N

N

WOF: Towards Behavior Analysis and Representation of
Emotions in Adaptive Systems

ITham Alloui, Flavien Vernier

» To cite this version:

Ilham Alloui, Flavien Vernier. WOF': Towards Behavior Analysis and Representation of Emotions in
Adaptive Systems. Communications in Computer and Information Science, 2018, Software Technolo-
gies 12th International Joint Conference, ICSOFT 2017, Revised Selected Papers, 868, pp.244-267.
10.1007/978-3-319-93641-3__12 . hal-01871009

HAL Id: hal-01871009
https://hal.science/hal-01871009

Submitted on 29 Jun 2021

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-01871009
https://hal.archives-ouvertes.fr

WOF: Towards Behavior Analysis and Representation
of Emotions in Adaptive Systems

Ilham Alloui and Flavien Vernier/0000—0001-7684-6502]

Univ. Savoie Mont Blanc, LISTIC,
F-74000 Annecy, France

Keywords: Object oriented design, Architecture models, Adaptive systems, Introspec-
tion, Decentralized control, Behavior analysis, Emotion representation

Abstract. With the increasing use of new technologies such as Communicating
Objects (COT) and the Internet of Things (IoT) in our daily life (connected ob-
jects, mobile devices, etc.), designing Intelligent Adaptive Distributed software
Systems (DIASs) has become an important research issue. Human face the prob-
lem of mastering the complexity and sophistication of such systems as those re-
quire an important cognitive load for end-users who usually are not expert.
Starting from the principle that it is to technology-based systems to adapt to end-
users and not the reverse, we address the issue of how to help developers design
and produce such systems. We then propose WOF, an object oriented Framework
founded on the concept of Wise Object (WO), a metaphor to refer to human in-
trospection and learning capabilities.

To make systems able to learn by themselves, we designed introspection, moni-
toring and analysis software mechanisms such that WOs can learn and construct
their own knowledge. We then define a WO as a software-based entity able to
learn by itself on itself (i.e. on services it is intended to provide) and also on the
others (i.e. the way others use its services). A WO is seen as an avatar of either a
physical or a logical object (e.g. device / software component).

In this paper, we introduce the main requirements for DIASs as well as the de-
sign principles of WOF. We detail the WOF conceptual architecture and the Java
implementation we built for it. To provide application developers with relevant
support, we designed WOF with the minimum intrusion in the application source
code. Adaptation and distribution related mechanisms defined in WOF can be in-
herited by application classes. In our Java implementation of WOF, object classes
produced by a developer inherit the behavior of Wise Object (WO) class. An in-
stantiated system is a Wise Object System (WOS) composed of WOs that interact
through an event bus. In the first version of WOF, a WO was able to use introspec-
tion and monitoring built-in mechanisms to construct knowledge on: (a) services
it is intended to render; (b) the usage done of its services. In the current version,
we integrated an event-based WO simulator and a set of Analyzer classes to pro-
vide a WO with the possibility to use different analysis models and methods on
its data. Our major goal is that a WO can be able to identify common usage of its
services and to detect unusual usage. We use the metaphor of emotions to refer to
unusual behavior (stress, surprise, etc.). We show in the paper a first experiment
based on a statistical analysis method founded on stationary processes to identify
usual/unusual behavior.

1 Introduction

With the increasing use of new technologies such as Communicating Objects
(COT) and the Internet of Things (IoT) in our daily life (connected objects, mo-
bile devices, etc.), designing Intelligent Adaptive Distributed software Systems
(DIASSs) has become an important research issue. Human face the problem of
mastering the complexity and sophistication of such systems as those require an
important cognitive load for end-users who usually are not expert.

Multiplicity of users, heterogeneity, new usages, decentralization, dynamic exe-
cution environments, volumes of information result in new system design require-
ments: technologies should adapt to users more than users should do to technolo-
gies. In the domain of home automation for example, both end-users and system
developers face problems:

— end-users: instructions accompanying the devices are too complex and it is
hard for non-expert users to master the whole behavior of the system; such
systems are usually designed to meet general requirements through a set of
predefined configurations (a limited number of scenarios in the best case).
A user may need a set of services in a given context and a different set of
services in another context. A user does not need to use all what a system
could provide in terms of information or services.

— developers lack software support that help them build home automation sys-
tems able to adapt to end-users. Self-adaptation mechanisms are not mature
yet and most existing support approaches are either too specific or too ab-
stract to be helpful as stated in [?].

All along the paper, we use a simple example of home automation system (see
Figure 1)To illustrate our purposes. Let us consider a system composed of a roller
shutter (actuator) and a control key composed of two buttons (sensors).

In the general case and in a manual mode, with a one-button control key, a per-
son can: bring the shutter either to a higher or to a lower position. With a second
button, the user can tune inclination of the shutter blades to get more or less light
from the outside. As the two buttons cannot be activated at the same time, the
user must proceed in two times: first, obtain the desired height (e.g. 70%) then
the desired inclination (e.g. 45%). For such systems, three roles are generally de-
fined: system developer, system configurator and end-user. Assume an end-user
is at his office and that according to time and weather, his/her requirements for the
shutter change (height and inclination). This would solicit the end-user all along
the day and even more when there are several shutters with different exposure to
the sun. From a developer’s point of view, very few support is available to easily
construct adaptive systems: when provided, such support is too specific and can-
not be easily reused in another context. Adaptation mechanisms and intelligence
are generally merged with the application objects which make them difficult and
costly to reuse in another application or domain.

