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Abstract: A fully physical retrieval scheme for land surface emissivity spectra is presented,
which applies to high spectral resolution infrared observations from satellite sensors. The surface
emissivity spectrum is represented with a suitably truncated Principal Component Analysis (PCA)
transform and PCA scores are simultaneously retrieved with surface temperature and atmospheric
parameters. The retrieval methodology has been developed within the general framework of Optimal
Estimation and, in this context, is the first physical scheme based on a PCA representation of
the emissivity spectrum. The scheme has been applied to IASI (Infrared Atmospheric Sounder
Interferometer) and the retrieved emissivities have been validated with in situ observations acquired
during a field experiment carried out in 2017 at Gobabeb (Namib desert) validation station. It has
been found that the retrieved emissivity spectra are independent of background information and in
good agreement with in situ observations.

Keywords: emissivity spectrum; infrared; satellite; optimal estimation validation

1. Introduction

The problem of retrieving surface emissivity from infrared spectral observations is mainly that of
separating it from temperature in the surface radiation emission: this is is commonly referred to as
Ts − ε (Temperature-Emissivity) separation (e.g., see [1,2] and references therein).

Within the framework of high spectral resolution infrared observations from air planes and
satellites, the problem has been addressed by [3,4], who arrived at a closed form, in which emissivity
is separated from surface temperature and atmospheric emission by using the radiation reflected at
the surface, which under a Lambertian model depends on emissivity alone. Thus, emissivity could
be retrieved provided that the state of the surface-atmosphere was known. Assuming a suitable
dependence of emissivity on wave number, the scheme can then be used to develop a least square
procedure in which Ts − ε are simultaneously retrieved.

Similar approaches have been considered in previous studies from aircraft, ship and in situ
observations of spectral radiance, usually acquired with Fourier Transform Spectrometers [5–8]. All of
these methods inevitably assume that the atmospheric state is known from independent sources,
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whereas the methodology we describe and demonstrate, simultaneously retrieves surface and
atmospheric parameters from spectral information contained in the earth emission spectrum.

Several algorithms have been developed to derive emissivity in the infrared from satellite
measurements [9–18]. The retrieval is generally accomplished with multi-stage algorithms,
that separate temperature and emissivity using additional background emissivity information derived
from laboratory measurements.

Another important issue concerning emissivity retrieval is the fact that the emissivity vector
could potentially have a dimensionality as large as that of the observed radiance vector. For a given
spectral observation, this would lead to an inverse problem with more unknowns than data points.
Thus, the problem of effectively retrieving emissivity from infrared observations is fundamentally
one of emissivity-dimension reduction, to which one possible solution was given by [19–21], through
decomposition of the emissivity function on a suitable orthogonal basis, a technique dating back to [22].

Along these lines, a full physical retrieval algorithm has been developed by [23] who used a
Fourier transform representation of the emissivity spectrum and the Fourier coefficients were retrieved
simultaneously with surface temperature and atmospheric parameters.

The methodology developed in this study is based on [23], but with two important improvements:
(1) the entire observed spectrum is used, (2) the Fourier analysis is changed to a Principal Component
Analysis (PCA), which is much more parsimonious in terms of coefficients or scores while still
properly representing the emissivity spectrum. The scheme will be exemplified for IASI (Infrared
Atmospheric Sounder Interferometer) [24], although the methodology can be validly applied to any
hyper-spectral instrumentation.

It should be stressed that the emissivity seen by satellites depends on the geometry of the scene as
imaged by the instrument optics. The scene can contain different elements, such as soil, bedrock and
vegetation. In addition, vegetation may be in different phenological states (dry, senescent, green) and
the surface my be altered by seasonal snow cover. This also limits a full validation of the emissivity
retrievals with in situ observations, since the area observed by the ground instrumentation is not
necessarily representative of the area observed by the satellite and the viewing geometries associated
with the two sensors are rarely identical. For this reason, the validation study presented here was
performed over highly homogeneous and flat gravel plains around the permanent Land Surface
Temperature (LST) validation station ‘Gobabeb’ in the Namib desert [25,26] operated by Karlsruhe
Institute of Technology (KIT) within the framework of EUMETSAT’s Satellite Application Facility on
Land Surface Analysis (LSA SAF).

2. Data and Methods

IASI emissivity retrievals were validated with in situ emissivity spectra acquired during an
international Land Surface Temperature (LST) field inter-comparison experiment (FICE), which was
organised within the framework of ESA’s Fiducial Reference Measurements for validation of Surface
Temperature from Satellites (FRM4STS) project [27] and took place between the 17th and 24th of
June 2017 at Gobabeb, Namibia.

