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Abstract

We present a novel co-clustering method using co-variates with application to genomic
data.
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1 Introduction
Classification is a method of data analysis that aims to group together a set of observations into
homogeneous classes. Its aim is the automatic resolution of problems by decision-making based
on the observations induced to the problems. Its main purpose is to define rules for classifying
objects based on qualitative or quantitative variables characterizing these objects. It plays an
increasingly important role in many scientific and technical fields. Clustering may be the most
popular technique for data analysis in many disciplines.

Unlike classical clustering, which groups similar objects from a single collection of objects,
coclustering or biclustering [MO04] aims at simultaneously grouping objects from two disjoint
sets, thus revealing interactions between elements of two sets. In recent years, co-clustering has
been increasingly used in many areas ranging from information retrieval, data mining, computer
vision, biology, and so on. It is most often used with bipartite spectral graphing partitioning
methods in the field of [Dhi01] extracting text data by simultaneously grouping documents and
content (words) and analyzing huge corpora unlabeled documents [XZDZ10] to simultaneously
understand aggregates of subsets of web users(sessions) and information from the page views. Co-
clustering algorithms have also been developed for computer vision applications. it is used for
grouping images by simultaneously grouping images with their low-level visual characteristics and
for content-based image search [GQX05][RV09] [Qiu04].
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2 Block mixture models

2.1 Classical latent block model
Let x be a data set doubly indexed by a set I with n elements (individuals) and a set J with
m elements (variables). We represent a partition of I into g clusters by z = (z11, . . . , zng) with
zik = 1 if i belongs to cluster k and zik = 0 otherwise, zi = k if zik = 1 and we denote by
z.k =

∑
i zik the cardinality of row cluster k. Similarly, we represent a partition of J into d clusters

by w = (w11, . . . , wmd) with wj` = 1 if j belongs to cluster ` and wj` = 0 otherwise, wj = ` if
wj` = 1 and we denote w.` =

∑
j wj` the cardinality of column cluster `.

The block mixture model formulation is defined in [GN03] and [BIG14] (among others) by the
following probability density function

f(x;θ) =
∑
u∈U

p(u;θ)f(x|u;θ)

where U denotes the set of all possible labellings of I×J and θ contains all the unknown parameters
of this model. By restricting this model to a set of labellings of I × J defined by a product of
labellings of I and J , and further assuming that the labellings of I and J are independent of each
other, one obtain the decomposition

f(x;θ) =
∑

(z,w)∈Z×W

p(z;θ)p(w;θ)f(x|z,w;θ) (1)

where Z and W denote the sets of all possible labellings z of I and w of J . Equation (1) define a
Latent Block Model.

2.2 Latent block model for binary variables with co-variables: General
formulation

From now, we assume that x is a binary data set. Let y represents a data-set (co-variables) of
Rp indexed by I. In order to take into account this set of co-variables the classical block model
formulation is extended to propose a block mixture model defined by the following probability
density function

f(x,y;θ) =
∑

(z,w)∈Z×W

p(z;θ)p(w;θ)f(x|y, z,w;θ)f(y|z;θ). (2)

By extending the latent class principle of local independence to our block model, each data pair
(xij ,yi) will be independent once zi and wj are fixed. Hence we have

f(x,y|z,w;θ) =
∏
i,j

f(xij ,yi;θ).

We choose to model the dependency between xij and yi using the canonical link for binary response
data

f(xij |yi,βziwj
) = logis(β0,ziwj

+ βTziwj
yi)

xij

(
1− logis(β0,ziwj

+ βTziwj
yi)
)1−xij

(3)

with (β0,βk,l) ∈ Rp+1 and logis(x) = ex/(1 + ex). Each data point yi will be independent once zi
are fixed. In the examples presented in section 3, we choose

f(y|z;θ) =
∏
i

φ(yi;µzi ,Σzi)

with φ denoting the multivariate Gaussian density in Rp.
In order to simplify the notation, we add a constant coordinate 1 to vectors yi and write βk,l