Starting from the principle that it is to technology-based systems to adapt to end-
users and not the reverse, we address the issue of how to help developers design
and produce such systems. We then propose WOF, an object oriented Framework
founded on the concept of Wise Object (WO), a metaphor to refer to human in-
trospection and learning capabilities.

To make systems able to learn by themselves, we designed introspection, moni-
toring and analysis software mechanisms such that WOs can learn and construct
their own knowledge and experience.

IS

M

Fig. 1. An example of home automation system

According to this approach (see Figure 2), “wise” buttons and shutters would
gradually construct their experience (e.g. by recording effect of service invoca-
tion on their state, statistics on invoked services, etc.) and adapt their behavior
according to the context (e.g. physical characteristics of a room, an abstract state
defined by a set of data related to the weather, the number of persons in the of-
fice, etc.). From the development perspective, we separate in the WOF objects’
“wisdom” and intelligence logic (we name abilities) from objects’ application
services (we name capabilities) they are intended to render.

To provide application developers with relevant support, we designed WOF with
the minimum intrusion in the application source code. Adaptation and distribu-
tion related mechanisms defined in WOF can be inherited by application classes.
In our Java implementation of WOF, object classes produced by a developer in-
herit the behavior of Wise Object (WO) class. An instantiated system is a Wise
Object System (WOS) composed of WOs that interact through an event bus. In the
first version of WOF, a WO was able to use introspection and monitoring built-in
mechanisms to construct knowledge on: (a) services it is intended to render; (b)
the usage done of its services. In the current version, we integrated an event-based
WO simulator and a set of Analyzer classes to provide a WO with the possibility
to use different analysis models and methods on its data. Our major goal is that
a WO can be able to identify common usage of its services and to detect unusual
usage. We use the metaphor of emotions to refer to unusual behavior (stress, sur-
prise, etc.). We show in the paper a first experiment based on a statistical analysis
method founded on stationary processes to identify usual/unusual behavior.

In the paper, we focus mainly on the architecture of the WO and WOS, their
global structure and behavior. In Section 2, we discuss the challenges and require-
ments for DIASs. Then we present design principles and fundamental concepts
underlying WOF in Section 3. In Section 4 we detail the structure and behav-

W

Wise Object
System \

Fig. 2. A wise home automation system

ior of a WO and a WO System (WOS) and present the architectural patterns we
adopted in our design. We focus in section Section 5 on WO knowledge analysis
using statistical approaches, in particular to identify common usage and detect
unusual behavior. To illustrate how to use the WOF, we give an example in the
home automation domain in Section 6. Finally, in Section 7 we discuss our ap-
proach and conclude with ongoing work and some perspectives.

2 Requirements

A technology-based system should be able to: (1) know by itself on itself, i.e. to
learn how it is intended to behaves, to consequently reduce the learning effort
needed by end-users (even experimented ones); (2) know by itself on its usage to
adapt to users’ habits. In addition like any service-based system (3) such system
should be able to improve the quality of services it is offering. WOF aims at help-
ing developers producing such systems while meeting end-users’ requirements:
— Requirement 1: We need non-intrusive systems that serve users while requir-
ing just some (and not all) of their attention and only when necessary. This
contributes to calm-technology [?] that describes a state of technological
maturity where a user’s primary task is not computing, but being human. As
claimed in [?], new technologies might become highly interruptive in hu-
man’s daily life. Though calm-technology has been proposed first by Weiser
and Brown in early 90’s [?], it remains a challenging issue in technology
design.
— Requirement 2: We need systems composed of autonomous entities that are
able to independently adapt to a changing context. If we take two temper-
ature sensors installed respectively inside and outside the home, each one

reacts differently based on its own experience (knowledge). A difference in
temperature that is considered as normal outside (e.g. 5 degrees) is consid-
ered as significant inside. Another situation is when an unexpected behavior
occurs, for example a continuous switching on - switching off of a button. In
such a case, the system should be able to identify unusual behavior according
to its experience and to decide what to do (e.g. raising an alert);

— Requirement 3: In an ideal world, an end-user declares his/her needs (a goal)
and the system looks for the most optimal way to reach it. This relates to
goal-oriented interaction and optimization. The home automaton system user
in our example would input the request ”’I want the shutter at height h and in-
clination i”” and the system based on its experience would choose the “best”
way to reach this state for example by planning a set of actions that could
be the shortest one or the safest or the less energy consuming, etc. accord-
ing to the non-functional quality attributes that have been considered while
designing the system [?].

Many approaches are proposed to design and develop the kinds of systems we
target: multi-agent systems [?], intelligent systems [?], self-X systems [?], adap-
tive systems [?]. In those approaches, a system entity (or agent) is able to learn on
its environment through interactions with other entities. Our aim is to go a step
forward by enhancing a system entity with the ability to learn by its own on the
way it has been designed to behave. There are at least two advantages to this: (a)
as each entity evolves independently from the others, it can control actions to per-
form at its level according to the current situation. This enables a decentralized
control in the system; (b) each entity can improve its performance and then the
performance of the whole system, i.e. a collaborative performance.