2.1. Validation Site

Gobabeb Research and Training Centre (GRTC; www.gobabebtrc.org, accessed on 19 June 2018)
in Namibia is the only permanently staffed desert research station worldwide. GRTC is located on
a sharp transition between the vast Namib sand sea with its up to 300 m high dunes and adjacent
gravel plains: this natural boundary is maintained by irregular flows of the ephemeral Kuiseb River
(a few days every other year), which wash the advancing sand into the South Atlantic Ocean. Due to
the hyper-arid desert climate [28], the site is spatially and temporally highly stable and, therefore, ideal
for long-term validation studies of satellite products [16]. The long-term average annual temperature
at Gobabeb (GBB) is 21.1 ◦C [29] whereas the average annual precipitation is less than 100 mm [30]
and highly variable [31]. Consequently, the relatively frequent fog events are of special importance for
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the water balance of the Namib [30]. Continuous in-situ measurements are performed at Karlsruhe
Institute of Technology (KIT) two permanent LST validation stations ‘GBB Wind’ (23.551◦S, 15.051◦E,
450 m asl) and ‘GBB Plains’ (23.519◦S, 15.083◦E, 450 m asl). GBB Wind (see Figure 1) uses a 30 m high
wind profiling tower about 2 km north-east of GRTC, while GBB Plains uses a 25 m high telescopic
mast about 7 km north-east of GRTC.

Figure 1. KIT’s permanent validation station GBB Wind on the 16 June 2017.

Both stations are at the edge of several thousand km2 of gravel plains, which are covered by a highly
homogeneous mixture of gravel, sand and sparse desiccated grass. Nevertheless, for reliable product
validation the effect of the small scale variation of surface materials (e.g., dry grass, rock outcrops)
and topography needs to be fully characterized. Using a mobile radiometer system, several field
experiments were performed during which a radiometer was driven along tracks of up to 40 km length
across the gravel plains. The results showed a high level of homogeneity and a stable relationship
between GBB Wind LST and the LST along the tracks with biases between −0.1 and 0.8 ◦C [25].

Clear sky conditions are preferable for field measurements since down-welling radiance is then
easier to determine and varies relatively slowly and smoothly. Furthermore, LST retrieval from passive
Thermal Infrared (TIR) satellite sensors also requires clear-sky situations. Since Gobabeb is located
in the Namib Desert it offers frequent clear sky conditions almost all year around, which is ideal for
LST validation.

The in situ emissivity observations used here for validation purposes were obtained on the
Namib gravel plains near Gobabeb LST validation station (Figure 2) during an international LST field
inter-comparison experiment. Before the experiment the Namib experienced several years without
significant rainfall and the gravel plains were exclusively covered by gravel and sand, i.e., only a
minimum amount of dry grass was present (also see Figure 1). The various measurements performed
during the field experiment are described in some detail in [27].
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Figure 2. Location of in situ measurements and collocated IASI soundings. The tags from A to D
show the location of in situ measurements on 17, 22, 23 and 24 June 2017, respectively. Red circles
correspond to IASI footprints over desert, those green over the gravel plain; in blue the IASI soundings
best collocated with in situ observtaions.

2.2. Data

The in-situ emissivity spectra were obtained from measurements with a Fourier Transform
Infrared (FTIR) spectrometer by ONERA, the French Aerospace Lab; the emissivity spectra cover the
range from 750 to 1250 cm−1 (8–12 µm) with a spectral resolution of 4 cm−1.

The applied methodology had been previously evaluated in the 3–13 µm (≈ 700–3000 cm−1)
spectral range by comparing in-lab reference measurements to outdoor emissivity retrievals for a large
set of surfaces including various mineral soils [32]. It led to an overall rms emissivity uncertainty in
the 8–12 µm domain better than 0.02. The technique consists in measuring both the ground upwelling
radiance and the downwelling irradiance. The ill-conditioned emissivity-temperature separation
is then solved using a spectral smoothness constraint [33] exploiting the higher variability of the
spectrum of atmospheric irradiance compared to emissivity spectra of natural surfaces.

The spectra are acquired by a BOMEM MR304SC FTIR spectroradiometer (Québec City, Canada)
equipped with a 75 mrad Field of View telescope and a 45◦ flat mirror. With this setup, the ground
target surface is viewed at nadir and the diameter of the analyzed area is approximately 15 cm.
The downwelling irradiance is measured using a Labsphere Infragold 25 × 25 cm standard reflector
(Sutton, NH, USA) at the target’s place (see Figure 3), so that the instrumentation’s contribution to
the downwelling irradiance is properly compensated. The reflector self emission is also corrected
for using its temperature monitored by a PRT probe (Platinum Resistance Thermometers) associated
with its spectral reflectance measured in the lab. The two acquisitions on the target sample and
the reflector are done sequentially within typically less than 1 min at a 4 cm−1 spectral resolution.
The temporal variations of the atmospheric conditions are assumed negligible in this time interval.
The radiometric calibration uses two acquisitions of the same MIKRON M345 10 × 10 cm blackbody
set (Santa Clara, CA, USA) at two different temperatures, done alternatively before and after the
measurements. For these measurements, the flat mirror is tilted and the blackbody active surface is
vertical. The blackbody apparent emissivity is measured in the lab and its reflective contribution
is supposed to come from an environment at a brightness temperature equal to the ambient
temperature, downloaded from the Gobabeb meteorological station (http://www.sasscalweathernet.

