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ABSTRACT

Context. The next generation of space-borne instruments dedicated to the direct detection of exoplanets requires unprecedented levels
of wavefront control precision. Coronagraphic wavefront sensing techniques for these instruments must measure both the phase and
amplitude of the optical aberrations using the scientific camera as a wavefront sensor.
Aims. In this paper, we develop an extension of coronagraphic phase diversity to the estimation of the complex electric field, that is,
the joint estimation of phase and amplitude.
Methods. We introduced the formalism for complex coronagraphic phase diversity. We have demonstrated experimentally on the Très
Haute Dynamique testbed at the Observatoire de Paris that it is possible to reconstruct phase and amplitude aberrations with a subnano-
metric precision using coronagraphic phase diversity. Finally, we have performed the first comparison between the complex wavefront
estimated using coronagraphic phase diversity (which relies on time-modulation of the speckle pattern) and the one reconstructed by
the self-coherent camera (which relies on the spatial modulation of the speckle pattern).
Results. We demonstrate that coronagraphic phase diversity retrieves complex wavefront with subnanometric precision with a good
agreement with the reconstruction performed using the self-coherent camera.
Conclusions. This result paves the way to coronagraphic phase diversity as a coronagraphic wave-front sensor candidate for very high
contrast space missions.

Key words. instrumentation: high angular resolution – instrumentation: adaptive optics – techniques: high angular resolution –
techniques: image processing

1. Introduction

One main science goal of future large space telescopes such as
the Large UV/Optical/Infrared Surveyor (LUVOIR) or the Hab-
itable Exoplanet Imaging Mission (HabEx) is exoplanet imaging
and characterization. Direct imaging of exo-Earths represents
a challenge on the instrumental point a view. A coronagraph
(or an instrument that serves the same purpose, such as a star-
shade) is needed to address the immense contrast between a
Earth-like planet and its star: for example, the flux ratio between
Earth and Sun is about 10−10 in the near infra-red. Besides,
any aberration in the optical system causes light leakage in the
coronagraph, which in turn generates speckles in the scientific
images, thus limiting the detection level. Consequently, optical
aberrations must be measured and corrected in order to avoid any
false detection or biased characterization. To do so, both phase
and amplitude aberrations must be measured and compensated.
Moreover, the measurement must be performed from the science
image to avoid non-common path aberrations between the wave-
front sensor and the science camera. In this article, we describe
the extension of COFFEE, the coronagraphic phase diversity, to
the estimation of both the phase and the amplitude defects of the

? Baptiste Paul is now with Thales Alenia Space

light beam that propagates in a coronagraphic system. In addi-
tion, we demonstrate this capacity on experimental high contrast
images.

In Sect. 2, we present the formalism of COFFEE, extended
to take into account amplitude aberrations in the estimation
process. Then, we present the experimental validation of this
technique. In Sect. 3, we present the THD2 (Banc Très Haute
Dynamique version 2) experimental testbed (see Baudoz et al.
2017), which reaches very high contrasts and allows for accu-
rate phase and amplitude aberration control. We also explain the
protocol of the experiment. In Sect. 4, we present results on the
estimation of a wave-front that is dominated by amplitude aber-
rations. Finally, in Sect. 5, we present the results of the retrieval
of a wavefront containing both phase and amplitude aberrations.

2. Extension of COFFEE to amplitude estimation:
formalism

2.1. Model of image formation

In this section, we describe how coronagraphic phase diver-
sity can estimate amplitude aberrations. Phase diversity
(Gonsalves 1982; Mugnier et al. 2006) relies on a model of
image formation. We have modeled an image of a point source
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whose flux is α, in the presence of a constant background β,
taken with a coronagraphic optical system whose response to an
on-axis source is hc, and a detector whose impulse response is
hdet as

I(x, y) = α × [hdet ? hc](x, y) + β + n(x, y), (1)

where n is the noise in the image, a subject we return to at the
end of this subsection. We note that we consider the possibility
that α and β might change from one image to another.

Let us first detail the response of the optical system, hc. We
rely on Fourier optics to describe the propagation of light in
the system. In order to keep the same orientation for all the
planes, we describe propagation from a pupil plane to a focal
plane by an inverse Fourier transform, and propagation from a
focal plane to a pupil plane by a direct Fourier transform, as
in Foo et al. (2005) or Herscovici-Schiller et al. (2017). The
relevant parameters of the optical system are the (upstream)
entrance pupil Pup, the (downstream) pupil of the Lyot stop
Pdo, and the focal-plane mask of the coronagraph M. The
parameters that we sought to retrieve are the complex aber-
ration fields including phase and amplitude aberrations. We
call ψup the complex aberration field upstream of the corona-
graph, and ψdo the complex aberration field downstream of the
coronagraph.

A natural and usual expression for a complex aberration field
of amplitude A and phase φ is ψ = Aeiφ. However, in such a form,
the amplitude aberration and the phase aberration play extremely
asymmetrical roles. We wanted to avoid such an asymmetry
because it might cause numeric difficulties while retrieving ψ.
Indeed, in this form, the gradient of the complex aberration field
with respect to phase and amplitude are

∂Aeiφ

∂φ
= iAeiφ and

∂Aeiφ

∂A
= eiφ,

which are likely not to be of the same order of magnitude, result-
ing in numerical convergence problems of minimizers. On the
contrary, if the complex field is represented by two parameters
that play symmetric roles, this difficulty is avoided (Védrenne
et al. 2014). Here, we chose to represent the complex fields
by introducing the log-amplitude ξ = log(A), resulting in ψ =
exp(iφ + ξ). With these conventions, the coronagraphic intensity
distribution for an on-axis source is written

hc[φup, ξup, φdo, ξdo] = (2)∣∣∣∣F −1
{
Pdoeiφdo+ξdo × F

[
M×F −1(Pupeiφup+ξup )

]}∣∣∣∣2 .
Hereafter, we will suppose that ξdo = 0, that is to say we suppose
that there is no downstream amplitude aberration, or at least that
the downstream amplitude is known and taken into account in
Pdo.

As for the noise n, it is the result of two main contri-
butions. The first one source is the detector read-out noise,
which is classically modeled as a spatially homogeneous random
white Gaussian process for a charge-coupled device detector.
The calibration of the detector read-out noise can be performed
prior to the experiment. The second contribution is photon
noise. It is modeled as a random Poisson process, and can
be well-approximated by a nonhomogeneous Gaussian white
noise. Since n is the sum of two Gaussian white noises, it is a
nonhomogeneous Gaussian white noise.

