unified format in the SWoT.

In most existing approaches [4] [26], rules are handled by Cloud nodes. An
example of Industrial IoT (IIoT) use case enabled by Cloud-based semantic rules
processing is presented in [25]. This paper proposes a self-configuring smart fac-
tory in which conveyors and machines produce data which is processed in a
Cloud where user rules are used to make reconfiguration decisions. Rules are
expressed in SWRL. Such architecture raises multiple issues, such as the cost of
semantic reasoning that increases rapidly with the size of the Knowledge Base
(KB) [11], and the impact on resiliency, since the Cloud node constitutes a single
point of failure. A way of overcoming these issues is to consider Fog computing,
defined by the open Fog consortium10 as a “system-level horizontal architecture
that distributes resources and services [...] anywhere along the continuum from
Cloud to Things”. The applicability of such a paradigm to the IoT, compared
to pure Cloud computing, is particularly studied, e.g., by [13]. This work identi-
fies key IoT requirements tackled by the Fog computing paradigm, namely low
latency, network topology dynamism, and scalability. The constrained
nature of Fog nodes (compared to Cloud nodes) must be taken into account:
processing power or bandwidth are critical resources.

Most approaches for processing on constrained nodes focus on optimizations
enabling such processing for a single node without considering the other, or in
distributed cases processing placement is not dynamic: all nodes execute the
same rules, or each a predefined static rule set. [3] shows how gateways are Fog
nodes capable of enriching data: observations are initially produced by legacy
devices in ad-hoc formats. It is the gateway, communicating with devices us-
ing protocols adapted to constrained environments, such as CoAP, that enriches
the data before forwarding it towards the Cloud. Therefore, observations are
enriched on the edge of the network, and only the Fog nodes in direct contact
with legacy devices have to perform data enrichment. [5] proposes to execute a
different type of rules in the Fog: Event Condition Action (ECA) rules associate
a deduction with an action, which is used to automate the response of the sys-
tem to a stimulus. However, the authors only consider one gateway executing
the rules, and the ad-hoc rule format is not suited for rule exchange. Regarding
processing distribution in existing work, the dynamic nature of IoT networks
should be considered. The topology of a network evolves as devices connect,
disconnect, or move geographically. Therefore, a viable distribution of rules at a
given moment is not guaranteed to remain optimal in the future, and the dis-
tribution strategy should be adapted to the evolution of the network
topology. [11] does not detail the mobility strategy used for its mobile nodes,
and each node applies all the rules regardless of their relevance to the messages
it aggregates. In [22], rule placement is static, in either Cloud or Fog nodes.
[24] focuses on resource placement in a Fog-enabled IoT. The authors compute
optimal deployment of application modules based on the representation of avail-
able resources on the Fog compared to requirements expressed by applications.

10 http://openfogconsortium.org/

http://openfogconsortium.org/

Module positions are static, and computed at the time of deployment. Rules are
deployed on gateways in an IIoT context in [7]. The rules themselves are not
expressed using SW formalisms, and they are not dynamically assigned to Fog
devices. However, ad-hoc mechanisms enable rule update at runtime. Rules are
combined to a semantic engine proposed in [6] so that rules are expressed based
on enriched data.

EDR differs from previous proposals in its focus on the dynamic rule deploy-
ment in the SWoT system at runtime, involving all the system’s nodes. EDR
is only based on either common knowledge, or knowledge local to the node
making the decision to delegate processing to another node.

4 Enabling rule deployment based on their representation

EDR is based on rule deployment in the Fog, in order to enable their placement
on nodes according to a deployment optimization strategy, such as the proxim-
ity to the sensors producing the data they consume. The EDR core deployment
technique is agnostic to the chosen strategy, and includes rule and data propaga-
tion. Rules are deployed neighbor-to-neighbor between Fog nodes, assuming
the nodes are organized in a hierarchical topology as described in §4.1. The de-
ployment of rules and the propagation of data are based on node local knowledge
described with a vocabulary on which node functionalities rely. Both function-
alities and the vocabulary are presented in §4.2. This vocabulary is embedded
in rules as described in §4.3, where the modularity of rules is examined.