http://www.sasscalweathernet.org/weatherstat_hourly_we.php
http://www.sasscalweathernet.org/weatherstat_hourly_we.php
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org/weatherstat_hourly_we.php, accessed on 19 June 2018). This calibration process has been validated
during a comparison of blackbodies and radiometers completed at National Physical Laboratory (NPL)
in June 2016 [34,35]. 45 measurements have been acquired on the gravel plain, at different locations
around the station in order to capture as much of the spatial emissivity variability as possible. These in
situ observations have been merged into 10 different data sets. Seven data sets were acquired on the
17 June 2017 in the vicinity of the GBB wind mast (spot A in Figure 2), and the remaining three on the
22–24 June 2017 correspond to the GBB plains mast, GRTC and along the track Gobabeb—Mirabib
respectively (namely spots B, C and D in Figure 2). The mean and standard deviation of each data
set were computed per wavelength; standard deviation provides a measure of variability within a set
combined with the measurement uncertainty. For the first 7 sets acquired on the 17 June, The average
emissivity spectra for the ten sets and their associated variabilities (standard deviation) are shown in
Figure 4. It should be noted that for the sets 1 to 7 (taken on 17 June 2017) the uncertainty is almost
constant along the spectral coverage and nearly equal to 0.015. Conversely, the measurements on the
remaining three days show a much larger variability, which can reach 0.03% or 3% in the core of the
quartz reststrahlen band at 8.6 µm (1150 cm−1), due to the spatial variability within each sampling.
The averaged emissivity has been used for the comparison with IASI retrievals.

Figure 3. Instrumentation setting used for in situ measurements of emissivity soundings.
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Figure 4. (a) Mean emissivity of the ten sets of in situ measurements. (b) Standard deviation.

IASI soundings have been collected over the days 17 to 24 June 2017 for a target area,
which overlaps the period of the in situ measurements. The IASI instrument has a spectral coverage
extending from 645 to 2760 cm−1, with a sampling interval ∆σ = 0.25 cm−1 providing 8461 data
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points or channels for each single spectrum. IASI is a cross-track scanner, with thirty effective field
of regard (FOR) per scan, which span an angle range of ±48.33◦ on either side of nadir; the two
symmetric nadir FORs are collected at angles of ±1.67◦. Each FOR consists of a 2× 2 matrix of so-called
instantaneous fields of view (IFOV). Each IFOV has a diameter of 14.65 mrad, which corresponds to a
ground resolution of 12 km at nadir for a satellite altitude of 819 km. The 2× 2 matrix is centred on the
viewing direction. At nadir the FOR of 4 IASI pixels project to a ground a square area of ≈ 50× 50 km2.
More details on IASI and its mission objectives can be found in [24].

IASI footprints corresponding to desert sand (14 soundings) and the gravel plain (20 soundings)
are shown in Figure 2. Those on the desert sand were used to check the sensitivity of the
retrieval algorithm to different emissivity features. The IASI soundings correspond to view angles
between 5 and 55◦. This should be kept in mind when comparing to in situ observations, which are
taken at nadir. Furthermore, the IASI footprint approximates a circle with a diameter of 12 km at nadir,
whereas the in situ measurements represent point-like observations, which were collected over regions
with an extend of about 6 km.

Six IASI soundings (blue circles in Figure 2) were used in comparison against the in situ
measurements, i.e., those best collocated with the ground-based observations. Only clear sky IASI
measurements were considered. IASI clear sky soundings were identified through the AVHRR-based
cloud mask, which is provided by EUMETCast along with IASI L1C radiances. This cloud mask was
further improved by using the IASI stand alone cloud detection algorithm developed by [36,37]).

2.3. Retrieval Methodology

The retrieval methodology is based on what we call the ϕ-IASI package, which is the combination
of a forward mode, which can compute both upwelling and downwelling spectral radiances [38–42] and
an inverse methodology [43] based on Optimal Estimation [44]. The approach has been documented
and validated in a series of papers [45–49].

Applications of the methodology to surface emissivity have been explicitly dealt with [23,50,51].
In its most updated version (see e.g., [52–54]), the full IASI spectrum (8461 channels) is used to
simultaneously retrieve, the surface temperature (Ts) and emissivity spectrum (ε), the atmospheric
profiles of temperature (T), water vapour (Q), ozone (O), HDO, and CO2, and the column amount
of N2O, CO, CH4, SO2, HNO3, NH3, OCS and CF4.