in the later rather than (β0,k,l,βk,l).
The parameters are thus θ = (π,ρ,β,µ,Σ), where π = (π1, . . . , πg), ρ = (ρ1, . . . , ρd) are the

vectors of probabilities πk and ρ` that a row and a column belong to the kth row component and
to the `th column component respectively, β = (βkl) are the coefficients of the logistic function,
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µ and Σ are the means and variances of the Gaussian density. Summarizing, we obtain the latent
block mixture model with pdf

f(x,y|θ) =
∑

(z,w)∈Z×W

∏
i,j

πziρwj logis(y
T
i βziwj

)xij

(
1− logis(yTi βziwj

)
)1−xij

φ(yi;µzi ,Σzi). (4)

Using above formulation, the randomized data generation process can be described by the four
steps row labellings (R), column labellings (C), co-variable data generation (Y) and data generation
(X) as follows:

(R) Generate the labellings z = (z1, . . . , zn) according to the distribution π = (π1, . . . , πg).

(C) Generate the labellings w = (w1, . . . , wm) according to the distribution ρ = (ρ1, . . . , ρd).

(Y) Generate for i = 1, ..., n vector yi according to the Gaussian distribution Np(µzi ,Σzi).

(X) Generate for i = 1, ..., n and j = 1, ...,m a value xij according to the Bernoulli distribution
f(xij |yi;βziwj

) given in (3).

2.3 Model parameters estimation
The complete data is represented as a vector (x,y, z,w) where unobservable vectors z and w are
the labels. The log-likelihood to maximize is

l(θ) = log f(x,y;θ) (5)

and the double missing data structure, namely z and w, makes statistical inference more difficult
than usual. More precisely, if we try to use an EM algorithm as in standard mixture model [DLR97]
the complete data log-likelihood is find to be

LC(z,w,θ) =
∑
k

z.k log πk +
∑
`

w.` log ρ` +
∑
i,j,k,`

zikwj` log f(xij ,yi;θk`). (6)

The EM algorithm maximizes the log-likelihood l(θ) iteratively by maximizing the conditional
expectation Q(θ,θ(c)) of the complete data log-likelihood given a previous current estimate θ(c)

and (x,y):

Q(θ,θ(c)) = E
[
LC(z,w, θ)

∣∣∣x,y,θ(c)
]
=
∑
i,k

t
(c)
ik log πk+

∑
j,`

r
(c)
j` log ρ`+

∑
i,j,k,`

e
(c)
ikj` log f(xij ,yi;θk`)

where

t
(c)
ik = P (zik = 1|x,y,θ(c)), r

(c)
jl = P (wj` = 1|x,y,θ(c)), e

(c)
ikj` = P (zikwj` = 1|x,y,θ(c))

Unfortunately, difficulties arise owing to the dependence structure in the model, in particular to
determinate e(c)ikj`. The assumed independence of z and w in (1) is not preserved by the posterior
probability.

To solve this problem an approximate solution is proposed in [GN03] using the [Hat86] and
[NH98] interpretation of the VEM algorithm. Consider a family of probability distribution q(zik, wj`)
verifying q(zik, wj`) > 0 and the relation q(zik, wj`) = q(zik)q(wj`), for all i, j, k, l. Set tik = q(zik)
and rjl = q(wj`), t = (tik)ik for i = 1, . . . , n, k = 1, . . . , g and r = (rjl)jl for j = 1, . . . ,m and
l = 1, . . . , d. Using the concavity of the log function, one shows easily that

l(θ) ≥ F̃C(t, r;θ) +KL(q(z,w) ‖ p(z,w|x,y,θ)) (7)

with KL(q ‖ p) denoting the Kullback-Liebler divergence of distribution p and q,

F̃C(t, r;θ) =
∑
k

t.k log πk +
∑
`

r.` log ρl +
∑
i,j,k,`

tikrj` log f(xij ,yi;θk`) +H(t) +H(r) (8)

and H(t), H(r) denoting the entropy of t and r, i.e.