4.1 Assumptions, underlying architecture and approach overview

EDR is based on the hypothesis of a hierarchical network topology: nodes are
organized in a tree-like structure, and only communicate with neighboring nodes.
This assumption is made because such topologies are frequent in IoT networks,
represented in studies such as [27], [1] (based on the oneM2M standard11), [23],
or [22]. The tree root is the Cloud, leaves are devices, and nodes in between
are Fog nodes. Applications are not part of the Cloud integrated to the IoT
topology: they are executed remotely on personal devices such as smartphones
or laptops. Rules represent applicative needs: when deductions from sensor
observations are required by an application, it injects the rule in the network in
order to be provided directly with the deductions, instead of being forwarded
raw data by the network and applying the rules itself. It is assumed therefore
that Fog nodes can communicate with applications directly. Rules are initially
submitted by applications to the Cloud node, so it is the only node they know
a priori. The Cloud provides a unique permanent interface to the network, and
the dynamic Fog topology underneath is therefore transparent for applications.
Finally, we assume that since IoT data is strongly bound to a spacio-temporal
context[14], the distribution of Fog nodes reflects the distribution of features
observed by sensors. EDR is suitable for rules exploiting this spacio-temporal

11 http://onem2m.org/

http://onem2m.org/

locality by correlating data sharing an identical context, for instance the activity
of a machine and the level of particles in the same room needed in rule R4 of
Tab. 1.

To ensure decentralization, the EDR approach is executed in parallel on each
node able to perform reasoning in the topology, i.e. Cloud nodes and semantic-
computing-enabled Fog nodes. EDR is a neighbor-to-neighbor approach: each
node only communicates with its direct neighbors within the IoT network, i.e.
its parent and children in the hierarchical topology. A parent node propagates
a rule to its child if the parent considers that the child is empowered to apply
the rule, based on the associated strategy. In the same way, a node n sends
back a rule r to its parent if n considers it can no longer apply r. To enable
the deployment of rules, nodes exchange messages describing their capabilities,
e.g., their location or the type of data they observe. When a node makes a
new deduction based on a rule, it sends the result to all the nodes interested,
including the application that submitted the rule. A functional representation
of an EDR node is provided in Fig. 2: each node has a local KB, where the
information it has about its neighbors in the network topology is stored as well
as the observations of the environment. The KB also contains the rules that have
been sent to the node by either applications or other nodes, and these rules are
used by the inference engine to update the KB. How the node functionalities
are related to the KB in the core EDR mechanism to enable the propagation of
observations and rules is first described in §4.2. The modular rule representation
embedding the deployment strategy, and the updates of the KB they trigger, are
detailed in §4.3.

Fig. 2: EDR node functional overview

4.2 A core deployment mechanism based on a dedicated vocabulary

The hierarchical nature of the topology is captured in the EDR vocabulary12.
The relation between a node np and its child nc is expressed with the triplet
<np,lmu:hasDownstreamNode,nc>

13, based on a nomenclature presented in ear-
lier work [18]. The inverse relation exists, to express the connection between a
node nc and its parent np: <nc,lmu:hasUpstreamNode,np>.

12 Used namespaces: edr:<https://w3id.org/laas-iot/edr>,
lmu:<https://w3id.org/laas-iot/lmu>, sh:<http://www.w3.org/ns/shacl>,
ex:<http://example.org/ns>

13 Individuals such as n− p and nc are identified with a URI in the triplets

https://w3id.org/laas-iot/edr
https://w3id.org/laas-iot/lmu
http://www.w3.org/ns/shacl
http://example.org/ns

Fig. 3: Relation between node functions and rules modules

Node behavior is made quite simple on purpose, to decorrelate the rule
application-specific deployment strategy, e.g., response time reduction or pri-
vacy enforcement, from the core deployment technique on which EDR is based,
which is application-agnostic. The node functionalities are represented in Fig. 2,
and their relation with the EDR vocabulary and the rule modules is shown in
Fig. 3. Each functionality relies on dedicated triplets, and the node implements
its behavior based on the description held in its KB. The first functionality of a
node is to apply rules. When a node n receives a new observation, either from
its own sensors or lower nodes, n executes the rules r stored in its KB if the
description of rule r contains <r,edr:isRuleActive,true>. If processing the new
observation with rule r by node n leads to a deduction δ, δ is sent to the nodes
n′ when <n′,edr:consumesResult,r> in the KB of n: this is the rule result de-
livery functionality. Especially, the application that submitted the rule to the
network, known as the rule originator, is a consumer of rule results, in order to
enable deduction delivery to applications. Moreover, if the upper node of node n
(denoted un) has declared its interest for the type of the new observation αt, the
observation if forwarded toward un. Observations are exchanged lazily: if a node
n receives an observation of type αt, and knows no other node interest in such
type, the observation is not forwarded. Such interest is represented in node n KB
with the triplet <un,edr:isInterestedIn,αt>. Similarly, node n has to explicitly
notify its children that it consumes the data type αt to receive observations of
this type. This active advertisement is denoted as the data consumption func-
tionality: when node n has a triple in its KB such that <n,edr:interestedIn,αt>,
it forwards this interest to its children. Finally, when a rule r is present in the
KB of node n in a triplet <r,edr:transferrableTo,n′>, r if forwarded to node n′

by n. This is the rule transfer functionality.