2.3.1. The Forward Model

The forward model we use in this paper [38] computes the upwelling spectral radiance R(σ)
(with σ the wave number) at the monochromatic level. The monochromatic spectrum is convolved
with the spectral response function of the given instrument (e.g., IASI) to obtain the appropriate spectral
radiance. For the case of IASI, the spectral radiance can be cast in a vector R of M = 8461 elements,
as many as the IASI channels.

The radiative transfer embedded in σ-IASI takes the form,

R(σ) = Rs(σ) + Ra(σ) + Rr(σ) (1)

where R is the upwelling radiance decomposed in its surface term at the top-of-atmosphere, Rs,
atmospheric component, Ra and surface reflected part, Rr, respectively. All quantities depend on
the wave number σ and the dependence over the directional angle is implicit. In its latest version,
σ-IASI can deal with Lambertian and/or specular surfaces and the solar radiation is properly taken
into account (e.g., [55]). The explicit inclusion of the term Rr(σ) is important for emissivity retrieval,
because it depends on emissivity alone, while the surface term, Rs(σ) depends on the product of
emissivity and the Planck function computed at the surface temperature.

The derivation and the explicit form of Rs(σ), Ra(σ), Rr(σ) we deal with in σ-IASI can be found
in [23] and they are not repeated here for the sake of brevity. For the right understanding of the present
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paper it suffices to say that the forward model is a suitable non linear function F, which relates the
upwelling radiance vector, R to the surface-atmosphere state vector, v. In a vector-matrix notation
we have

R = F(v) (2)

where the radiance vector is made up with M radiance elements R(σi computed at M wave numbers
σi, i = 1, . . . , M). As said, for IASI we have M = 8461.

2.3.2. The Inverse Approach

The inverse methodology module is δ-IASI [43,52,54] and it yields an estimate v̂ for a given
set of observed radiances, R. Until 2016, the emissivity spectrum over the IASI range was
parameterized through a Fourier Transform, whereas in the most up-to-date δ-IASI version we use a
truncated Principal Component Analysis (PCA) transform. The first twenty PCA scores are retained,
hence retrieved. The use of PCA instead of Fourier is not a matter of retrieval accuracy, when rather a
problem of compact representation of the emissivity spectrum. The Fourier series tends to converge
slowly in comparison to the PCA transform. This effect is exemplified in Figure 5, where we show
the emissivity retrieval for a set of 70 IASI soundings over the Algerian, Sahara desert in June 2007.
It is seen that the Fourier expansion, to extract the same information as that corresponding to 20 PC
scores, needs 450 coefficients (a factor more than 20!). For this reason, the Fourier approach has been
dismissed in favour of PCA.
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Figure 5. (a) Exemplifying the emissivity retrieval with Fourier series and PCA expansion. The results
have been averaged over 70 IASI soundings recorded over a target area in the Algerian, Sahara desert
in June 2007. Note how 20 PC scores are as much effective as 450 Fourier coefficients. (b) Difference
between PCA and Fourier .

In its mathematical aspects, the PCA retrieval strategy for emissivity mimics the previous Fourier
approach [23]. However, the mathematical details are discussed and presented below in some detail
for the sake of clarity.

To retrieve the emissivity spectrum we have to properly define and compute a linearized form of
the forward model around a suitable First Guess state vector, vo. We have,

R− Ro = K (v− vo) (3)



Remote Sens. 2018, 10, 976 8 of 22

with with Ro = F(vo). The size of the full state vector will be denoted by N, therefore the Jacobian
matrix K has size M× N and is computed according to

K =
∂F
∂v
|v=vo (4)

Because the derivative is additive, the part related to the emissivity in the state vector and that to
the other parameters can be separated,

K = (K1, K2) (5)

and

v− vo =

(
v1 − vo1

v2 − vo2

)
(6)

where the subscripts 1 and 2 refer to the atmospheric and emissivity components, respectively.
The number of atmospheric parameters will be denoted by N1, while that corresponding to emissivity
by N2. Of course, N1 + N2 = N. For convenience the atmospheric parameters also include the
surface temperature.

The Jacobian K1 is computed as usual as the derivative of the radiance, R(σ), with respect to the
surface temperature and atmospheric parameters.

In the same way, K2 is computed by differentiating R(σ) with respect to emissivity. However,
the computation of K2 is less straightforward because we first transform emissivity to project it into
an unbounded space (spanning from −∞ to +∞) and then reduce its dimensionality.

We achieve this by transforming emissivity with the logit function,

z(i) = logit(ε(i)) = log
(

ε(i)
1− ε(i)

)
, i = 1, ..., M (7)

whose inverse is,

ε(i) =
exp(z(i))

1 + exp(z(i))
, i = 1, ..., M (8)

where, to simplify the notation, we have written ε(i) instead of ε(σi) (with σi the wave number),
and where M is the number of radiance data points or channels. We stress that at this stage the
emissivity spectrum is represented with a vector of size M, i.e., it has the same dimensionality as the
spectral radiance vector.