2.2. COFFEE, a Bayesian maximum a posteriori estimator

COFFEE is an extension of phase diversity described in Paul
et al. (2013). It relies on the same maximum a posteriori
approach: it retrieves the unknown parameters by fitting an image
model to experimental data, using knowledge on the statistics of
the noise and a priori information on the unknown parameters.

It requires several images with a known introduced phase
difference between them, in order to be able to determine the
aberrations of the optical system unambiguously. While the clas-
sical phase diversity technique generally uses only two images,
at least three images are necessary to retrieve both phase and
amplitude aberrations in practice. This can be understood by the
fact that more data are needed to reconstruct three maps (φup, φdo
and ξup) than two. This has been confirmed by similar works in a
different context (Védrenne et al. 2014). Consequently, the exper-
imental data that we take and process will always contain at least
three images, differing only by a known phase diversity. More-
over, in the case of coronagraphic phase diversity, the diversity
phases must be introduced upstream of the coronagraph.

We denote by Ik the image taken with an introduced phase
diversity φdiv,k. The index k refers to the choice of diversity
phase. We have taken the convention that k = 0 always denotes
an image with no diversity. We denote by Ik(x, y) the pixel of
coordinates (x, y) of the image Ik. For example, in the exper-
imental part of this paper from Sects. 3 to 5, we use three
different images – the index k ranges from 0 to 2; and the data
are 360×360-pixel images – indexes x and y go from 1 to 360.

Considering the form of our image model (Eq. (1)) for each
Ik, the noiseless image model taken with diversity phase φdiv,k is

M[α, β, φup, ξup, φdo](k, x, y) = (3)

α(k) ×
{
hdet ? hc[φup + φdiv,k, ξup, φdo]

}
(x, y) + β(k).

Since n is a Gaussian white noise, the unknown parameters
are the ones that minimize the following penalized least-squares
criterion (Idier 2008):

J(φup, ξup, φdo) = (4)∑
(k,x,y)

∣∣∣∣∣∣ Ik(x, y) −M[φup, ξup, φdo](k, x, y)
σn(k, x, y)

∣∣∣∣∣∣2
+ R(φup, ξup, φdo).

Here, σn is the map of standard deviation of the noise n and R is
a regularization term.

2.3. Regularization

The regularization term, R, represents a priori information on
the unknowns. These unknowns are numerous: α, β, φup, ξup, and
φdo. Both α and β are scalars for each image, and there exists an
analytic solution for them. The other unknowns are three maps
of typically 40× 40 elements – 40× 40 because we aim to recon-
struct aberration maps at a resolution better than the number of
actuator on a 40 × 40 deformable mirror, using images sampled
typically at the Shannon-Nyquist limit. There is no analytic solu-
tion for this problem. We used the VMLM-B method of Thiébaut
(2002) to solve it numerically. Since the problem is not heav-
ily over-determined, with typically 3 × 40 × 40 + 3 × 2 = 4806
unknowns versus typically 3 × 80 × 80 = 19 200 noisy and par-
tially redundant data points, the stability of the reconstruction
can only be obtained by means of regularization.
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We assumed that the energy spectrum densities of φup, ξup

and φdo decrease as 1/ f 2, where f is the norm of the spa-
tial frequency, which is a classic (Church 1988) and realistic
assumption (Hugot et al. 2012). Hence, R is written

R(φup, ξup, φdo) =
‖∇φup‖

2

2σ2
∇φup

+
‖∇ξup‖

2

2σ2
∇ξup

+
‖∇φdo‖

2

2σ2
∇φdo

. (5)

The variances of ∇φup, ∇ξup, and ∇φdo are denoted by σ2
∇φup

,
σ2
∇ξup

, and σ2
∇φdo

respectively, where ∇ is the gradient with
respect to the Cartesian space coordinates in the pupil plane.
They are computed analytically from a priori information on the
variances of φup, ξup, and φdo, as described in Paul et al. (2013).

2.4. Distinctive features of COFFEE

Fundamentally, COFFEE relies on a physical, nonlinear model
of image formation. This is its most distinctive feature, since
other methods such as speckle nulling (Trauger et al. 2004), the
self-coherent camera (Galicher et al. 2008), the electric field con-
jugation (Riggs et al. 2016) or the wavefront sensing with random
DM probes (Pluzhnik et al. 2017) rely on a linear or linearized
model of the relationship between the aberrations and the image.
This yields specific advantages and disadvantages.

On the one hand, among the advantages of the COFFEE
approach is the fact that the quality of the COFFEE reconstruc-
tion is not affected by the measured wave-front aberrations not
being very small compared to the observation wavelength. COF-
FEE is therefore not limited to the estimation of small phase
aberrations. This point is particularly helpful when initiating the
Dark Hole (Malbet et al. 1995) process (with possibly large static
aberrations). Moreover, COFFEE does not require updating of a
calibration matrix during the Dark Hole process, contrarily to
techniques such as electric field conjugation. Other advantages
are that COFFEE needs no hardware modification to the coro-
nagraphic system; and COFFEE is in theory not restricted to
a monochromatic wavelength, even if computing cost would be
higher if a wide-band image were to be modeled.

On the other hand, the main current limitation of COFFEE
is that it needs an accurate model of the instrument – essentially
in terms of image sampling, characteristics of the coronagraph,
pupil geometry and wavelength – in order to make precise esti-
mates. Any model error results in error in the estimates. Also,
we note that it currently takes about a minute to obtain a COF-
FEE estimate. Now that we have detailed the formalism of the
method, we move on to its experimental validation.

3. Strategy of experimental validation

3.1. The THD2 testbed

We validate the joint phase and amplitude retrieval on the THD2
bench. This very high contrast testbed at LÈSIA (Observatoire
de Paris) is described in detail by Baudoz et al. (2017), and rep-
resented in Fig. 1. Its very high quality enables one to routinely
reach contrasts down to 2 × 10−8.

For the sake of our experiments; let us mention here that it is
equipped with:

– a monochromatic light source of wavelength 783.25 nm that
feeds the bench through a single mode fiber, in focal plane 1,
see Fig 1;

– a photometer for the precise normalization of the light flux,
integrated in the injection system;

Fig. 1. Schematic representation of the THD2 bench.