These core node functionalities are agnostic of the rule deployment strategy:
they are solely based on the representation of themselves and their neighbors by
nodes. How the triplets triggering node behaviors are injected in the knowledge
base, and their relationship with the rules is detailed in §4.3.

4.3 Rule representation and deployment

EDR rules are composed of several modules, as represented on Fig. 3. Each
of these modules enables some node functionalities: therefore, the intelligence

Fig. 4: Rule modules

is located in the rules, and not in the nodes. The deployment technique can
therefore be parametrized at a fine granularity, for each rule.

Rules are represented in SHACL, and the modules are based on SHACL ad-
vanced features named “SHACL rules”. Each module is composed of two parts:
a SHACL rule, that inserts deductions into the KB, and a SHACL shape that
determines whether the rule is applied or not. An example rule is provided
online14. In the remainder of this section, EDR is instantiated with a rule de-
ployment and data propagation strategy enabled by rule modules referred to
as EDRPT . EDRPT extends the work initially proposed in [17], that does not
consider the genericity of EDR. Therefore, in this previous work, no distinction
is made between the generic EDR approach and its refinement with EDRPT .
EDRPT is based on the property types of data produced by nodes in order to
reduce deduction delay for applications. EDRPT , dedicated to a specific strategy,
is an instantiation of EDR. These properties can be either environmental proper-
ties captured by sensor observations (e.g., luminosity) or higher level properties
deduced by other rules (e.g., safety).

The self-representation of nodes (stored in their KB) includes, but is not
limited to, the types of property it observes. A node directly produces observa-
tions on a property if one of its children is a sensor dedicated to this property.
Moreover, indirect observation of a property is enabled by a proxying mecha-
nism. EDRPT relies on a proxying mechanism such as in [12], where reasoning
nodes act as proxy for the capabilities of legacy nodes unable to process enriched
data. In EDRPT , each reasoning-enabled node n has a similar role, with respect
to both its sensors and lower nodes that are proxied toward its parent. This
mechanism makes a node aware of the types of properties produced by any node
below its lower nodes while communicating only with its lower nodes, therefore
ensuring the locality of its decisions. The production of observations by node
n for a property type ρt is denoted <n,edr:producesDataOn,ρt>. When a child
node connects to its parent, it includes such triplets in its self-description. If the
parent node n was not a producer of the property type ρt, it includes a new
triplet in its KB <n,edr:producesDataOn,ρt>, and forwards this triplet to its
own parent. If node n was already a producer for rhot, its capabilities remain

14 https://w3id.org/laas-iot/edr/iiot/r1.ttl

https://w3id.org/laas-iot/edr/iiot/r1.ttl

unchanged, and the information propagation stops. A similar proxying mecha-
nism is used to propagate interests: when a node n receives a message from its
parent n′ containing a triple <n′,edr:isInterestedIn,ρt>, n sends a message to its
children producing rhot (if any) containing a triple <n,edr:isInterestedIn,ρt>.
The knowledge of nodes about their environment is therefore limited to their
neighborhood, enabling purely local decisions.

The knowledge of property types observed by remote nodes is used for
rule deployment in EDRPT . The operational part of the rule, containing the
application-dedicated inference, is referred to as the rule core module. It is in
this part of the rule that the properties observed by the node are exploited to
make deductions. The rule core has a structure similar to other rule modules,
with a conditional shape and a deduction SHACL rule. The condition of the
rule core only tests that the triple <r,edr:isRuleActive,true> is in the node’s
KB. To materialize the property types featured in rule core in the following, we
use the notations body t(rx) = {γ1, ..., γn′} and head t(rx) = {δ1, ..., δm′} where
γi designates the property type of Γi, and δj the property type of the deduction
∆j . It should be noted that not all Γi or ∆j used in the rule are relevant to
the EDRPT approach. For R1, an illustrative rule introduced in the use case
2, body t(R1) = {luminosity, presence, machine state}, and head t(R1) = {low
machine visibility}. When a node receives a rule, or when the knowledge it has
on its neighbors is updated, it triggers a reasoning step to process rule modules.

The rule transfer module determines on which remote nodes the rule
may be deployed. A child node n′ is considered for the forwarding of a rule r

from node n if, ∀ρt ∈ bodyt(r), <n′,edr:producesDataOn,rhot>. This condition
is expressed as a SPARQL query as part of the SHACL rule being the condi-
tional part of the rule transfer module. The deduction part of the module infers
<r,edr:transferrableTo,n′>, enabling the rule forwarding mechanism of the node.