The logit transform allows us to work with a quantity, z, which is defined in the range [−∞,+∞]

and, hence, transform the emissivity, which is defined over the range [0,1], to a new unbounded
parameter. Once back transformed, the retrieved emissivity is forced to be a number in the interval [0,1].
Because of the logit transform also avoids the retrieval of un-physical emissivities and/or the use of
boundary constraints on each parameter.

Using the chain rule for the derivative of a composite function, we can write the derivative with
respect to z in terms of the derivative with respect to emissivity,

d2(i) =
∂R(i)
∂z(i)

=
∂R(i)
∂ε(i)

(
∂z(i)
∂ε(i)

)−1

=
∂R(i)
∂ε(i)

ε(i)(1− ε(i)) i = 1, ..., M (9)

Note that at this stage the emissivity derivative is a scalar function which depends on the wave
number alone. Based on d2, we can easily linearize the forward model with respect to z. The component
pertinent to emissivity reads,

∂R(i)
∂z(i)

(z(i)− zo(i)) = d2(i)(z(i)− zo(i)) i = 1, ..., M (10)

with zo a suitable first-guess point. In vector notation Equation (10) can be written according to
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Kz,2(z− zo) (11)

with Kz,2 a diagonal matrix with elements, Kz,2(i, i) = d2(i) and z, zo the vectors with
elements z(i), zo(i), respectively. Second, we develop the z spectrum in a truncated PCA series,
with truncation point, τ ≤ M. To this end we need a suitable ensemble of emissivity spectra to develop
the PCA basis. For the present analysis, the appropriate emissivity ensemble is obtained by the ASTER
(Advanced Spaceborne Thermal Emission Reflection Radiometer) Spectral Library version 2.0 [56]
and the MODIS (Moderate Resolution Imaging Spectrometer) UCSB (University of California,
Santa Barbara) Emissivity Library (http://www.icess.ucsb.edu/modis/EMIS/html/em.html, accessed
on 19 June 2018). The ensemble counts 134 emissivity spectra (see Figure 6), which are representative,
at a global scale, of senescent and green vegetation, bare soil, desert sand and rock emissivities.
The emissivity spectra are laboratory measurements at a spectral sampling of 2 cm−1. They have
been linearly re-sampled at the IASI sampling of 0.25 cm−1 and re-interpolated to the IASI range
645 to 2760 cm−1. The mean and standard deviation of the ensemble are shown in Figure 7.
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Figure 6. Ensemble of laboratory emissivity spectra used to construct the PCA basis.
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Figure 7. Mean and standard deviation of the ensemble of emissivity shown in Figure 6.
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Before performing the PCA development, the quantity z is first centered and standardized
according to

z̃(i) =
z(i)− µz(i)

sz(i)
i = 1, ..., M (12)

with µz(i) and sz(i) the mean and standard deviation of the ensemble of the logit transform of surface
emissivity spectra used to build up the PCA basis (see Figure 7). Let U be the PCA orthogonal basis
(of size M×M), then we have

z̃ = Uτcτ (13)

with c is the PCA scores vector, which can be computed according to

c = Utz (14)

where the superscript t indicates the operation of matrix transposition. In the above equations Uτ is a
matrix of size M× τ formed with the first τ columns of U and cτ the vector c truncated after the first
τ elements.

Defining the diagonal matrix, Sb according to

Sb(i, i) = s2
ε (i); Sb(i, j) = 0; for i 6= j; i, j = 1, . . . , M (15)

and considering the truncated expansion of z̃, the emissivity linear term of Equation (11) transform to

Kz,2(z− zo) = Kz,2S
1
2
b Uτ(cτ − co,τ) (16)

or by simply setting K2 = Kz,2S
1
2
b Uτ

K2(cτ − coτ) (17)

which shows that the emissivity state vector (v2 in Equation (6)) contains the PCA coefficients or scores,
v2 ≡ cτ = (c1, . . . , cτ). In this way, we have N2 = τ so that K2 is a matrix of size M× τ, v2 is a vector
of size τ. Thus, if we use τ << M we can achieve a large dimensionality reduction and represent
the whole emissivity spectrum over the IASI spectral coverage from 645 to 2760 cm−1 with a few
PCA scores.

To select the appropriate truncation point τ, we look at the eigenvalues of the PCA decomposition.
These eigenvalues are shown in Figure 8 and drops below 1 at τ = 20. Since we work with standardized
quantities, values below 1 mostly indicate noise, therefore we choose τ = 20 as truncation point.
This choice agree with the so called Kaiser criterion (e.g., [57]) and corresponds to an explained
variance of 99.04%. It should be stressed that with twenty PC scores we can represent all the important
spectral features. The infrared emissivity spectrum is a smooth function of wave number and mainly
in case of desert sand or soil containing quartz, there is a sharp spectral feature around 8.6 µm due to
the reststrahlen band. With twenty scores this feature is fully resolved as seen in Figure 9, which shows
a typical example of desert sand emissivity and its reconstruction with 5, 10 and 20 PCA scores.
In general, the emissivity of natural and terrestrial materials in the infrared can be fully resolved at
a spectral resolution of 2 cm−1 (e.g., [56]), therefore 20 PCA scores should be enough to correctly
represent emissivity of Earth’s surface.
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Figure 8. Singular values of the PCA decomposition of the ensemble of spectra shown in Figure 6.
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Figure 9. Example of PCA reconstruction of a typical desert sand emissivity with a number of PC
scores equal to 5, 10 and 20, respectively.