While valuable, existing design approaches are generally either domain-specific
or too abstract to provide effective support to developers. The IBM MAPE-K
known cycle for autonomic computing [?] is very helpful to understand required
components for self-adaptive systems but still not sufficient to implement them.
Recently, more attention has been given to design activities of self-adaptive sys-
tems: in [?], authors propose design patterns for self-adaptive systems where roles
and interactions of MAPE-K components are explicitly defined. In [?] authors
propose a general guide for developers to take decisions when designing self-
adaptive systems. Our goal is to offer developers an object oriented concrete ar-
chitecture support, ready to use for constructing wise systems. We view this as
complementary to the work results cited above where more abstract architectures
have been defined.

From a system development perspective, our design decisions are mainly guided
by the following characteristics: software support should be non-intrusive, reusable
and generic enough to be maintainable and used in different application domains
with different strategies. Developers should be able to use the framework with
the minimum of constraints and intrusion in the source code of the application.
We consequently separated in the WOF the objects’ "wisdom” and intelligence
logic (we name abilities) from application services (we name capabilities) they
are intended to render.

3 Fundamental Concepts of WOF

We introduce the fundamental concepts of WO and WOS from a runtime per-
spective. We adapt to this end the IBM MAPE-K known cycle for autonomic
computing [?].

3.1 Concept of WO

We define a Wise Object (WO) as a software object able to learn by itself on itself
and on its environment (other WOs, external knowledge), to deliver expected ser-
vices according to the current state and using its own experience. Wisdom refers
to the experience such object acquires by its own during its life. We intentionally
use terms dedicated to humans as a metaphor. A Wise Object is able to learn on
itself using introspection. A Wise Object is considered as a software avatar in-
tended to “connect” to either a physical entity/device (e.g. a vacuum cleaner) or a
logical entity. In the case of a vacuum cleaner, the WO could learn how to clean
a room depending on its shape and dimensions. In the course of time, it would in
addition improve its performance (less time, less energy consumption, etc.).

— its autonomy: it is able to behave with no human intervention;

— its adaptiveness: it changes its behavior when its environment changes;

— its intelligence: it observes itself and its environment, analyzes them and
uses its knowledge to decide how to behave (introspection and monitoring,
planning);

— its ability to communicate: with its environment that includes other WOs and
end-users in a decentralized way (i.e. different locations)

We designed WO in a way its behavior splits into two states we named Dream and
Awake. The former is dedicated to introspection, learning, knowledge analysis
and management when the WO is not busy with service execution. The latter is
the state the WO is in when it is delivering a service to an end-user or answering
an action request from the environment. The WO then monitors such execution
and usage done with application services it is responsible for. We use the word
Dream as a metaphor for a state where services invoked by the WO do not have
any impact on the real system: this functions as if the WO is disconnected from
the application device/component/object it is related to.

To ensure adaptiveness, each WO has a set of mechanisms that allow it to perform
a kind of MAPE-K loops [?]. Dream and Awake MAPE-K are respectively de-
picted by Figure 3(a) and Figure 3(b). Let us call the dream MAPE-K a IAPE-K,
due to the fact that in the dream case the Monitoring is actually Introspection.
When dreaming, a WO introspects itself to discover services it is responsible for,
analyzes impact of their execution on its own state and then plans revision actions
on its knowledge. WO constructs its experience gradually, along the dream states.
This means that WO knowledge is not necessarily complete and is subject to re-
visions. Revision may result in adaptation, for instance recording a new behavior,
or in optimization like creating a shortening among an action list to reach more
quickly a desired state.

When awake, a WO observes and analyzes what and how services are invoked
and in what context. According to its experience and to analysis results, a WO
is able to communicate an emotion if necessary. We define a WO emotion as a
distance between the common usage (usual behavior) and the current usage of its

Autonomic Manager

Plan
Analyze Revision
Inrospect Knowledge

(Wise Object (WO) itself

(a) WO Dream IAPE-K

Autonomic. Manager
Analyze Sl
Monitor q I

(Wise Object System (WOS)
e.g. A home automation system

(b) WO Awake MAPE-K

Fig.3. WO MAPE-Ks [?]

services. According to this metaphor, a WO can be surprised if one of its services
is used while it has never been the case before. A WO can stress if one of its
services is more frequently used or conversely, a WO can be bored. WO emotions
are intended to be used as a new information by other WOs and/or the end-users.
This is crucial to adaptation at a WOS level (e.g. managing a new behavior) and to
attract attention on potential problems (e.g. alerts when temperature is unusually
too high). With respect to its emotional state, a WO plans relevant actions (e.g.
raising alarms, opening windows and doors, cutting off electricity, etc.).

3.2 Concept of WOS (WO System)

We define a WOS as a distributed object system composed of a set of commu-
nicating WOs. Communicated data/information (e.g. emotions) are used by the
WOS to adapt to the current context. It is worth noting that each WO is not aware
of the existence of other WOs. WOs may be on different locations and it is the
charge of the WOS to handle data/information that coordinate WOs’ behaviors.
The way this is done is itself an open research question. In our case, we defined
the concept of Managers (see Section 4) to carry out communication and coor-
dination among WOs. This is close to the Implicit Information Sharing Pattern
introduced in [?].