– an out-of-pupil deformable mirror, DM–1, hereafter called
“amplitude deformable mirror”;

– a pupil-plane deformable mirror, DM–3, hereafter called
“phase deformable mirror”;

– a four-quadrant phase mask coronagraph (Rouan et al. 2000),
with the focal mask in focal plane 3 and the Lyot stop in pupil
plane 3;

– a CMOS camera in focal plane 6, which can also be used for
pupil plane imaging thanks to a movable lens.

We note that, although we call DM–1 the “amplitude mirror” for
the sake of simplicity, a deformation of this mirror introduces
both amplitude and phase for most spatial frequencies.

3.2. Model calibration

All the parameters of the model must be calibrated precisely.
Any calibration error has an impact on the quality of the recon-
struction of the aberrations. Here, we detail the calibrations
performed on the THD2.

Calibration of the pixel response. The pixel transfer func-
tion is simply modeled here by a top hat window function,
parameterized by the size of the pixel. Calibrating the pixel size
corresponds to calibrating the sampling factor of the detector
with respect to the size of the diffraction.

Numerically, it determines hdet in Eq. (3). To determine it, we
record a noncoronagraphic image, inc. The corresponding trans-
fer function, |F (inc)|2, reaches zero at a cut-off frequency fcut and
is sampled up to a maximum frequency fNyquist. The sampling
factor s is simply the ratio

s = 2
fNyquist

fcut
. (6)

The experimental 400 × 400 image and the corresponding
modulation transfer function are displayed in Fig. 2. In our case,
fcut = 56 ± 0.3 and fNyquist = 200, which yields a sampling fac-
tor s = 7.14 ± 0.04. The cross shape, with residuals on the
axes, is due to the use of a four-quadrant phase mask corona-
graph: this noncoronagraphic image has been obtained after the
deformable mirrors were flattened using the self-coherent cam-
era (Mazoyer et al. 2013). Since the four-quadrant phase mask
is indifferent to aberrations that create speckles located on the
axes, the correction cannot be performed on the axes; when the
four-quadrant phase mask is removed, the on-axes speckles are
no longer filtered.
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Fig. 2. Left: noncoronagraphic PSF, in logarithmic scale. Right: cor-
responding MTF (black) and MTF of an Airy pattern with same cut
frequency (blue), in logarithmic scale. The x-axis has been cut at half
the Nyquist frequency (200).

Lyot ratio. The Lyot ratio is defined as the ratio between the
radius of the Lyot stop and the radius of the entrance pupil.
In the terms of Eq. (3), it determines the radius of Pdo with
respect to that of Pup. Here, we used a configuration of the
THD2 where the diameter of Pdo is 6.5 mm and the diameter
of Pup is 8.23 mm.

Detector noise and bias. According to the specification of
our detector, the standard deviation of its read-out noise is one
electron. This is consistent with the value found by averaging the
root mean square on the pixels of 6 400 images acquired with the
light source switched off (“background frames”). Each time a
series of images is taken, a corresponding series of background
frames is taken, and the median is subtracted from the science
image in order to compensate for the bias of the detector.

Diversity phases. For the COFFEE technique, as for any fla-
vor of phase diversity, the diversity phases φdiv that we introduce
must be absolutely calibrated. Any imprecision on the knowl-
edge of φdiv will have direct repercussions of the same order of
magnitude on the reconstructed parameters. The simplest way
to introduce φdiv is to use the phase deformable mirror, DM3.
However, until now, the minimization of speckles intensity on
the THD2 experiment was only done using the Self-Coherent
Camera as a focal plane wave-front sensor in closed loop. So
neither the estimated wavefront nor the DM response to volt-
ages (Mazoyer et al. 2014) required absolute calibration. In order
to use COFFEE on the THD2 bench, we calibrated the DM3
response to a given set of control voltages the response of
this mirror (a 1024-actuator MEMS Boston Micromachine) to a
given set of control voltages. We will detail the procedure for the
first diversity map, φdiv,k=1. The principle is the same for φdiv,k=2;
and φdiv,k=0, is taken equal to 0 (we use a focused image).

We chose defocus as a diversity because it is the most used
one in noncoronagraphic phase diversity. More precisely, the
focus shape that can be achieved by a 32× 32 deformable mirror
is quite good, but not a pure defocus. Apart from the ampli-
tude error, there is also a small shape error. As we need to know
precisely the diversity phase shape, we first performed a calibra-
tion of the latter. In order to calibrate the diversity map φdiv,k=1
using our set-up, the easiest way is to use the noncoronagraphic
phase diversity technique itself. The method is quite straightfor-
ward. Firstly, we applied a command to the phase deformable
mirror that produces φdiv,k=1, which is the phase that we wanted
to calibrate. Secondly, we recorded an image icalib, 0. Thirdly, we
mechanically moved the detector 12.70 ± 0.02 mm away from
its nominal position at the focus. This action on the position of
the detector is optically equivalent to introducing a pure defo-
cus whose amplitude is given by Eq. (12) of Blanc et al. (2003).
Fourthly, we acquired a second image icalib, 1 at this position,
before returning the detector to its original position. Fifthly, we

Fig. 3. Panel a: φdiv,(k=1). Panel b: φdiv,(k=2).

used icalib, 0 and icalib, 1 as input data for phase diversity, which
estimates the sum of φdiv,k=1 and φ0

up, with φ0
up the unavoidable

static aberration that exists on the bench.
To calibrate φ0

up, we repeated the same procedure using
φdiv,k=0 = 0 instead of φdiv,k=1. Finally, we obtain (by subtrac-
tion) φdiv,k=1. The same complete procedure yields φdiv,k=2. Both
results are quite different from a defocus; their structure reflects
the imperfection of the deformable mirror. A Zernike decompo-
sition of φdiv,k=1 shows that defocus accounts for only about 80%
of the total phase variance of φdiv,k=1, whose root mean square
value of φdiv,k=1 is 19 nm. The same applies to φdiv,k=2, whose
root mean square value is 29 nm. Using Eq. (12) of Blanc et al.
(2003), the imprecision on these measurements due to the propa-
gation of the error on the displacement of the detector is 0.2 nm.

The model of the experimental set-up is now calibrated. The
next step is to look more closely at the regularization.