The activation module detects if the current node is suitable to apply
the rule itself. To apply a rule r, a node n must be the lowest common an-
cestor to the producers of property types in the rule body. Such node has a
set P of children partially producing the rule head. Individually, none of the
children produce all the elements of the rule head, but combined, their pro-
ductions enable the processing of the rule. It is characterized as such: ∃P ,
such as ∀n′ ∈ P , <n,lmu:hasDownstreamNode,n′> and ∃{ρt, ρ

′
t} ⊆ body(r),

<n′,edr:producesDataOn,ρt> and ¬∃ <n′,edr:producesDataOn,ρ′t>, and ∀ρt ∈
body(r), ∃n′ ∈ P ,<n′,edr:producesDataOn,ρt>. If the conditional part of rule r

activation module determines that the current node is suitable to apply r, some
deductions are inferred. The activity of rule r is made explicit by the triplet
<r,edr:isRuleActive,true>, and the nodes n′ ∈ P are identified by<n′,edr:partial-
DataProvider,ρt>. The interest of the rule originator o is also denoted with
<o,edr:consumesResult,r>. These inferences enable both the rule application
and the rule result delivery mechanisms as described in §4.2.

The result delivery module enables the forwarding of deductions to other
nodes that are not the originator of the rule, such as the parent n′ of a node
n if n′ applies a rule r′ that consumes the deductions made by a rule r ap-

plied by n. In EDRPT , the condition of the result transfer module checks if a
node expressed interest for the type of deductions yielded by the rule. If there
exists a triple <n′,edr:interestedIn,ρt>, with n′ a remote node and ρt an ele-
ment of the rule r’s head head(r), then the result transfer module infers that
<n′,edr:consumesResult,r>.

It is worth noting that rule modules only need to be evaluated when the
rule is received, or when the topology evolves, e.g., with new productions by
children or new consumptions by parents. On the other hand, the rule core must
be computed each time a new observation is received by the node. To reduce
the computation load, and to only process rule modules when needed, a SHACL
functionality is used: the reasoner does not consider shapes or rules r such that
<r,sh:deactivated,true>. The modules of a rule r are therefore only activated for
a reasoning step when r is received, or when the topology evolves.

5 Experiments

To evaluate EDRPT , the smart factory use case described in §2 is simulated
on a setup detailed in §5.2. The purpose of the EDR (instantiated by EDRPT)
approach we propose is to directly feed rule deductions to applications. However,
for comparison purposes, multiple deduction delivery mechanisms are proposed
and compared in §5.1.

5.1 Deduction delivery mechanisms

Unlike rule deployment strategies, deductions delivery mechanisms are decorre-
lated from the rules: they are variations of the “Forward rule result” function-
ality described in §4.2. Therefore, the propagation of rules, the deductions they
yielded and data is described as intended according to ad-hoc strategies (here,
EDRPT) through the EDR vocabulary. However, for experimental purpose, this
propagation can be altered at the node level, preventing rule deployment or
rerouting deduction delivery. Five deduction delivery mechanisms are compared
in our experiments:

– Cloud-Indirect-Raw (CIR) is the baseline approach: the rules are only
kept in the Cloud, and raw observations are forwarded neighbor-to-neighbor
from the nodes that collect them toward the central node. The Cloud then
delivers deductions to applications. Applications are notified by the Cloud,
and not by Fog nodes, in all the following strategies except the last one.

– Cloud-Direct-Raw (CDR) is also an approach where rules are not de-
ployed, and only processed in the central Cloud. However, the interest prox-
ying mechanism presented in §4.3 is altered: node that are not the upper
node in the hierarchy propagate the interests they receive without proxying
them. Therefore, the observation producers directly send raw observations
to the Cloud node, where they are used for rule-based deductions.

– Cloud-Direct-Processed (CDP) is a hybrid approach, where rules are
deployed in the Fog to be processed as far as possible in the hierarchy, but
where deduction are delivered directly to the Cloud instead of sending them

to applications. To do so, when forwarding a rule it has received, the Cloud
node declares itself as the originator instead of the application. Deductions
can also be propagated in the Fog if a node explicitly expressed its interest.
Processing rules in the Fog means that the propagation of observations is
limited to the Fog nodes applying rules consuming such observations.

– Cloud-Indirect-Processed (CIP) is another hybrid strategy for EDRPT :
rules are processed in the Fog, and the results are propagated neighbor-to-
neighbor towards the Cloud before being delivered to applications. To modify
the result delivery behavior, whenever a node propagates a rule, it declares
itself as the originator of the said rule.