H(t) =
∑
ik

tik log tik, H(r) =
∑
jl

rjl log rjl.
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F̃C is called the free energy or the fuzzy criterion. As the Kullback-Liebler divergence is always
positive, the fuzzy criterion is a lower bound of the log-likelihood and is use in replacement of it.
Doing that, the maximization of the likelihood l(θ) is replaced by the following problem

argmax
t,r,θ

F̃C(t, r,θ).

This maximization can be achieved using the BEM algorithm detailed in next section.

2.4 Block expectation maximization (BEM) Algorithm
The fuzzy clustering criterion given in (8) can be maximized using a variational EM algorithm
(VEM). We here outline the various expressions evaluated during E and M steps.

E-Step: we compute either the values of t (respectively r) with r (respectively t) and θ fixed.
Details are given in appendix A.

M-Step: we calculate row proportions π and column proportions ρ. The maximization of F̃C
w.r.t. π, and w.r.t ρ, is obtained by maximizing

∑
k t.k log πk, and

∑
` r.` log ρ` respectively, which

leads to
πk =

t.k
n

and ρ` =
r.`
m
. (9)

Also the estimate of model parameters β will be obtained by maximizing

βkl = argmax
β

∑
ij

tikrjl log f(xij |yi;β), k = 1, . . . , g, l = 1, . . . , d. (10)

(see appendix B for details) and the parameters of the Gaussian density by the usual formulas

µk =
1

t.k

∑
i

tikyi and Σk =
1

t.k

∑
i

tik(yi − µk)(yi − µk)
T . (11)

BEM algorithm: Using the E and M steps defined above, BEM algorithm can be enumerated
as follows:

Initialization Set t(0), r(0) and θ(0) = (π(0),ρ(0),β(0),µ(0), Σ(0)).

(a) Row-EStep Compute t(c+1) using formula

t
(c+1)
ik =

π
(c)
k

∏
jl

(
f(xij |yi;β(c)

kl )φ(yi;µ
(c)
k ,Σ

(c)
k )
)r(c)jl

∑
k π

(c)
k

∏
jl

(
f(xij |yi;β(c)

kl )φ(yi;µ
(c)
k ,Σ

(c)
k )
)r(c)jl

. (12)

(b) Row-MStep Compute π(c+1), µ(c+1), Σ(c+1) using equations (9) and (11) and estimate
β(c+1/2) by solving maximization problem (10).

(c) Col-EStep Compute r(c+1) using formula

r
(c+1)
jl =

ρ
(c)
l

∏
ik

f(xij |yi;β(c+1/2)
kl )t

(c+1)
ik

∑
l ρ

(c)
l

∏
ik

f(xij |yi;β(c+1/2)
kl )t

(c+1)
ik

. (13)

Observe that rjl does not depend of the density of y.

(d) Col-MStep Compute ρ(c+1) using equations (9) and estimate β(c+1) by solving maximization
problem (10).

Iterate Iterate (a)-(b)-(c)-(d) until convergence.
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2.5 Selecting the number of blocks
BIC is an information criterion defined as an asymptotic approximation of the logarithm of the
integrated likelihood ([S+78]). The standard case leads to write BIC as a penalised maximum
likelihood:

BIC = −2max
θ

l(θ) +D log(n)

where n is the number of statistical units and D the number of free parameters and l(θ) defined in
(5). Unfortunately, this approximation cannot be used for LBM, due to the dependency structure
of the observations (x,y). However, a heuristic have been stated to define BIC in [KBC+12] and
[KBCG15]. BIC-like approximations ICL lead to the following approximation as n and m tend to
infinity

BIC(g, d) = −2max
θ

log f(x,y;θ)+ (g− 1) log n+λ log n+(d− 1) logm+ gd(p+1) log(mn) (14)

with λ the number of parameters of the y distribution. For LBM, the intractable likelihood
f(x,y;θ) is replaced by the maximized free energy F̃C in (8) obtained by the BEM algorithm.

2.6 Measuring Influence of a Variable
Let j be fixed (a column of the matrix x). We would like to measure the effect of the variable
xj = (xij)

n
i=1 on y. It is possible to obtain a measure of this efffect by looking to the posterior

probability of y.