3.3. Regularization strategy for the four-quadrant phase
mask coronagraph

A feature of the four-quadrant phase mask coronagraph is that
it is insensitive to some particular phase modes. Indeed, let us
denote by φ0 a symmetric phase such that F (φ0) be signifi-
cantly different from zero only on the axes. Then the model of
the corresponding image is the same as the one obtained with
a perfectly flat input wave-front: hc(φup = φ0) = hc(φup = 0) –
see Appendix A for the derivation. Consequently, when analyz-
ing images taken with a four-quadrant phase mask such as the
one we used here, COFFEE is insensitive to any linear combi-
nation of such modes. From an inverse problem point of view,
this means that the forward model is noninjective, which implies
that the reconstruction needs to be regularized. This is analogous
to a classic problem in adaptive optics with a Shack-Hartmann
wavefront sensor: just as the waffle mode is unseen by the
Shack-Hartmann wavefront sensor and must be filtered out of
the control in order not to saturate the deformable mirror, here
the “cross” modes are unseen by the four-quadrant phase mask
and must be filtered in order not to saturate the reconstruction
of our focal-plane wavefront sensor. Indeed, we have checked
that if this problem is not dealt with, the estimates always go to
unrealistic root mean square values, and a Fourier analysis of the
estimates shows significant values only on the axes. To address
this issue, we added another regularization term to the usual one
expressed by Eq. (5). This regularization must prevent any term
of the form φ0 to become dominant in the estimation of φup. We
chose the following quadratic, hence convex and differentiable,
functional:

RFQPM(φup) =
η

2σ2
φ

∥∥∥χ × F −1[φup]
∥∥∥2

; (7)
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Fig. 4. Synthetic representation of
the validation strategy.

where the hyperparameter η is typically on the order of ten, σφ
is the a priori information on the standard deviation of φup, and
χ is a weighting function equal to 1 in an area of 1λ/D around
the axes of the four-quadrant phase mask and zero elsewhere.
The gradient of this term is useful for numeric minimization. Its
expression is simply

∂RFQPM(φup)
∂φup

=
η

σ2
φ

× F
{
χ2 × F −1

[
φup

]}
. (8)

3.4. Wavefront measurement strategy: differential
measurements

A precise characterization of a wavefront sensor can only be
done on a bench with a calibrated wavefront. On THD2, one
term is unknown: the bench’s own amplitude and phase aberra-
tions φ0

up, ξ
0
up, φ

0
do. Even if these aberrations are extremely small

(leading to a 10−8 contrast in intensity), they bias our estimation
and must be calibrated. We used a classical method of differ-
ential measurements to remove the contribution of the bench
own aberrations to the result: in order to compare COFFEE
reconstructions to known aberrations, we compare differen-
tial COFFEE reconstructions to known differential aberrations.
More precisely, we perform a COFFEE reconstruction φ̂0

up, ξ̂
0
up of

the aberrations φ0
up, ξ

0
up on the THD2 in its reference state, indi-

cated by index 0. We then introduced a supplementary upstream
aberration of known characteristics φup, ξup, an perform a COF-

FEE reconstruction φ̂1
up, ξ̂

1
up of this aberration φ1

up, ξ
1
up, φ

0
do =

(φup, ξup, 0) + (φ0
up, ξ

0
up, φ

0
do). We computed the difference of the

two reconstructions, and finally, we compared this difference
with the known introduced aberrations φup, ξup. This process is
presented schematically in Fig. 4.

3.5. Measurement of the reference wavefront

Here we describe the operations corresponding to the top hori-
zontal branch of Fig. 4. The estimation of the reference wave-
front is done as follows. Reference wavefront controls were
imposed on the phase mirror and on the amplitude mirror, gen-
erating phase φ0

up and log-amplitude ξ0
up. The corresponding

data I0
k=0 is acquired. For the acquisition of the first diversity

image I0
k=1, a control voltage corresponding to the first diversity

(Fig. 3, left) is added to the phase mirror, so the phase becomes
φ0

up + φdiv,k=1 and the amplitude is unchanged. In a similar fash-
ion, for the acquisition of the second diversity image I0

k=2, a
control voltage corresponding to the second diversity (Fig. 3,
right) was added to the phase mirror, so the phase becomes

Fig. 5. Panel a: focused image I0
k=0. Panel b: diversity image I0

k=1.
Panel c: diversity image I0

k=2. The scale is an argument hyperbolic sine,
with the same color scale for all the images.

φ0
up + φdiv,k=2. The images I0

k=0, I0
k=1 and I0

k=2 are displayed in
Fig. 5.

Using these images, we retrieved the COFFEE estimates of
the reference phase φ̂0

up and the reference log-amplitude ξ̂0
up,

which are displayed in Fig. 6. The root mean square values of
the reconstructed aberrations are σ(φ̂0

up) = 3.4 nm and σ(ξ̂0
up) =

2.9 nm. The complete set of parameters used for the reconstruc-
tion is displayed in Table 1. We note that the reconstruction is
very robust, that is to say insensitive to the a priori values of
the standard deviations of φup, ξup and φdo. For example, the
retrieved phase using the parameters in Table 1 has a correla-
tion of 0.999998 and a relative difference of 4.7 × 10−5 with
the retrieved phase using σ(φup) = 30 nm, σ(ξup) = 25 nm and
σ(φdo) = 5 nm. Also, the actual power spectrum density is dif-
ferent from a 1/ f 2 power law, because the reference state is such
that the deformable mirror DM3 partially corrects the phase
defects up to its maximum spatial frequency, beyond which it
cannot perform any correction.

4. Experimental retrieval of a known wavefront
dominated by amplitude aberration

In this section, we generate a wavefront that is dominated by
amplitude aberration. We do not change the command on the
phase mirror, DM3. On the off-pupil amplitude mirror, DM1,
we apply a sinusoidal aberration whose frequency ν is cho-
sen such that Talbot effect (Zhou & Burge 2010) converts the
off-pupil phase map of DM1 into a pure amplitude aberra-
tion. Talbot effect or self-imaging appears when observing the
Fresnel diffraction of a sinusoidal pattern at fraction or mul-
tiple distance of the Talbot length zT = 2/(ν2λ). As shown in
Zhou & Burge (2010), an exact image of a pure sinusoidal
phase aberration will appear at distances z = nzT /2 (with n an
integer). At distances z = (2n + 1)zT /4, the field will be con-
verted to pure sinusoidal amplitude aberration. Applying this
last equation with n = 0 to the THD2 bench, i.e. a distance
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Fig. 6. Panel a: φ̂0
up. Panel b: ξ̂0

up.