– Application-Direct-Processed (ADP) is the purely decentralized strat-
egy that we propose for EDRPT , where rules are processed in the Fog and
deductions are delivered directly to applications that submitted the rules. In
this case only, a deduction that has been inferred in the network will not be
hosted by the Cloud before being delivered.

5.2 Experimental setup and implementation

Variations of a reference building’s device network topology, described in the use
case in §2 and displayed in Fig. 1, are simulated. The root node at depth 0 is
the Cloud server while other nodes are Fog nodes. Sensors, not represented on
the figure, are arbitrarily connected under nodes. Each sensor pushes a random
observation to its parent every two seconds. To assess the distributed nature of
EDRPT , and its suitability for constrained Fog nodes, the experimental setup
includes a Raspberry Pi 3, a laptop and a server, described in Table 2. Each
physical machine hosts multiple virtual nodes, composed of an HTTP server, a
KB, a SHACL-enabled SPARQL engine, and a code base15.

To measure the responsiveness of applications enabled by EDR, the response
time between the reception of the piece of data and the deductions they
triggered is measured. Precisely, the response time for the processing of a rule is
characterized as the time difference between the moment when the most recent
data used in the body of the rule is produced, and the moment when the rule
head is received by the application. A dedicated timestamp is associated to each
observation once it has been enriched,to avoid any impact of the enrichment
process on the measure. For instance, if a conveyor speed observation measured
at t1 and a machine speed observation measured at t2 trigger a deduction by R7
received by the originating application at t3, the response time for this particular
deduction will be t3 −max(t1, t2).

Experimental measures showed that, for each simulation, the number of de-
ductions is consistant between centralized and distributed approaches: there is no
knowledge loss when applying EDRPT under our assumptions of bound between
the Fog topology and the correlation between data.

15 The code is available at https://framagit.org/nseydoux/edr

https://framagit.org/nseydoux/edr

RAM Cores CPU

Server 32GB 32 3.0GHz

Laptop 16GB 8 2.6GHz

RPi 3 1GB 4 1.4GHz

Table 2: Experimental
setup

Fa
cto

ry
flo
or

Factory datacenter

Floor

Conveyor

Machine Machine

Conveyor

Machine Machine

Factory floor Factory floor

s1

s2

s3

Fig. 5: Simulation topology s*

5.3 Scalability of EDRPT

To assess the scalability of the proposed strategy for EDR, performances have
been measured on three topologies, denoted s1, s2 and s316, and collectively as
s*, as represented on Fig. 5. All s* topologies mimic the use case architecture
presented in Fig. 1, with variations in the number of floors. A floor is constituted
of two conveyors, each of which supports two machines, with sensors distributed
as shown on a JSON blueprint provided online17, leading to a total of 30 nodes
(including both reasoning nodes and sensors). The rules described in 2 are used.
The number of nodes is increased by duplicating floors: s1 has one, s2 two, and
s3 three floors, for a total number of respectively 31, 61 and 91 nodes. After
presenting deduction delay measures, a deeper analysis of the causes for these
delays is provided.

Due to scaling issues, results are separated in two figures: on Fig. 6, results
are shown on the left for deduction propagation strategies CIR and CDR, where
observations are sent to the Cloud where they are processed according to rules,
and on the right for deduction propagation strategies CIP, CDP and ADP, where
EDRPT is implemented and rules are distributed in the network.

s1
cdr

s2
cdr

s3
cdr

s1
cir

s2
cir

s3
cir

0

10

20

30

40

50

D
el
ay

(s
)

Centralized

s1
cdp

s2
cdp

s3
cdp

s1
cip

s2
cip

s3
cip

s1
adp

s2
adp

s3
adp

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

D
el
ay

(s
)

Decentralized

Topologies and deduction delivery mechanisms

Fig. 6: Scalability measures

16 Topology representations are available at https://w3id.org/laas-iot/edr/iiot/scala syndream/clone f 〈0,1,2〉.ttl
respectively

17 https://w3id.org/laas-iot/edr/iiot/clone f 0 blueprint.json

https://w3id.org/laas-iot/edr/iiot/scala_syndream/clone_f_<0,1,2>.ttl
https://w3id.org/laas-iot/edr/iiot/clone_f_0_blueprint.json

The gain in scalability provided by the decentralized approaches appears in
the results. In topology s1, the discrepancy between response time for distributed
and centralized approaches is reduced, with a median around 0.65s for CIR and
CDR, and 0.065s for CDP, CIP and ADP. However, in topologies s2 and s3, the
gap between centralized and distributed approaches increases dramatically. An
increase is also observed for distributed deduction strategies, but it is smaller.
Approaches promoting direct communication, i.e. CDR and CDP, perform bet-
ter that their indirect counterparts, respectively CIR, CIP. This is an expected
result, as direct communication reduces the number of hops required for a mes-
sage (be it an observation or a deduction) to reach its target.