4 Design models of WO and WOS

WOF is an object oriented framework built on the top of a set of interrelated
packages. This section introduces our design model of the concepts presented in
the previous section.

4.1 Design model of WO

Figure 4 shows the UML Class diagram for WO. This model is intentionally
simplified and highlights the main classes that compose a WO. WO Class is an
abstract class that manages the knowledge of its sub-classes. Knowledge man-
aged by a WO is of two kinds: capability-related (i.e. knowledge on application
services) and usage-related (knowledge on service usage). In our present experi-
ment, we have chosen a graph-based representation for knowledge on WO capa-
bilities and usage done of them. Knowledge on WO capabilities is expressed as
a state-transition graph while that on WO usage is expressed as a Markov graph
where usage-related statistics are maintained. The Markov graph clearly depends
on the usage of an object (a WO instance) as 2 WO instances of a same class may
be used differently.

Let us recall that WO behavior is split into two states. The dream state and the
awake state, see Figure 5. The dream state is dedicated to acquiring the capability
knowledge and to analyzing the usage knowledge. The awake state is the state
where the WO executes its methods invoked by other objects or by itself, and,
monitors such execution and usage.

To build capability-related knowledge, the WO executes the methods of its sub-
class (i.e. the application class) to know their effect on the attributes of this sub-
class.This knowledge is itself represented by a state-transition diagram. Each set

ueay00g :()9321dwodsL+
49893uT :(SuLJis:uoLioe‘ua8ajur:ialels)ajelsixanNiad+
(8uLu3ys:awenuoL}De

(<329(q0>40309A: S9N AP L}) OPON+ ¢a9893uT:uoLleUL]SOp ‘u9893uUT :924Nn0S)a3pIppe+
<309Lq0>10300 :SON1EAPIOLI— (<399£40>10329A:S9N1BAP13 L4) 9PONPPE+
J9893uT n_mns_‘.zwumuM|:|AV <<<uoLlewsojurea8esn>40329A>40309A\>J03D9A PASNSUOLILSURI-

<<8ULJ3S>10329A>40309 :S93p3adUBPLOUL-
<<OPON>40329A>40323A :SapoNuadelpe-

apoN

<8uLJ31S>403109A :sawenaSpa-

ydeig
ydeu3
93E20AU 0! auw
(49893uL:93e353XaNPIOadXd Aw_wwwmun;:M”o“wwEH
‘8uLJys:aweNpoylaw‘ 49893UT :9383SIUSIIND) UOLIDYIULUUNY+ (<395£q0>40390 mumumvmumwmuwmw\T
49393uT :93e3SIXaNpaIdadXa-) ()dnasem—
SuLils :auenpoy3au- <> ()weaup-
J9893uT :93e3S3IUSIIND- 355100510355/ 153075AT 110507501
uonoybuluuny om

4 Lo

3|qeuuny
<<d284JdJUI>>

[g

Fig. 4. UML class diagram of WO

Dream

(a) WO short state diagram

Learn on itself

Learn on usage

(b) WO detailed state diagram

Fig. 5. UML state diagram of WO built-in behavior [?]

of attribute values produces a state in the diagram and a method invocation pro-
duces a transition. The main constraint in this step is that method invocation must
have no real effect on other objects of the application when the WO is dreaming.
This is possible thanks to the system architecture described in Section 4.2.
Regarding usage-related knowledge on an application object, two kind of situa-
tions are studied: emotions and adaptation of behavior.

As introduced in section 3, an emotion of a WO is defined as a distance between
its current usage and its common usage. WO can be stressed if one of its methods
is more frequently used or conversely, a WO can be bored. WO can be surprised
if one of its method is used and this was never happened before.

When a WO expresses an emotion, this information is caught by the WOS and/or
other WOs and that may consequently lead to behavior adaptation. At the object
level, two instances of the same class that are used differently — different frequen-
cies, different methods... — may have different emotions, thus, different behavior
and interaction within the WOS.

A WO uses its capability-related knowledge to compute a path from a current
state to a known state [?]. According to the frequency of the paths used, a WO
can adapt its behavior. For example, if a path is often used between non-adjacent
states, the WO can build a shortcut transition between the initial state and the
destination state; it then can also build the corresponding method within its sub-
class instance (application object). This modifies the capability-related graph of
this instance.

4.2 Design model of WOS

As explained in Section 3, WOs are not aware of the existence of other WOs.
They are distributed and communicate data/information towards their environ-
ment. WOs may be on different locations and one or many Managers carry out
communication and coordination among them. In this paper, we propose a con-
crete architecture based on a bus system, where any WO communicates with other
objects through the bus. This architecture has many advantages.

A first one is the scalability. It is easier to add WOs, managers, loggers... on
this kind of architecture than to modify a hierarchical architecture. Moreover,
this architecture is obviously distributed and enables distribution/decentralizion
of WOs in the environment.

The third main advantage is the ability for a WO to disconnect/reconnect from/to
the bus when needed. This makes it possible the implementation of the Dream
state (see Section 3). Let us recall that in the dream state, a WO can invoke its
own methods to build its capability-related graph, but these invocations must not
have any effect on the subject system.