Table 1. Parameters of reconstruction for the reference wavefront.

Parameter Value

Wavelength λ 783.25 nm
Data set I0

Images size 360 × 360 pixels
Sampling factor 7.14
Lyot ratio 0.759
Diversity phases φdiv,(k=1) and φdiv,(k=2)

Light flux on the photometer for I0
k=0 2.5 × 10−6 W

Light flux on the photometer for I0
k=1 5.2 × 10−7 W

Light flux on the photometer for I0
k=2 1.5 × 10−7 W

Number of averaged frames for I0
k=0 800

Number of averaged frames for I0
k=1 800

Number of averaged frames for I0
k=2 900

Read-out noise standard deviation 1 electron
Coronagraph type 4-quadrant phase mask
A priori on σφ0

up
2 nm

A priori on σφ0
do

0.5 nm
A priori on σξ0

up
2 nm

DM1-pupil z = 269 mm and a wavelength 783.25 nm, the first
sinusoidal frequency that will be completely converted to ampli-
tude is equal to ν = 1.54 mm−1 (period of 0.65 mm). We applied
such a frequency avoiding the four quadrant transition direction
by 22.5◦.

Taking again the notations of Fig. 4, this means that φup = 0,
and we aim for ξup(r) = C sin(2πν · r).

However, the 32×32-actuator DM1 cannot produce a contin-
uous sinusoid but only an approximate sinusoid. Consequently,
instead of generating only a pair of spots, as would be the
case if the deformable mirror had an infinite number of actua-
tors, the deformable mirror generates several pairs of spots. In
Appendix B, we describe a kind of “dual-aliasing” effect which
explains that any continuous field (the electromagnetic field)
that encounters a spatially discrete modulation exhibits unex-
pected resonances that in turn result in these unexpected ghost
spots. Figure 7 displays the focused and the two diversity images
taken with this amplitude aberrations. On the rightmost image of
Fig. 7, the green circles show the main pair of spots (the one that
would be generated by a deformable mirror with infinitely many
actuators) and the blue ones mark replica spots due to the discrete
nature of the deformable mirror. Fresnel propagation for the pair
of secondary spots predicts a mixture of phase and amplitude in
a pupil plane.

Fig. 7. Panel a: focused image I1
k=0. Panel b: diversity image I1

k=1.
Panel c: diversity image I1

k=2. The scale is an argument hyperbolic sine.
On the rightmost image, the main pair of spots is enhanced by green cir-
cles, and the replica spots are enhanced by blue circles. They are clearly
visible in all three images.

Fig. 8. Panel a: estimated phase. Panel b: estimated log-amplitude. The
linear color bar extends from –4 nm to +4 nm. Panel c: fourier transform
of the estimated phase. Panel d: fourier transform of the estimated log-
amplitude.

The corresponding data set is acquired just like in the pre-
vious section, and displayed in Fig. 7. We note the apparition
of pairs of bright spots that are absent in Fig. 5. They are the
manifestation of the periodic amplitude aberration.

Using these images, we retrieve the COFFEE estimates of
the phase φ̂1

up and the log-amplitude ξ̂1
up. We then subtracted

the reference phase φ̂0
up and the reference log-amplitude ξ̂0

up and
obtain φ̂up and ξ̂up, which are displayed in Fig. 8, along with their
Fourier transforms. The complete set of parameters used for the
reconstruction is shown in Table 2.

The reconstruction is visibly dominated by the introduced
amplitude sinusoid: the main pair of spots is clearly visible in
the log-amplitude reconstruction and does not appear at all in
the phase reconstruction. The corresponding secondary pair of
spots has both log-amplitude and phase components. This is not
surprising: propagation of an off-pupil aberration at a frequency
different from the Talbot frequency has no reason to yield only
amplitude in a pupil plane. The equivalent root mean square
value of the COFFEE-estimated sinusoid is σ ˆξup

= 1.5 nm. The
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Table 2. Parameters of reconstruction for the wavefront dominated by
amplitude aberrations.

Parameter Value

Wavelength λ 783.25 nm
Data set I1

Images size 360 × 360 pixels
Sampling factor 7.14
Lyot ratio 0.759
Diversity phases φdiv,(k=1) and φdiv,(k=2)

Light flux on the photometer for I1
k=0 2.5 × 10−6 W

Light flux on the photometer for I1
k=1 5.2 × 10−7 W

Light flux on the photometer for I1
k=2 1.5 × 10−7 W

Number of averaged frames for I1
k=0 1600

Number of averaged frames for I1
k=1 1100

Number of averaged frames for I1
k=2 1600

Read-out noise standard deviation 1 electron
Coronagraph type 4-quadrant phase mask
A priori on σφ1

up
3 nm

A priori on σφ1
do

0.5 nm
A priori on σξ1

up
3 nm

control voltage of the introduced aberration was calculated so
that its root mean square value would be 1.6 nm.

5. Experimental retrieval of a known wavefront
mixing phase and amplitude aberration

During the experiment described in this section, we kept the
same sinusoid on the amplitude mirror DM1. On the phase
mirror, DM3, we added a phase sinusoid of frequency µ. The
corresponding data I2

k=0 is acquired and displayed in Fig. 9. On
the rightmost image of Fig. 9, as in Fig. 7, the green circles show
the main pair of spots due to the amplitude mirror, DM1, and
the blue ones indicate replica spots of DM1. The purple circles
show the main pair of spots due to the phase mirror, DM3, and
the yellow one shows replica spots of DM3.

Using these images, we retrieve the COFFEE estimates of the
phase φ̂2

up and the log-amplitude ξ̂2
up. We then subtracted the ref-

erence phase φ̂0
up and the reference log-amplitude ξ̂0

up and obtain
φ̂up and ξ̂up.

The complete set of parameters used for the reconstruc-
tion is shown in Table 3. We compare our estimation to the
self-coherent camera (SCC) measurement that is routinely
used on THD2. The SCC uses the stellar light diffracted by
the FQPM outside of Lyot stop to create an additional beam
(called here reference pupil). As in the Young’s experiment,
the coherence between the stellar light in this beam and in
the Lyot stop generates fringes in the focal plane and spatially
encodes the speckles. This spatial modulation allows a direct
measurement of the complex amplitude of the electric field
in the recorded focal plane (Galicher et al. 2008). As shown
in Mazoyer et al. (2013), we are also able to retrieve the field
upstream of the coronagraph using the complex field in the focal
plane downstream of a phase mask coronagraph.