To analyze closely the cause for the increased delay, the journey of a message
has been broken down in discrete timestamped events. The first event related
to a message is its construction, either by enrichment of an observation or by
achieving a deduction. In order to be propagated in the network, a message might
be sent from a node n to another node n′, which is identified as two events: the
sending from node n, and the reception by node n′. Multiple hops are registered,
from the first node responsible for the message creation toward any node that is
interested in the message content for deduction. When a message is received by
a node n, n starts a reasoning step where it tries to make new deductions based
on the rules in its knowledge base. Events are logged at the beginning and at
the end of reasoning. To detail the delay for each deduction, the journey of the
most recent observation leading to the deduction is reconstructed. This journey
is built by identifying all consecutive events related to the piece of data leading
to the deduction, from its initial enrichment to its processing leading to the
deduction, and the delivery of said deduction to the application. The average
composition of delays is broken down in Fig. 7, after normalization: each bar
represents the share of the delay type in the global delay. Three types of delay
have been characterized:

– Transfer delays, measured between the emission and the reception of a
message. This delay is both impacted by the quality of the network link
between two nodes, but also by the processing speed of the recipient: the
transfer is considered completed when the recipient declares the reception
at the software level, and it is not measured at the network layer. When the
message is transferred through multiple hops, the delays are summed.

– Reasoning delays, measured between the beginning and the end of a rea-
soning step. To prevent multiple deductions with the same message in dis-
tributed cases, the reasoning step is applied before propagation, and the
observation is marked with the rules it has been processed by. Reasoning de-
lays are summed if the same message is processed with different rules across
the topology.

– Idle delays, measured between the reception of a message and its process-
ing, or between the reasoning step and the propagation of deductions.

A trend that can be observed in the breakout is the increase of the share
of transfer time in centralized strategies compared to decentralized ones. An
explanation for this phenomenon is the saturation of the network link, combined

s1
adp

s1
cip

s1
cdp

s1
cdr

s1
cir

s2
adp

s2
cip

s2
cdp

s2
cdr

s2
cir

s3
adp

s3
cip

s3
cdp

s3
cdr

s3
cir

Topologies

0

10

20

30

40

50

60

70

80

90

100

D
u
ra
ti
o
n
s
(%

)

Transit

Processing

Idle

Fig. 7: Breakout of delays (normalized)

to an overhead on the central node induced by the necessity to perform all the
reasoning. The central node has less CPU time available to declare reception of
messages, and therefore the time between the emission event and the reception
event is increased. Overall, the limited increase of delays and the balance of the
delays breakdown in the distributed settings support our claim that EDRPT is
a scalable approach to rule-base reasoning in the Fog.

6 Conclusion and future work

In this paper, we presented EDR, a distributed rule deployment technique for
cooperative semantic computing associating Cloud and Fog resources for smart
heterogeneous IoT networks. The elaborated solution leverages the Cloud and
Fog complementarity to implement an efficient deployment and propagation ap-
proach for data, rules and deductions respectively. Such a solution can facilitate
the development of SWoT systems and the associated semantically-enabled IoT
applications with non-functional requirements related to performance or privacy.
The approach we propose is more general than any specific rule deployment strat-
egy chosen by applications according to their requirements: in our contribution,
rule deployment strategies are embedded in the rules themselves. We instan-
tiate EDR by EDRPT with a deployment strategy dedicated to scalability and
response time. EDRPT allows rules to be executed on Fog nodes close to the
sensors producing the type of data these rules consume.

The scalability of EDRPT is studied based on a smart factory use case,
where seven rules are propagated across three instances of a reference hierarchi-
cal tree-like topology according to five different deduction delivery mechanisms.
The results, when measuring responsiveness from an application standpoint,
support the performance superiority of the partially or totally distributed de-
duction delivery mechanism, where rule computation is balanced between Cloud
and Fog nodes, compared to the centralized ones, where the whole computation
is achieved on Cloud resources.

In future work, we will consider situations where direct communication be-
tween Fog nodes and the Cloud or applications is not possible. It is especially in-
teresting in deployments where nodes communicate over ad-hoc networks where
border gateways connecting networks can be used as relays to forward observa-
tions and deductions. In such a topology, the Application-Direct-Processed and
Cloud-Direct-Processed delivery mechanisms cannot be applied, and proposing
a new approach derived from Cloud-Indirect-Processed may allow the relaxation
of our hypothesis requiring direct communication between the Fog and applica-
tion. The deployment of rules in the Fog can also be driven by privacy require-
ments, a predominant concern in the IoT community18. Shifting the paradigm
from the concentration of data in remote centralized nodes to the propagation
of processing close to data producers and consumers enforces the locality of
data processing. We intend to elaborate a privacy-aware deployment strategy,
to measure how the overhead of traffic, compared to the solution proposed in
the present paper, impacts performances, and how to find a trade-off between
privacy and performances.