2.3.3. Implementation and Emissivity Error Analysis

According to Optimal Estimation [44], for the practical implementation of the retrieval approach
we have to choose the background (both state vector, va and associated covariance matrix, Sa), the First
Guess state vector, vo, around which to linearize the forward model, and the observational covariance
matrix, Sε, that is the matrix which models the noise affecting radiances. For Sε we use the full level
1C covariance matrix for IASI (see e.g., [53]).

We stress that the model δ-IASI performs the mathematical inversion of the whole IASI radiance
spectrum (8461 channels) to simultaneously retrieve the state vector, which includes the surface
temperature (Ts) and emissivity (ε), the atmospheric profiles of temperature (T), water vapour (Q),
ozone (O), and HDO, and the columnar amount of CO2, N2O, CO, CH4, SO2, HNO3, NH3,
OCS and CF4. In a normal run, the profile quantities are specified on a pressure grid of 60 layers
spanning the whole atmosphere from 1100 to 0.005 hPa. Considering that we have τ = 20 PC scores
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and 10 scalar parameters to be retrieved, we have that in a normal run the size of the state vector is
N = 330, of which N1 = 310 for the atmosphere (included the surface temperature) and N2 = 20
for emissivity.

For a fast convergence of the retrieval scheme, the background or a priori and first guess state
vectors should be chosen so that they are as much as possible in the linear region of the radiative
transfer equation. Towards this objective, we use ECMWF (European Centre for Medium range Weather
Forecasts) analysis for (T, Q, O) collocated in space and time with the IASI soundings (see [53] for
details). The use of ECMWF (T, Q, O) analysis is providing a strong constraint in the inverse scheme
and we think that the corresponding profiles are reliable. This allows us to relax the constraints for the
trace gases. In effect, their profiles are normally adjusted starting from a climatology as a first guess
and the retrieved profiles reach their final values within one or two iterations.

For emissivity we use the mean value of the ensemble of states shown in Figure 6 (note that
in the PC-space the mean corresponds to the zero vector) as background state. Based on the PCA
theory, the covariance matrix of the PC scores is diagonal with elements equal to the singular values
(see Figure 8). Thus, for the background matrix of the τ PC scores we use a diagonal matrix of size τ× τ

with the diagonal elements set to the first τ eigenvalues. Again, we stress that we use τ = 20 PC scores.
Usually, the First Guess vector is set to the background state. However, this is not feasible for

emissivity retrieval because the mean values (Figure 6) could be too far from the true emissivity state,
and, therefore, could be outside the linear region around the true state vector. The consequence could
be either that convergence is not reached or only after many iterations. To ensure we stay as close
as possible to the linear region of the inverse problem solution, we use the University of Wisconsin
(UW) Baseline Fit (BF) Emissivity database (UW/BFEMIS database, e.g., http://cimss.ssec.wisc.edu/
iremis/ [12] ) to set a suitable First Guess. The procedure to calculate the emissivity First Guess
with spectral coverage and sampling matching that of IASI is described in [50]. It is important to
stress UW/BFEMIS database is used to obtain a suitable emissivity First Guess and not to define the
background state vector, which is still the mean emissivity spectrum shown in Figure 6.

A detailed account on background state vectors and related covariances matrices would take
too long to explain here, at expense of the main topic of this paper, which is validation of the
emissivity product. Thus, for the sake of brevity, the interested reader is referred to [53,54].

Once we have defined and/or computed background states and covariance, First Guess state and
spectral radiances, the estimate v̂ of v according to Optimal Estimation is obtained by

v̂ = va + (S−1
a + KtS−1

ε K)−1KtS−1
ε ((R− F(vo))−K(va − vo)) (18)

We stress again that v̂, va, vo are the parameter state vector (estimated), the a priori or background
vector and the first guess state vector, respectively; R is the radiance vector and F is the forward model;
Sa and Sε are the background and observational covariance matrices, respectively.

For a full assessment of the accuracy and/or error affecting the estimate v̂, Equation (18) has to be
complemented with the Averaging Kernels (e.g., [43]),

∂v̂
∂v

= (S−1
a + KtS−1

ε K)−1KtS−1
ε K (19)

and the a posteriori or retrieval covariance matrix,

Ŝc =
(

S−1
a + KtS−1

ε K
)−1

(20)

It has to be stressed that the a posteriori covariance matrix Ŝc applies to the atmospheric
parameters and the PCA coefficients of the logit-transformed emissivity spectrum. To obtain the
covariances in physical emissivity space, the above covariance matrix has to be adequately transformed.

http://cimss.ssec.wisc. edu/iremis/
http://cimss.ssec.wisc. edu/iremis/
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The transformation is not straightforward. It can be obtained in two steps, which are here outlined for
the benefit of the reader.