Thus, when a WO enters the Dream state, it disconnects itself from the bus and
can invoke its methods without impact on the real world system. More precisely,
the WO disconnects its ”sending system” from the bus, but it continues receiving
data/information via the bus. Therefore, if a WO in Dream state receives a re-
quest, it reconnects to the bus, goes out from the Dream state to enter into Awake
state and serves the request.

Figure 6 shows the UML class diagram of a bus-based WO system. This model
is simplified and highlights the main classes. The system uses an Event/Action
mechanism for WOs’ interactions. On an event, a state change occurs in a WO,
an action may be triggered on another WO. The peers “Event/Action” are defined

(ydeug:ydea8‘3uLals:praapuas)ydedgjuani+

ydeuo :ydeuS-
8uLJls :pIJopusas-

jwaazydeln

(309[qp:3uana)3uaniysod+

A\l

Y

(329[q0:49qL4oSqNs)19qLIdSqNSIa1s L8+

90IA19SSNGIUSAT
<<uo3a|8uLs>>

(8ULJ43S:3UPAD“BULIIS I PTIIDPUDS)JUBAT+

(3uan3ydeun:a)jusazydedguo+
(3uangzasdueydaiels:a)uanjasueynslelsuo+

SuLJ3}S :3juana-
SuLJls :pIJspusas-

1abeuepy

jaAgzabueygalels

(8uLJ3S:u0L]2e‘BULIISIPIIDALEDDI)UOLIDY+

SuLJa3}S :iuoLjde-
SuLJlS :pIJdALdDBU-

juaAzuonOy

snq

Q

pLoa :()a3ueydalrelsuo+
PLOA :(3USAJUOLIDY:E)IUSATUOLIDYUO+
pLoA :()ydeagpuas+ Al

v

oM

A

[

zessejoqns Lasse|oqns

ydesb

ydeu3

uoLyedL)ddyasLm|

Fig. 6. UML class diagram of a bus-based WO system

by Event, Condition, Action (ECA) rules that are managed by a Manager. When
this latter catches events (StateChangeEvent), it checks the rules and conditions
and posts a request for action (ActionEvent) on the bus. From the WO point of
view, if one of its subclass instance state changes at Awake state, it posts a Stat-
eChangeEvent on the bus. When a WO receives an ActionEvent, two cases may
occur: either the WO is in Awake state or in Dream state. If the WO is in Awake
state, it goes to the end of its current action and starts the action corresponding
to the received request. If the WO is in Dream state, it stops dreaming and enters
into the Awake state to start the action corresponding to the received request.

In our Java implementation of WOF, object classes produced by a developer in-
herit the behavior of Wise Object (WO) class. An instantiated system is defined
as a wise system composed of Wise Objects that interact through a (or a set of dis-
tributed) Manager(s) implemented by an event-based bus according to publish-
subscribe design pattern.

4.3 Design model of WO Data Analyzers

As stated all along the paper, a WO is able to collect and analyze usage-related
data. To enrich the WOF framework and to offer the possibility to use different
analysis models and methods on the same data, we associate a WO with a set
of Analyzer classes according to a Factory-like design pattern [?]. This design
decision aims at defining a set of analyzers on collections of data (i.e. instances
of ”Graph”) with the possibility to compare analysis results.

Therefore an Analyzer class named “daClass” is statically registered into the WO
class using registerDAClass(daClass: Class<DataAnalyzer>)” static method,
where ”"DataAnalyzer” is the abstract class for analyzers. Analyzers of a WO
— the analyzers of knowledge graphs of the WO — are then instantiated in the
WO constructor. Figure 7 illustrates this design model. This approach is close to
factory pattern where the factory is the WO class, the "DataAnalyzers” are the
products and the WO instances are the clients.

The "DataAnalyzer” abstract class implements the "Runnable” interface so that
an analyzer is implemented by an independent thread. This abstract class defines
3 abstract methods: “DataAnalyzer(g:Graph)”, “resume()” and “suspend()”. The
first "DataAnalyzer(g:Graph)” is the default constructor that requires the graph of
knowledge to analyze. The second “resume()” starts or resumes the analyzer. Let
us recall that the analysis — the learning activity — only occurs within the dream
state of a WO. Therefore, the analyzers must be stopped and resumed accordingly.
The last method ”suspend()” suspends the analyzer. As depicted by Figure 7, we
realized an implementation of the ”DataAnalyzer” abstract class: ’StatAnalyzer”.
The ”StatAnalyzer” performs a statistical analysis of events: occurrences of graph
transitions. It stores for each transition the dates of its occurrences in a ”Vec-
torAnalyzer”. Each ”VectorAnalyzer” of a ”StatAnalyzer” is characterized by a
“windowSize” that represents the memory size of the vector. When the vector
is full, if a new event occurs, the oldest is forgotten: removed from the vector.
Moreover, as the analyzer only performs the analysis during the dream states of
a WO, it also stores information about the data that has already been analyzed to
resume analysis from where it stopped at the last suspend. Regarding the *’Vector-
Analyzer”, this class extends the descriptive statistics library of the "The Apache
Commons Mathematics Library”. The descriptive statistics provides a dataset of
values of a single variable and computes descriptive statistics based on stored

(@19nop:anieA)anieappe+

<910gnoQg>40323/ :SuoLIowd- .