References

1. Alaya, M.B., Medjiah, S., Monteil, T., Drira, K.: Toward semantic interoperabil-
ity in oneM2M architecture. IEEE Communications Magazine 53(12), 35–41 (dec
2015). https://doi.org/10.1109/MCOM.2015.7355582

2. Ali, M.I., Ono, N., Kaysar, M., Shamszaman, Z.U., Pham, T.l., Gao, F., Griffin,
K., Mileo, A.: Real-time data analytics and event detection for IoT-enabled com-
munication systems. Web Semantics: Science, Services and Agents on the World
Wide Web 42, 19–37 (2017). https://doi.org/10.1016/j.websem.2016.07.001

3. Desai, P., Sheth, A., Anantharam, P.: Semantic Gateway as a Service architec-
ture for IoT Interoperability. Networking and Internet Architecture p. 16 (2014).
https://doi.org/10.1109/MobServ.2015.51

4. Gyrard, A., Serrano, M., Jares, J.B., Datta, S.K., Ali, M.I.: Sensor-based Linked
Open Rules (S-LOR): An Automated Rule Discovery Approach for IoT Applica-
tions and its use in Smart Cities. In: International Conference on World Wide Web
Companion. pp. 1153–1159 (2017). https://doi.org/10.1145/3041021.3054716

5. Kaed, C.E., Khan, I., Berg, A.V.D., Hossayni, H., Saint-Marcel, C.: SRE: semantic
rules engine for the industrial internet-of-things gateways. IEEE Trans. Industrial
Informatics 14(2), 715–724 (2018). https://doi.org/10.1109/TII.2017.2769001

6. Kaed, C.E., Khan, I., Hossayni, H., Nappey, P.: SQenloT: Semantic
query engine for industrial Internet-of-Things gateways. 2016 IEEE 3rd
World Forum on Internet of Things, WF-IoT 2016 pp. 204–209 (2016).
https://doi.org/10.1109/WF-IoT.2016.7845468

7. Kaed, C.E., Khan, I., Van Den Berg, A., Hossayni, H., Saint-Marcel, C.:
SRE : Semantic Rules Engine For the Industrial Internet- Of-Things Gate-
ways. IEEE Transactions on Industrial Informatics 14(2), 715–724 (2018).
https://doi.org/10.1109/TII.2017.2769001

8. Khandelwal, A., Jacobi, I., Kagal, L.: Linked rules: Principles for rule reuse
on the web. Lecture Notes in Computer Science 6902 LNCS, 108–123 (2011).
https://doi.org/10.1007/978-3-642-23580-1 9

18 https://www.slideshare.net/kartben/iot-developer-survey-2018

https://doi.org/10.1109/MCOM.2015.7355582
https://doi.org/10.1016/j.websem.2016.07.001
https://doi.org/10.1109/MobServ.2015.51
https://doi.org/10.1145/3041021.3054716
https://doi.org/10.1109/TII.2017.2769001
https://doi.org/10.1109/WF-IoT.2016.7845468
https://doi.org/10.1109/TII.2017.2769001
https://doi.org/10.1007/978-3-642-23580-1_9
https://www.slideshare.net/kartben/iot-developer-survey-2018

9. Kiljander, J., D’elia, A., Morandi, F., Hyttinen, P., Takalo-Mattila, J., Ylisaukko-
Oja, A., Soininen, J.P., Cinotti, T.S.: Semantic Interoperability Architecture for
Pervasive Computing and Internet of Things. IEEE Access 2, 856–873 (2014).
https://doi.org/10.1109/ACCESS.2014.2347992

10. Li, Z., Chu, C.H., Yao, W., Behr, R.a.: Ontology-driven event detection and index-
ing in smart spaces. In: IEEE International Conference on Semantic Computing.
pp. 285–292 (2010). https://doi.org/10.1109/ICSC.2010.63

11. Maarala, A.I., Su, X., Riekki, J.: Semantic reasoning for context-aware internet of
things applications. IEEE Internet of Things Journal 4(2), 461–473 (2017)

12. Nikoli, S., Penca, V., Konjovi, Z.: Semantic Web Based Architecture for Manag-
ing Hardware Heterogeneity in Wireless Sensor Network. International Journal of
Computer Science and Applications 8(2), 38–58 (2011)