First, we need to consider that the logit-transformed emissivity, z is related to the PC scores
through the transform

z− zo = S
1
2
b Uτ(cτ − coτ) (21)

Thus, the transform from the whole state vector (atmopshere+emissivity) with cτ-elements to that
with z-elements reads (

v1 − vo1

z− zo1

)
=

(
I1, 0
0, AF

)(
v1 − vo1

cτ − coτ

)
(22)

where I1 is the identity matrix (size N1 × N1) and AF = S
1
2
b Uτ .

If we define

AT =

(
I1, 0
0, AF

)
(23)

then the covariance matrix corresponding to the z-elements is given by

Ŝz = ATŜcAt
T (24)

It should be noted that this matrix has size (M + N1)× (M + N1), because the emissivity has
been back projected to its physical space in which its dimensionality is that of the radiance vector
which contains a separate emissivity value for each spectral channel.

Second, from the logit transform we learn that a variation in the emissivity at channel i, that is
∆ε(i) corresponds to a variation ∆z(i) according to

∆ε(i) = (1− ε(i)) ε(i)∆z(i) (25)

Let us define the diagonal matrix ∆ according to

∆ii =

{
1 i = 1, . . . , N1

(1− ε(i− N1)) ε(i− N1) i = N1 + 1, . . . , M + N1
(26)

then the final a posteriori covariance matrix, Ŝ for the atmospheric and emissivity elements is given by

Ŝ = ∆Ŝz∆t (27)

Figure 10 shows the Averaging Kernels or AK (e.g., [43]) for the τ = 20 PC scores used to
represent the emissivity spectrum. The example applies to one of the IASI soundings shown in Figure 2.
One important aspect of this AK is that it is nearly one at each PC score. The degrees of freedom are in
fact 19.71, very close to the value of 20, which corresponds to a retrieval for which the twenty PC scores
were fully resolved by the data. This is one of the main results of this study. In effect, Figure 10 shows
that the emissivity spectrum (at least in its PC truncated decomposition) is determined solely from
the data, i.e., the retrieval has no important dependence on the background. Hence, the smoothing
error is zero and the dominant source of noise is the error contained in the spectral radiances and to a
lesser extent the effectiveness of the PC truncated transform.
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Figure 10. Example of Averaging Kernels for the twenty PC scores in the retrieved state vector.
The example corresponds to one of the IASI soundings in Figure 2.

Figure 11 exemplifies the retrieved emissivity for one of the IASI soundings shown in Figure 2,
whereas Figure 12 shows the accuracy of the retrieval computed according to Equation (27). It is seen
that the retrieved emissivity is independent of the background and has an accuracy ranging from
0.1 to 1% throughout the spectral coverage from 645 to 2760 cm−1. The best accuracy corresponds
to the window region of 8–12 µm (≈ 800 to 1200 cm−1), where the retrieval error is of order of 0.1%.
In this range, the IASI radiometric noise is very samll (≈ 0.15 K at a scene temperature of 280 K),

whereas at the end of the spectral range (beyond 2500 cm−1), the noise can reach values as large
as 4–6 K.
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Figure 11. Example of emissivity retrieval corresponding to one of the IASI soundings in Figure 2.
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Figure 12. Example of emissivity retrieval for one of the IASI soundings in Figure 2. Its accuracy was
calculated as the square root of the diagonal elements of the a posteriori matrix Equation (27).

3. Results and Discussion

Figure 13 shows the emissivity retrieval for the set of IASI soundings over the desert sand,
whereas Figure 14 shows the retrieved emissivities for the set of soundings over the gravel plain
(Compare Figure 2). As expected, the two sets show considerable differences in variability, which is
more markedly seen in the spectral range of the reststrahlen bands (≈ 1000 to 1250 cm−1). In effect
the scene is more homogeneous over desert sand than the gravel plain and the absorption of the
reststrahlen band is mostly determined from the abundance and grain texture of quartz. The sands
and dune-fields of the Namib desert have little vegetation cover, so that their main spectral features is
due to the rich content of quartz, which for almost 70% has a grain size below 250 µm (40 (cm−1)) [58].
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Figure 13. Retrieval of emissivity from IASI soundings over desert sand.
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This abundance of fine grain size particles yields an emissivity spectrum with a characteristic
fingerprint within the reststrahlen band at 8.6 µm (1162.8 cm−1). Thus, the Namib desert sand
soundings can be used as a benchmark to check the retrieval quality of the emissivity spectrum, in the
sense that the emissivity spectrum must show this characteristic fingerprint. For fine grained quartz
sand the reststrahlen band at 8.6 µm (1162.8 cm−1) is characterized by two local minima (at 8.27 µm,
1209.2 cm−1 and 9.32 µm, 1073 cm−1) of which the deepest occurs at 9.32 µm (1073 cm−1).
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Figure 14. Retrieval of emissivity from IASI soundings over the gravel plain.