Lemma 1 Let (x, z,w) fixed. For l = 1, . . . , d let ml denotes the number of columns with label l,
i.e ml = #{wjl = 1, j = 1, . . .m} and for a row i fixed let mil denotes the number of elements
such that wjl = 1 and xij = 1, i.e. mil = #{wjlxij = 1, j = 1, . . .m}. The posterior probability
of the co-variable y is

f(y|x, z,w,θ) ∝
n∏
i=1

d∏
l=1

πziρ
ml

l logis(yTi βzil)
mil
(
1− logis(yTi βzil)

)ml−mil
φ(yi;µzi ,Σzi)

∝
n∏
i=1

πziφ(yi;µzi ,Σzi)

d∏
l=1

ρml

l

emily
T
i βzil(

1 + ey
T
i βzil

)ml
(15)

Alternatively, for k = 1, . . . , g, let nk denotes the number of rows with label k, i.e. nk = #{zik =
1, i = 1, . . . , n}. The posterior probability of the co-variable y is

f(y|x, z,w,θ) ∝
m∏
j=1

ρwj

g∏
k=1

π
nj

k

∏
i:zi=k

logis(yTi βkwj
)xij

(
1− logis(yTi βkwj

)
)1−xij

φ(yi;µk,Σk).

(16)

The proof of this lemma is straightforward and therefore omitted.
Assuming z and w known, we measure the influence of variable using its contribution to the

posterior probability. Fixing j, taking the logarithm and eliminating terms independant of xj , we
obtain the influence measure criteria

I(j) = log ρwj
+

n∑
i=1

xij log logis(y
T
i βziwj

) +

n∑
i=1

(1− xij) log
(
1− logis(yTi βziwj

)
)

= log ρwj
+

n∑
i=1

(
xijy

T
i βziwj

− log(1 + exp(yTi .βziwj
))
)
. (17)

Replacing the unknown labels wj and zi by there MAP estiamtors ŵj and ẑi, we can sort the
variables from the most to the less influential.
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3 Examples

3.1 Simulated data
We compute 80 times the accuracy and the elapsed time of the model for various configurations
of the parameter on a HP Zbook G3. The (averaged) computing time for different values of n is
plotted in the figure below

Figure 1: computational elapsed time for n = 2000, 6000, 10000, 14000 and 18000 (in minutes)

We can observe that as n grow the elapsed time grow linearly, but that the slope increases as
d (the number of class in columns) is increased. The averaged well classified rate for these data is
given in the table below with the standard deviation

d m n Well classified rows Well classified Columns
2 100 2000 0.9091250 0.9626562
2 100 6000 0.9027500 0.9444604
2 100 10000 0.9207500 0.9618788
2 100 14000 0.8928750 0.9451339
2 100 18000 0.8875000 0.9498715
2 150 2000 0.9030833 0.9773625
2 150 6000 0.9165000 0.9542896
2 150 10000 0.9358333 0.9732000
2 150 14000 0.9035833 0.9731152
2 150 18000 0.9408333 0.9771382
2 200 2000 0.9345000 0.9770188
2 200 6000 0.8940000 0.9568625
2 200 10000 0.9011875 0.9722437
2 200 14000 0.9170000 0.9663027
2 200 18000 0.9058125 0.9755889
6 100 2000 0.8535000 0.7367750
6 100 6000 0.8836250 0.7706229
6 100 10000 0.8920000 0.8069587
6 100 14000 0.8982500 0.7922634
6 100 18000 0.8565000 0.7899250

Table 1: Estimated Proportions of Well-Classified rows and columns for g = 2 and various config-
urations of d,m, n. Estimations were replicated 80 times.
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3.2 Real Data Analysis
We consider the genetic data used by ([LGB+16]) and use this to compare the co-clustering with
co-variable and the co-clustering without co-variable. The genetic data gave a 515721 SNPs and
455 individulas. The quantitative phenotype represents an individual falciparum attack(ipfa) for
each individu( [LGB+16]). The SNPs are coded in dominante.