Using the same images than before Ii
k=0, we estimated the

upstream field using Eq. (28) in Mazoyer et al. (2013). In this
equation, the field directly measured in the focal plane by the
SCC is divided by the coronagraph function M and the focal

Fig. 9. Panel a: focused image I2
k=0. Panel b: diversity image I2

k=1.
Panel c: diversity image I2

k=2. The scale is an argument hyperbolic sine.
On the rightmost image, the main pair of amplitude spots is enhanced by
green circles, and the corresponding replica spots are enhanced by blue
circles. The main pair of phase spots is enhanced by purple circles, and
the corresponding replica spots are enhanced by yellow circles. They
are clearly visible in all three images.

plane field AR of the SCC reference pupil and is normalized
by the input source flux. Comparing recorded and simulated
images for a given known aberration (here a sinusoid created
by the phase deformable mirror) allows the normalization of the
phase as a function of the intensity on the camera and the source
input flux measured by the photometer. The FQPM maskM was
assumed to be perfect. The image corresponding to the diffrac-
tion of the SCC reference pupil in the focal plane is recorded
separately on the camera. An azimuthal average of this image
was used to limit the impact of the noise of AR. To avoid division
by zero, the division was restricted to an area larger than the cor-
rected region (30λ/D× 30λ/D and we suppressed the estimation
of higher spatial frequencies.

We assumed downstream aberrations are limited to an opti-
cal path difference (OPD) between AR and the main beam and a
downstream tip-tilt. As explained in Sect. 4.5.2 in Mazoyer et al.
(2013), we calculated the OPD which minimizes the amplitude
on the complex field while introducing only phase aberration
with the phase deformable mirror. The downstream tip and
tilt are calculated the same way by minimizing the amplitude
estimated when introducing only phase aberrations.

Figure 10 displays the COFFEE and SCC reconstructions
of φup along with their Fourier transforms. The correlation
between the COFFEE and the SCC phase estimation is 86%.
The root mean square value of the COFFEE phase reconstruc-
tion is 3.0 nm versus 2.9 nm for the SCC one. Figure 11 displays
the COFFEE and SCC reconstructions of ξup along with their
Fourier transforms. The correlation between the COFFEE and
the SCC log-amplitude estimation is 89%. The root mean square
value of the COFFEE log-amplitude reconstruction is 1.7 nm
versus 1.6 nm for the SCC one. Several factors contribute to the
discrepancy in the correlations. While the SCC data are taken
with a tip-tilt stabilization loop closed, the COFFEE data had
to be taken with the tip-tilt loop open. Consequently, there is
a tip-tilt phase difference between the SCC and the COFFEE
estimate. Another factor is that there is a sub-pixel centering dif-
ference between the COFFEE and the SCC estimates. Finally,
the COFFEE estimates and the SCC estimates are simply not
identical.

The main characteristics of the phase and amplitude aberra-
tions are retrieved. This is best visible by examining the Fourier
transforms of the aberrations.

In the Fourier transform, the main pair of spots (circled
in green in Fig. 7) generated by the amplitude mirror, DM1,
is clearly visible in the log-amplitude reconstruction and does
not appear at all in the phase reconstruction. The correspond-
ing secondary spots (circled in blue in Fig. 7) still have both
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Table 3. Parameters of reconstruction for the wavefront mixing phase
and amplitude aberration.

Parameter Value

Wavelength λ 783.25 nm
Data set I2

Images size 360 × 360 pixels
Sampling factor 7.14
Lyot ratio 0.759
Diversity phases φdiv,(k=1) and φdiv,(k=2)

Light flux on the photometer for I2
k=0 2.5 × 10−6 W

Light flux on the photometer for I2
k=1 5.2 × 10−7 W

Light flux on the photometer for I2
k=2 1.5 × 10−7 W

Number of averaged frames for I2
k=0 1200

Number of averaged frames for I2
k=1 800

Number of averaged frames for I2
k=2 1000

Read-out noise standard deviation 1 electron
Coronagraph type 4-quadrant phase mask
A priori on σφ0

up
3 nm

A priori on σφ0
do

0.5 nm
A priori on σξ0

up
3 nm

Fig. 10. Panel a: estimated phase using COFFEE. Panel b: estimated
phase using the SCC. The linear color bar extends from –8 nm to
+8 nm. Panel c: fourier transform of the estimated phase using COF-
FEE. Panel d: fourier transform of the estimated phase using the SCC.
Linear scale.

log-amplitude and phase components because, as explained in
Sect. 4, propagation of an off-pupil aberration at a frequency
different from the Talbot frequency has no reason to yield only
amplitude in a pupil plane.

The main pair of spots which is generated by the phase
mirror, DM3, is very bright and visible in the phase recon-
struction, and does not appear in the amplitude reconstruction.
The corresponding secondary pair of spots appears only in the

Fig. 11. Panel a: estimated log-amplitude using COFFEE. Panel b:
Estimated log-amplitude using the SCC. The linear color bar extends
from –4 nm to +4 nm. Panel c: Fourier transform of the estimated
log-amplitude using COFFEE. Fourier transform of the estimated log-
amplitude using the SCC. Linear scale.

reconstructed phase but not in the reconstructed amplitude. This
is expected: since the phase mirror is in a pupil plane, it has
influence only on the phase and no influence on the amplitude.
These characteristics of the reconstructed wavefront are proof
that coronagraphic phase diversity is able to reconstruct both
phase and amplitude from coronagraphic focal-plane images.

Figure 12 displays, on a very nonlinear scale, the differ-
ences between the COFFEE estimate and the SCC estimate in
a focal plane (which are displayed on a linear scale in Fig. 11).
The difference between those 1.6 nm RMS estimates amounts
to 0.5 nm RMS. Four different contributions might explain this
residual difference. Firstly, the two methods use different data
set to perform the estimate. COFFEE uses focal and diversity
images while the SCC uses fringed images. Secondly, high spa-
tial frequencies are not estimated by the SCC, and some low
frequencies might be partially unseen by the SCC. Thirdly, COF-
FEE may reconstruct spurious aberrations if there is a mismatch
between the computer model used in the reconstruction and
the actual instrument. Fourthly, despite the regularization, the
noise present in the data might induce a residual noise in the
COFFEE reconstruction. This could be alleviated at the cost of
longer exposures or by introducing a regularization specific to
the sinusoidal aberration profile that we used for the sake of the
experiment.