$513511359A13dLI0S3Q :S3OURLIRA0IOINE- . <<49893UT>40309)>40309) :padeueyApeat)yaip-

soL3sL3e3santidLiudsaq :sadueLden-g T5ZA1eUySUOLI LSUB AT UL i3zLsmopuLm-
SOL3S13e35aAL3dLI0saq sueau- o 19zhjeuyiels

19zAjeUy10)09 7

19zKeuyiels

sonsneisannduosal

(49zAeuyejeq:e)siazAyeuyelegppe+
ydeig saazh ey A\
()puadsns+
()aunsai+
Av (ydo.u9:6)49zA1pUYyDIDG+
u
(<49zAeUYElRQ>SSR]D:SSR)ePTSSeIVAIoIS 8o+ 1azAjeuyeleq
19zhjeuyeleg>sse|)
F5s=t |
oM TOJoZATeuy - I
1

[!

a|qeuuny
<<2284493UI>>

[

Fig.7. UML class diagram of WO Data Analyzer Pattern

data. The number of values that can be stored in the dataset may be limited or
not. The ”VectorAnalyzer” extends this class to provide statistics about the evo-
lution of means, variances and autocorrelations, when a new value is added into
the dataset. A representation of this evolution — a distance with the stationarity —is
stored in the “emotion” vector. The next section describes this analysis approach.

5 Statistical analysis and WO emotions

The first analyzer we implements is based on the weaker forms of stationarity of
the process [?]. The stationarity study focuses on the occurrences of the event.
We call event the invocation of a method from a given state (i.e. the execution of
a transition of the knowledge graph). Figure 8 gives a graph of knowledge, with 4
possible events: 71, 12, t3 and ¢4. This events occur at different times, for example,
on Figure 8 the event 71 occurs at times [etll ,etz1 , 6131 .] In this first analysis, we

Fig. 8. Example of time series for knowledge graph analysis

do not study the correlation between the events.

Let x(i) a continuous and stationary time random process. The weaker forms of
stationarity (WSS) defines that the mean E [x(i)] and variance Var [x(i)] do not
vary with respect to time and the autocovariance Cov [x(i),x(i — k)] only depends
on range k.

This process is a WSS process if and only if:

Ex(i)]=n Vi,
Var[x(i)] = 6% # o Vi,
Covx(i),x(i—k)] = f(k) =pr VivVk.

This definition implies the analysis of the whole time series. In our case, the
common usage can change and we define it by the stationarity. Therefore, we

compute the stationarity — the common usage — on a sliding window of size w:

El(i) =u Vielt—wi],

Var[x(i)] = 6% # o Vz € [t—w1],

Cov[x(i)x(i—K)] = (k) = p Vi€ [t—w,1]Vk,
where the time series x(i) are the occurrences [¢; ... ek ...¢}] of a given event
—i.e. transition — T between t-w and t.
According to this definition of the stationarity, we define an emotion as the dis-
tance between the current usage and the common usage, in other words the dis-
tance with the stationarity measure. We define this distance d(x(i)) by the follow-
ing centered normalized scale where:

d(E [X(Z)D = (max(E[f([()]—mlL()[] [
d(x(i)) _ (Var[x(Var|x(i)]— Var[x(j)]
(

(0
N —min(Vark)2
d(Cov[x(D),x(i = B)) = o) xG—R])—min(Covle)G RIN/2

)
Z)D = max(Var([lx(j]
Cov|x(i) x(i—k)]—Cov[x(j) x(j—k)]

where j € [t —w,] and E [x(j)], Var [x(j)] and Cov [x(j),x(j — k)] are respectively
the means of means, variances and autocovariances on the range [r — w,].

Thus, when a new event occurs at # + 1, we compute the distance with the common
usage between ¢ — w and ¢. If all values of the distance — d(E [x(i)]), d(Var [x(i)])
and d(Cov [x(i),x(i —k)]) — are in [—1, 1] this is considered as a common behav-
ior, otherwise this is identified as a behavior change (unusual usage) relatively to
the knowledge on the common usage.

6 An illustrating example ”’Home automation”

The concept of WO has many scopes of application. It can be used to adapt an
application to its environment, to monitor an application from inside, to manage
an application according to the usage done of it... In this section, we highlight the
WO behavior within a home automation application. This choice is justified by
the fact that:
— home automation systems are usually based on a bus where many devices
are plugged on;
— home automation devices have behavior that can be represented by a simple
state diagram.
According to the first point, a home automation system can be directly mapped
onto a WO system based on a bus where the home automation devices are related
to WOs. The second point avoids the combinatorial explosion that can appear due
to a large number of states to manage in a state diagram.
Let us take a simple example of a switch and a shutter. The switch is modeled by
2 states “on” and “off”” and 3 transitions “on()” , “off()”” and “switch()”.

Listing 1.1. Switch Java code

public class Switch extends Wo {
public boolean position;

public Switch () {

super ();

}

public void on() {
invoke ();
position = true;
invoked ();

}
public void off() {

invoke ();
position = false;
invoked ();
}
public void switch () {
invoke ();
if (position){
position = false;
telse{
position = true;
}

invoked ();

}
}

The shutter is modeled by n states that represent its elevation between 0% and
100%. If the elevation is 0%, the shutter is totally closed and if the elevation is
100%, the shutter is totally open. To avoid a continuous system, the shutter can
only go up or down step by step.