The groups on the lines are divided in two parts: the susceptibility composed of a group of
individuals with a positive IPFA and the resistant ones composed of a group of individuals with
a negative IPFA value. We can take into account or not the mixture on the target variable in the
proposed model.

In this part we are interested in the performance of the selection criterion BIC for choosing
the number of partitions in columns. We have 515721 variables, we have evaluated from 2 to 30
partitions and the penalized BIC suggests 14 partitions in columns (cf figure 2).

Figure 2: BIC Results

The proportion of mutations in each block are given below

Figure 3: Percent of ones in each blocks

4 Conclusion
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A Computing the (rows and columns) E-Step
For the E-Step tik value maximize the fuzzy criterion given in equation (8). Derivative with respect
to tik gives

∂F̃C(t, r;θ)

∂tik
= log πk +

∑
j,`

rj` log fk`(xij ,yi;θ)− log tik − 1.

Equating this equation to zero, taking exponential and recalling that
∑
k tik = 1, we obtain that

tik is updated as

t
(c+1)
ik =

π
(c)
k

∏
j,l

[
f(xij ,yi;θ

(c))
]r(c)jl

∑
k

∏
j,l

[
f(xij ,yi;θ

(c))
]r(c)jl

.

For numerical reason, we prefer to compute the logarithm of this expression which is

log(t
(c+1)
ik ) ∝ log(π

(c)
k ) +

∑
j,l

r
(c)
jl log f(xij ,yi;θ

(c)).
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Recall that (see equation 3)

log f(xij |yi;β(c)
kl ) = xij log(logis(y

T
i β

(c)
kl )) + (1− xij) log(1− logis(yTi β

(c)
kl ))

= log(1− logis(yTi β
(c)
kl )) + xij log

(
logis(yTi β

(c)
kl )

1− logis(yTi .βkl)

)
= log(1 + exp(yTi β

(c)
kl )) + xijy

T
i β

(c)
kl

giving

log t
(c+1)
ik ∝ log π

(c)
k +

∑
j,l

r
(c)
jl xijy

T
i .β

(c)
kl −

∑
l

r
(c)
.l log(1 + ey

T
i .β

(c)
kl ) +m log φ(yi;µ

(c)
k ,Σ

(c)
k ).

Similar computation gives for rjl

log(r
(c+1)
jl ) ∝ log

(
ρ
(c)
l

)
+
∑
i,k

t
(c+1)
ik

(
xijy

T
i β

(c+1/2)
kl − log

(
1 + ey

T
i .β

(c+1/2)
kl

))
.

Observe that the Gaussian distribution does not depend of j nor l. This term become constant
when summing over i and k and disappears when rjl values are normalized.

B Computing the M-Step
For the M-Step, we use a Newton-Raphson algorithm in order to solve the equation (10). For each
pair (k, l) the function to maximize can be written

`k,l(β) =
∑
i,j

(
rjltikxijy

T
i β − rjltik log(1 + exp(yTi .β))

)
The first derivative with respect to the d-th coordinate βd is

∂`k,l(β)

∂βd
=
∑
i,j

(
rjltikxijyi,d − rjltikyi,d

exp(yTi β)

1 + exp(yTi β)

)
giving the following expression for the gradient

∇β`k,l(β) = Y TD(X − µ)

with Y = [yi]
N
i=1, X =

[∑
j rjlxij

]N
i=1

, µ =
[
r.l

exp(yT
i .β)

1+exp(yT
i β)

]N
i=1

, D = diag(tik)
N
i=1 The second

derivative with respect to βd and βd′ is

∂2`k,l(β)

∂βd∂βd′
= −

∑
i,j

(
rjltikyi,dyi,d′

exp(yTi β)

(1 + exp(yTi β))
2

)
giving the following expression for the hessian

Hβ = −Y tDWY with W = diag

(
r.l exp(y

T
i .β)

(1 + exp(yTi β))
2

)
= diag (r.l µi(1− µi))
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