6. Conclusion

In this paper, we developed an extension of coronagraphic phase
diversity to the estimation of the complex electric field, that
is, the joint estimation of phase and amplitude. We demon-
strate experimentally on the Très Haute Dynamique testbed
at Observatoire de Paris that coronagraphic phase diversity is
able to reconstruct phase and amplitude aberrations with a sub-
nanomtric precision. Finally, we performed the first comparison
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Fig. 12. Panel a: COFFEE-estimated log-amplitude (1.7 nm RMS).
Panel b: SCC-estimated log-amplitude (1.6 nm RMS). Panel c: abso-
lute value of the difference (0.5 nm RMS). The scale is an argument
hyperbolic sine.

between the complex wavefront estimated using coronagraphic
phase diversity (which relies on time-modulation of the speckle
pattern) and the one reconstructed by the self-coherent camera
(which relies on the spatial modulation of the speckle pattern);
and we found a good agreement between the two methods. This
paves the way to coronagraphic phase diversity as a corona-
graphic wave-front sensor candidate for very high contrast space
missions.

The next step of our work will be to use the fine knowledge
of aberrations as a ground for practical implementation of the
nonlinear dark hole (Paul et al. 2013), which uses a dual formal-
ism of coronagraphic phase diversity in order to minimize the
speckle intensity in the focal plane.
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Appendix A: Unseen modes of the four-quadrant
phase mask coronagraph

We have seen that a model of the four-quadrant phase mask
coronagraph may create numerical difficulties during the recon-
struction of aberrations. These troubles call for a specific regu-
larization, such as that proposed in Eq. (7). Let us examine the
image of an on-axis source behind a four-quadrant phase mask
coronagraph (Rouan et al. 2007), in the spirit of Jean Gay’s
analysis in Abe et al. (2003). The on-axis image is given by
Eq. (3), and here the focal-plane mask of the coronagraph writes
M(α) = Sign(αx) × Sign(αy). Let us define the two-dimensional
Hilbert transform as H = Hy[Hx], where Hx and Hy are the
usual Hilbert transform along the first and second Cartesian
coordinates,

Hx[ψ](x) =
1
π
−

∫
R

ψ(x′)
x − x′

dx′. (A.1)

An equivalent formulation of Eq. (3) is

hc[ψup, ψdo](α) =
∣∣∣∣F −1 [

Pdoψdo
]
?

[
MF −1(Pupψup)

]∣∣∣∣2 (α), (A.2)

where ? denotes the convolution product, ψup = exp[iφup + ξup],
and ψdo = exp[iφdo + ξdo].

We can use the fact that for any function ψ,
F −1{H[ψ]}(α) = −M(−α) F −1[ψ](α) and the fact that
∀α,M(−α) =M(α) to transform this expression into

hc[ψup, ψdo](α) =
∣∣∣∣F −1 [

Pdoψdo
]
? F −1

[
H(Pupψup)

]
(α)

∣∣∣∣2 .
(A.3)

Let us analyze the upstream complex fields ψup such that htextc
is zero. If H(Pupψup) is zero where Pdo is not, then hc[ψup, ψdo]
is zero everywhere. Let us analyze the nullity condition on the
Hilbert transform. We note (αx, αy) = α the coordinates of the
focal-plane position α and (rx, ry) = r the coordinates of the
pupil-plane position r.

∀r,H[Pupψup](r) = 0

⇔ ∀r,−
∫
−

∫
Pupψup(r − r′)

r′xr′y
dr′ = 0 (A.4)

⇔ ∀r,−
∫
−

∫
(Pupψup) ? δr′ (r)

r′xr′y
dr′ = 0 (A.5)

⇔ ∀α,−

∫
−

∫
F [Pupψup](α) × e−i2πr′·α

r′xr′y
dr′ = 0 (A.6)

⇔ ∀α,F [Pupψup](α)−
∫

e−i2πr′xαx

r′x
dr′x−

∫
e−i2πr′yαy

r′y
dr′y = 0. (A.7)

The right-hand sign of the last equivalence, Eq. (A.7), dictates
that

∀α, αx , 0 ∧ αy , 0⇒ F [Pupψup](α) = 0. (A.8)

Fig. A.1. Effect of the absence of appropriate regularization on a
COFFEE reconstruction performed on the same data as in Sect. 5.
Panel a: estimated phase. Panel b: estimated log-amplitude. Panel c:
fourier transform of the estimated phase. Panel d: fourier transform of
the log-amplitude.

If αy = 0 and αx , 0, that is, if α lies on the x-axis, then
Eq. (A.7) reduces to

∀α, αy = 0⇒ F [Pupψup](α)−
∫

e−i2πr′xαx

r′x
dr′x−

∫
1
r′y

dr′y = 0. (A.9)

And −
∫

1/r′y dr′y = 0, independently of α. Of course the same
behavior happens if α belongs to the y-axis. We conclude that,
mathematically, the four-quadrant phase mask coronagraph is
insensitive to any upstream aberrations whose Fourier transform
is nonzero only on the transitions of the four-quadrant phase
mask. This condition that the Fourier transform of the aberration
be infinitely thin in the focal plane implies that the aberration is
of infinite extension in the pupil plane, which is physically incon-
sistent. However, as far as numeric computations are concerned,
any mode whose Fourier transform is significantly different from
zero only on a region of width one pixel around the axes of
the four-quadrant phase mask is unseen. The result is a lack
of injectivity of the model of image formation, and an adapted
regularization is thus necessary. Figure A.1 shows the impact
of the absence of regularization on a COFFEE reconstruction.
The standard deviation of the estimated phase is 34.0 nm; the
standard deviation of the estimated log-amplitude is 34.9 nm.
Both these figures are too big by an order of magnitude, and
the structures of the Fourier transforms of the estimated phase
and log-amplitude are completely overwhelmed by the unseen
modes of the four-quadrant phase mask coronagraph. In contrast,
the reconstructions shown in Figs. 10 and 11 with the novel reg-
ularization of Eq. (7) do not include these modes and has the
expected root mean square value.
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Appendix B: Why a Boston-like deformable mirror
creates spots outside its correction zone

The experiments that we present in this article rely on the use
of focal-plane images obtained by imposing a sinusoid on a seg-
mented deformable mirror. However, as we observe in Fig. 7 or
even more clearly in Fig. 8, instead of the expected pair of spots
corresponding to a true sinusoid, we observe two pairs of spots
(at least). The presence of the supplementary spots is due to the
discrete nature of the segmented deformable mirror. In order to
understand this phenomenon, we write explicitly the propaga-
tion of light from a segmented mirror in a pupil plane to a focal
plane. As with the rest of the paper, we work in the framework of
Fourier optics. We make the additional assumption that the mir-
ror is square, and that the influence functions of the deformable
mirror are perfect squares. Since the electric field in the focal
plane in the two-dimensional case is a product of independent
one-dimensional solutions, we make most of calculations in one
dimension for the sake of clarity.