Listing 1.2. Shutter Java code

public class RollingShutter extends Wo {
private int elevation = 0;
private static int step = 20;

public RollingShutter () {
super ();

}

public void down(){
methodInvocate ();
if (this.elevation >0){

this.elevation —= RollingShutter.step;
}
if (this.elevation <= 0){
this .elevation = 0;
}
methodInvocated ();

}

public void up() {

methodInvocate ();
if (! this.elevation < 100){
this.elevation += RollingShutter.step;
if (this.elevation >= 100){
this.elevation = 100;
}

}

methodInvocated ();

}

As one design principle behind WOF is to minimize intrusion within the applica-
tion source code, we have succeeded to limit them to the number of two “warts”.
The examples highlight those 2 intrusions in the code. They are concretized by
two methods implemented in the WO Class — methodInvocate() and methodIn-
vocated() — and must be called at the beginning and the end of any method of
the WO subclass (application class). Those methods monitor the execution of a
method on a WO instance. We discuss about these “warts” in the last section.
In our example, an instance of Switch and another of RollingShutter are created.
Two ECA rules are defined to connect those WOs:

— [Switchlnstance.on? / True / RollingShutter/nstance.up() |

— [Switchinstance.off? / True / RollingShutter/nstance.down() |
They define that when the event “on” occurs on the switch, the action — method —
“up” must be executed on the rolling shutter and that when the event “off” oc-
curs on the switch, the action “down” must be executed on the rolling shutter. For
the experiment and feasibility study, the action on the Switchlnstance — ”on()”
and off()” invocations — are simulated using the WO simulator we are devel-
oping. The actions ”on” and “off”” occur according to a Poisson distribution and
depend on the elevation of the rolling shutter. The likelihood of action "off” oc-
currence is RollingShutterInstance.elevation/100, the likelihood of action “on”
occurrence is inversely proportional. When an action occurs, “on” or "off”, it can
occur x times successively without delay, where x is bounded by the number of
occurrences to reach the bound of shutter elevation, respectively 100% and 0%.
Presently, a WO acquires knowledge about its capabilities using a graph repre-
sentation. The knowledge about its usage is the logs of all its actions/events and
can be presented by a Markov graph. The logging presented in Log 1 shows the
events occurred on each WO of the system. This information is collected from
each WO. With this information each WO can determine its current behavior and
a manager can determine the system behavior. This is discussed in Section 7.
Log 2 gives Markov graph logging representation. Let us note that the Markov
graph representation hides time-related information as it is based on the frequency
of occurrences. Log 2 shows that the wise part of the Switch instance detects the
2 states and the 6 transitions. It also shows a 2x2 adjacency matrix followed by a
description of the 6 transitions including their usage-related statistics.
Log 2 shows for instance that from the state O with the position attribute at false,
the Switchinstance may execute method “on()” or “switch()” and go to state 1 or
execute method “off()” and remain in the same state 0. Usage-related statistics
show that method “switch()” is never used from the state O all along the 1000
iterations.
Regarding the RollingShutter instance, the logging after the 2nd iteration (Log 3)
and the last Log 4 are given. Log 3 shows that the wise part of the RollingShutter

Switchinstance||RollingShutterlnstance

on off up down
0 1769 3 1774
1 6015 5 6016
1 6624 5 6625

4263 | 10435 || 4264 10436
8523 | 10435 || 8525 10444
9963 | 11026 || 9968 11028
9964 | 11026 || 9966 11028
10994| 12615 |[10997 12616
10995] 15811 |{10996 15816

Log 1: First event log stored on each WO.

Graph:
2 States, 6 Transitions

01

11
11
State [0 , false]

Adjacency on->[1 , true] - 0.313,
switch->[1 , true] - 0.0,
off->[0 , false] - 0.687,

State [1 , true]

Adjacency off->[0 , false] - 0.311,
on->[1 , true] - 0.689,
switch->[0 , false] - 0.0,

Current State: 1

Log 2: Switch log after 1000 iterations.

instance detects 6 states and 10 transitions (green values of adjacency matrix).
Consequently, it has not detected all the possible transitions yet. This incomplete

Graph:

6 States, 10 Transitions
01234

000
0
0

5
0
01000
0
0

0
1
2:
3: 0
4
5

o O O O
o o O

0
: 0000
State [0 , 0 , 20]
Adjacency down->[0 , 0 , 20] - 0.0,
up->[1 , 20 , 20] - 1.0,
State [1 , 20 , 20]
Adjacency up->[2 , 40 , 20] - 1.0,
down->[0 , 0 , 20] - 0.0,
State [2 , 40 , 20]
Adjacency down->[1 , 20 , 20] - 1.0,
up->[3 , 60 , 20] - 0.0,
State [3 , 60 , 20]
Adjacency up->[4 , 80 , 20] - 0.0,
down->[2 , 40 , 20] - 0.0,
State [4 , 80 , 20]
Adjacency down->[3 , 60 , 20] - 0.0,
up->[5 , 100 , 20] - 0.0,
State [5 , 100 , 20]
Adjacency ,
Current State: 1

Log 3: Rolling shutter log after the 2nd iteration.

knowledge is not a problem, during the next Dream state or if it uses those tran-
sitions during the Awake state, the WO part of the application object will update
its knowledge. The last Log 4 shows that all states and transitions are detected
(learnt).