13. Patel, P., Intizar Ali, M., Sheth, A.: On Using the Intelligent Edge
for IoT Analytics. IEEE Intelligent Systems 32(5), 64–69 (sep 2017).
https://doi.org/10.1109/MIS.2017.3711653

14. Perera, C., Zaslavsky, A., Christen, P., Georgakopoulos, D.: Context aware comput-
ing for the internet of things: A survey. IEEE Communications Surveys and Tuto-
rials 16(1), 414–454 (jan 2014). https://doi.org/10.1109/SURV.2013.042313.00197

15. Pfisterer, D., Romer, K., Bimschas, D., Kleine, O., Mietz, R., Truong,
C., Hasemann, H., Kröller, A., Pagel, M., Hauswirth, M., Karnstedt, M.,
Leggieri, M., Passant, A., Richardson, R.: SPITFIRE: toward a semantic
web of things. IEEE Communications Magazine 49(11), 40–48 (nov 2011).
https://doi.org/10.1109/MCOM.2011.6069708

16. Poslad, S., Middleton, S.E., Chaves, F., Tao, R., Necmioglu, O., Bugel, U.: A
Semantic IoT Early Warning System for Natural Environment Crisis Management.
IEEE Transactions on Emerging Topics in Computing 3(2), 246–257 (jun 2015).
https://doi.org/10.1109/TETC.2015.2432742

17. Seydoux, N., Drira, K., Hernandez, N., Monteil, T.: Reasoning on the edge or in
the cloud ? Internet Technology Letters p. e51

18. Seydoux, N., Drira, K., Hernandez, N., Monteil, T.: Capturing the contributions
of the semantic web to the iot: A unifying vision. In: Maleshkova, M., Verborgh,
R., Gyrard, A. (eds.) Proceedings of the Second SWIT Workshop co-located with
ISWC. CEUR Workshop Proceedings, vol. 1930 (2017)

19. Sezer, O.B., Dogdu, E., Ozbayoglu, A.M.: Context-aware computing, learning, and
big data in internet of things: A survey. IEEE Internet of Things Journal 5, 1–27
(2018)

20. Sheth, A., Henson, C., Sahoo, S.S.: Semantic Sensor Web. IEEE Internet Comput-
ing 12(4), 78–83 (jun 2008). https://doi.org/10.1109/MIC.2008.87

21. Shi, W., Dustdar, S.: The promise of edge computing. Computer 49(5), 78–81
(2016)

22. Su, X., Li, P., Riekki, J., Liu, X., Kiljander, J., Soininen, J.P., Prehofer, C., Flores,
H., Li, Y.: Distribution of Semantic Reasoning on the Edge of Internet of Things.
In: IEEE UbiComp. p. 79. No. November (2018)

23. Szilagyi, I., Wira, P.: Ontologies and Semantic Web for the Internet of Things - a
survey. In: IECON. IEEE (2016)

24. Taneja, M., Davy, A.: Resource aware placement of IoT application modules
in Fog-Cloud Computing Paradigm. In: 2017 IFIP/IEEE Symposium on Inte-
grated Network and Service Management. pp. 1222–1228. IEEE (may 2017).
https://doi.org/10.23919/INM.2017.7987464

https://doi.org/10.1109/ACCESS.2014.2347992
https://doi.org/10.1109/ICSC.2010.63
https://doi.org/10.1109/MIS.2017.3711653
https://doi.org/10.1109/SURV.2013.042313.00197
https://doi.org/10.1109/MCOM.2011.6069708
https://doi.org/10.1109/TETC.2015.2432742
https://doi.org/10.1109/MIC.2008.87
https://doi.org/10.23919/INM.2017.7987464

25. Wang, S., Wan, J., Li, D., Liu, C.: Knowledge reasoning with semantic data for real-
time data processing in smart factory. Sensors (Switzerland) 18(2), 1–10 (2018).
https://doi.org/10.3390/s18020471

26. Xu, G., Cao, Y., Ren, Y., Li, X., Feng, Z.: Network security situation awareness
based on semantic ontology and user-defined rules for internet of things. IEEE
Access 5, 21046–21056 (2017)

27. Zanella, A., Bui, N., Castellani, A., Vangelista, L., Zorzi, M.: Internet of
Things for Smart Cities. IEEE Internet of Things Journal 1(1), 22–32 (2014).
https://doi.org/10.1109/JIOT.2014.2306328

https://doi.org/10.3390/s18020471
https://doi.org/10.1109/JIOT.2014.2306328

	Towards Cooperative Semantic Computing: a Distributed Reasoning approach for Fog-enabled SWoT