Let us consider a phase aberration that consists in an imag-
inary exponential of amplitude C and of frequency ν that is
discretized on the N different independent actuators of a square
segmented mirror of side dimension D. If we denote by A(r)
a discretized approximation of pupil-plane coordinate r on the
mirror, the electric field in the pupil is

P(r) = exp {iC sin[2πνA(r)]} . (B.1)

In our case, C � 1. So we can perform a first-order Taylor
expansion:

P(r) ≈ 1 + iC sin[2πνA(r)]. (B.2)

The influence of the phase aberration in the pupil plane is, at
first order, entirely encoded in sin[2πνA(r)], so we now compute
the corresponding electric field in the focal plane. For the sake
of simplicity of the calculation of this electric field, we decom-
pose the sinus as a difference of imaginary exponentials, and
calculate the electric field Eν,N(α) corresponding to an imaginary
exponential.

Eν,N(α) =
∫ D/2

−D/2
exp[i2πνA(r)] exp[−i2παr/λ] dr (B.3)

(Fraunhofer propagation)

=

N/2−1/2∑
n=−N/2+1/2

∫ nD/N+D/(2N)

nD/N−D/(2N)
exp[i2πνA(r)] (B.4)

× exp[−i2παr/λ] dr
(Chasles relation)

=

N/2−1/2∑
n=−N/2+1/2

∫ nD/N+D/(2N)

nD/N−D/(2N)
exp[i2πνnD/N] (B.5)

× exp[−i2παr/λ] dr
(A is piecewise constant)

=

N/2−1/2∑
n=−N/2+1/2

exp
[
i2π

νnD
N

]
λ

−i2πα

×

{
exp

[
−i2παD

n + 1/2
λN

]
(B.6)

− exp
[
−i2παD

n − 1/2
λN

]}
(Integration over r)

=

N/2−1/2∑
n=−N/2+1/2

λ

−i2πα
exp

[
i2πn

(
ν

D
N
−
αD
λN

)]
(B.7)

×

{
exp

[
−iπαD
λN

]
− exp

[
iπαD
λN

]}
(Factorization)

=
D
N

sinc
[
παD
λN

]
(B.8)

×

N/2−1/2∑
n=−N/2+1/2

{
exp

[
i2π

(
νD
N
−
αD
λN

)]}n

(Definitions of sinus and cardinal sinus)

=
exp

[
iπD

N (−N + 1)
(
ν − α

λ

)]
− exp

[
iπD

N (N + 1)
(
ν − α

λ

)]
1 − exp

[
i2πD

N

(
ν − α

λ

)] (B.9)

×
D
N

sinc
[
παD
λN

]
for

D
N

(
ν −

α

λ

)
< Z

(Sum of a geometric series)

=
D
N

sinc
[
παD
λN

]
(B.10)

×
exp

[
iπD

(
ν − α

λ

)]
− exp

[
−iπD

(
ν − α

λ

)]
exp

[
iπD

N

(
ν − α

λ

)]
− exp

[
−iπD

N

(
ν − α

λ

)]
(Factorization of exp

[
iπ

D
N

(
ν −

α

λ

)]
)

Eν,N(α) =
D
N

sinc
[
π
αD
λN

] sin
[
πD

(
ν − α

λ

)]
sin

[
πD

N

(
ν − α

λ

)] (B.11)

(Definition of sinus)

Since a Taylor expansion shows easily that limx→0
sin(x)

sin(x/N) =

N, the result expressed by Eq. (B.11) is valid even if
(ν − α/λ) D/N ∈ Z, by continuity. Another Taylor expansion,
this time for N → ∞ shows that

Eν,∞(α) = Dsinc
[
πD

(
ν −

α

λ

)]
. (B.12)

Of course, this result can easily be proven by a direct calcula-
tion of the Fraunhofer propagation of the electric field with a
continuous sinusoid.

An interesting property of Eν,N is that, for a finite N, it dis-
plays a kind of periodicity different from the usual one of Eν,∞.
Indeed, for any α such that α , ∓ λN

D

Eν,N

(
α ±

λN
D

)
= (B.13)

D
N

sinc
[
π
αD
λN
± π

] sin
[
πD

(
ν − αD

λ

)
∓ πN

]
sin

[
π
(

Dν
N −

αD
λN

)
∓ π

]
A142, page 11 of 12



A&A 614, A142 (2018)

Fig. B.1. Left: 1-dimensional focal plane electric field corresponding
to a segmented approximation of a pure phase defect (N = 32). Right:
1-dimensional focal plane electric field corresponding to a pure phase
defect (N = ∞). The replica spot due to the approximation is clearly
visible on the left figure, one correction zone left of the main spot.

Eν,N

(
α ±

λN
D

)
= (−1)N

αD
λN

αD
λN ± 1

Eν,N(α) (B.14)

This last result tells us that generating an approximate
sinusoid using a segmented mirror will not only generate the
expected pair of spots, but also periodic secondary pairs of spots
of decreasing amplitude that would not exist if the generated
phase were a true – that is, nondiscretized – sinusoid. Since λN

D
is the width of the frequency interval that the segmented mirror
can correct, the places where these secondary spots appear in
the focal plane are horizontal and vertical translations of the pri-
mary spots, with translation displacements that are multiples of
the side length of the corrected zone. The closer a primary spot
is to the the maximum frequency attainable by the deformable
mirror (±λN

2D ), the closer the intensity of the first secondary spots
is to the intensity of the primary spots. This effect in dimension
one is displayed in Fig. B.1. It is two such secondary spots that
are circled in blue in Figs. 7 and 9, and two such secondary spots
that are circled in yellow in Fig. 9.
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