Another analysis of the log is given by Figure 9. This figure presents the “emo-
tion” for the event “on” from state 0, computed from the statistical analysis pre-
sented in section 5. Figures 9(a), 9(b), 9(c) and 9(d) present the analysis of the
common usage with different sizes of memory (window size of ”VectorAna-
lyzer”). Between —1 and 1, the behavior is considered as usual, because it al-
ready has appeared in the past stored in the memory. Out of the range [—1..1]
an unusual behavior is detected relatively to the knowledge in memory and the
more important the distance with the range is, the more important the emotion
is. Those results are consistent from the data analysis point of view: the bigger
the time window is, the smoother the result is. From the emotion point of view, it
means that the wider the memory is, the less unusual behavior is detected.

Graph:

6 States, 12 Transitions
012345
0: 110000
1: 101000
2: 010100
3: 001010
4: 000 1 0 1
5: 0000 11
State [0, 0 , 20]
Adjacency down->[0
up->[1 ,
State [1 , 20 , 20]
Adjacency up->[2 ,
down->[0
State [2 , 40 , 20]
Adjacency down->[1
up->[3 ,
State [3 , 60 , 20]
Adjacency up->[4 ,
down->[2
State [4 , 80 , 20]
Adjacency up->[5 ,
down->[3
State [5 , 100 , 20]
Adjacency up->[5 ,
down->[4

Current State: 1

Log 4: Rolling shutter log after the last iteration.

, 0, 20] - 0.0,

20 , 20] - 1.0,

40 , 20] - 0.653,

, 0, 20] - 0.347,
, 20, 20] - 0.456,
60 , 20] - 0.544,
80 , 20] - 0.443,

, 40, 20] - 0.557,
100 , 20] - 0.375,
, 60, 20] - 0.625,
100 , 20] - 0.0,

, 80, 20] - 1.0,

— means 6| — means
— variances — variances
— autocovariances — autocovariances

i ‘!| At A UMk A -
T (A, AN TR

-2
-4
6 -6
100 200 300 4-!‘]?) 500 600 100 ZAD_K) 300 400 500 6
(a) memory size: 10 (b) memory size: 20
s — means . — means
— variances — variances
A — autocovariances A — autocovariances
2 2
" o ".F*“ Pt AR
0) } of
WAl vuuxdﬂ\ LA, ' X /
> I
-4 -4
6| -6
100 200 300 400 500 600 100 200 300 400 500 6
(c) memory size: 40 (d) memory size: 80

Fig. 9. Evolution of emotions according to memory size

It is worth noticing that this example is intentionally simple as our goal is to
highlight the kind of knowledge a WO can currently acquire and analyze. Capa-
bility graphs and usage logging are the knowledge base for WOs. We discus the
management and use of this knowledge in Section 7.

7 Discussion and concluding remarks

Our work addresses the issue of designing distributed adaptive software systems
through WOF: a software object-based framework implemented in Java. At a
conceptual level, WOF is built around the concept of “wise object” (WO), i.e. a
software object able to: (a) learn on its capabilities (services), (b) learn on the
way is being used and (c) perform data analysis to identify common usage and
detect unusual behavior. At a concrete level, a WO uses: (a) introspection and
monitoring mechanisms to construct its knowledge, (b) an event-based bus to
communicate with the system and (c) a set of analyzers to identify both usual and
unusual behaviors.

Regarding data analysis, we implemented a first statistical analyzer, based on
the theory of stationary processes. This experiment is a step forward towards
behavior analysis and emotion representation in adaptive systems. As shown in
the paper, an emotion is defined as a distance between an unusual behavior and a
common behavior.

Our work and experiments around WOF raised many research issues and per-
spectives. A first main perspective is to use other knowledge aggregation the-
ories/techniques to represent emotions of a Wise Object: solutions may involve
techniques from information fusion, multi-criterion scales or fuzzy modeling. A
second one is to generalize behavior analysis and emotion representation to a
WOS (Wise Object System): this requires knowledge aggregation to extract rele-
vant information on the whole system starting from individual WOs.

In the present version of WOF, intrusiveness in application source code is limited
to the inheritance relationship and two warts: the WO methods methodInvocate()
and methodInvocated() that must be called at the beginning and the end of an
application method. Regarding this issue, we envisage different solutions in the
next version of WOF: (a) add dynamic Java code on-the-fly at runtime; (b) use
Aspect Oriented Programming [?]; (c) use dynamic proxy classes.

We are convinced that wise systems are a promising approach to help humans in-
tegrate new technologies both in their daily life as end-users and in development
processes as system developers. We use home automation to illustrate our work
results but those can also apply to other domains like health that heavily rely on
human expertise. Authors in [?] and [?] propose interactive Machine Learning
(iML) to solve computationally hard problems. With regard to this, WOF puts
the ’human-in-the-loop” in two cases: when defining ECA rules to connect dis-
tributed WOs and when validating capability-related knowledge constructed by
WOs.

To validate our approach, we recently initiated a new internal project called COMDA
whose aim is to study and test our research ideas on a real system. The latter con-
sists of a set of connected objects (sofa, chairs, etc.) to identify unusual situations
like ’no life sign in the living-room this morning” which is crucial in the domain
of person ageing in place.

References