This structure tends to reverse with coarse-grained particulate (range of grain size 250 to 1500 µm)
where the deepest minima occurs at 8.27 µm (1209.2 cm−1), see, e.g., [59]. By looking at the slope
of these two minima we can gain information about the grain size of the quartz sand. For the IASI
soundings at hand the slope should be positive, which in fact is the case: Figure 15 compares the
average emissivity for the soundings over sand and gravel plain. Similar results have been found
by [16,23].

Finally, Figure 16 compares the mean emissivity of the six IASI soundings with the mean emissivity
of the in situ measurements. The comparison includes the IASI soundings, which are best collocated
with in situ measurements. The figure also shows the ±3σ interval as computed from the variability
(standard deviation) of in situ measurements.

The comparison in Figure 16 shows that IASI is capable to retrieve the two strongest
silicate fundamental vibration bands (800 cm−1 and 1150 cm−1), which occur in the 8–14 µm
atmospheric window. The shape of the retrieved emissivity spectrum agrees well with the in situ
measurements and differences are generally below 0.025. However, a bias of ≈ 0.02 exists between in
situ measurements and IASI observations. This difference can be explained by the angle dependence of
emissivity [60]. This dependence becomes important at zenith angles larger than 40◦, where emissivity
decreases with the increase of zenith angle. According to [60] the decrease is most pronounced
in sand, which is rich in quartz, reaching a maximum of about 0.10 at 70◦. Furthermore, the decrease
depends on wave number and tends to be larger at ≈ 8–8.7 µm (1150–1250 cm−1). The IASI soundings
considered for the comparison have a zenith angle of: 37.04◦, 52.12◦, 31.76◦, 25.41◦, 52.28◦, respectively.
Another effect that has to be considered is the IASI diameter of the Field of View (FOV) that for the
set of angles used here is larger than 12 km. Although flat and homogeneous, the target area shows
emissivity variability at the scale of meters as shown by the variability of in situ observations.



Remote Sens. 2018, 10, 976 17 of 22

500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000

wave number (cm-1)

0.7

0.75

0.8

0.85

0.9

0.95

1

S
p
e
c
tr

a
l 
e
m

is
s
iv

it
y

desert sand

gravel plain

Figure 15. Comparison of retrieved emissivity for desert sand and the gravel plain, which have been
obtained by averaging the spectra retrieved for the soundings shown in Figures 13 and 14. The black
straight line connecting the reststrahlen band minima has a positive slope as expected for fine-grained
quartz sand.
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Figure 16. IASI vs. in situ emissivity for the best collocated IASI soundings. The ± 3 σ interval is the
variability (standard deviation) of in situ measurements.

The angular effect cannot be addressed with the set of five soundings used for comparison with
in situ measurements, since they correspond to relatively large Field of View. However, if we consider
the full set of IASI soundings presented in this paper (Figure 3), we can evidence the angular effect.
The set has been divided in two sub-sets with observations corresponding to FOV< 15◦ and those
with FOV> 25◦. Actually, some 50% of the soundings within this latter set have FOVs larger than 40◦.
The emissivity retrieval corresponding to the two sets is shown in Figure 17 and as expected that with
lower FOVs has larger emissivity. This exercise has been shown just to exemplify that our methodology
is sensitive to angular effects. A more accurate assessment should consider the same target area seen
at different angles, an exercise which is out the scope of the present analysis.
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Figure 17. Exemplifying the angular dependence of emissivity on the angle of view. The figure shows
the mean retrieval for a set of IASI soundings with FOVs smaller than 15◦ and larger than 25◦. The set
of soundings is that shown in Figure 3.

4. Conclusions

Emissivity has a dimensionality as large as that of the observed radiance vector, therefore for
a given spectral observation, this usually leads to an inverse problem with more unknowns than
data points. In this paper, the dimensionality issue has been handled by representing the emissivity
spectrum with a truncated PC transform with twenty PCA coefficients. The PCA orthogonal basis was
obtained from a set of laboratory measurements and the methodology was applied to IASI and a set of
soundings over Gobabeb validation station (Namib desert), which was used to check the accuracy and
sensitivity of the methodology.

To date, the methodology we present is the first fully physical scheme, which depends only
on the data and exploits Optimal Estimation to retrieves twenty PCA scores. Once the twenty PCA
coefficients have been retrieved, the emissivity spectrum is calculated by taking the back transform
of the truncated PCA. Based on our previous work [23], the use of PCA requires fewer coefficients
than the Fourier transform. Furthermore, the presented retrieval scheme is very fast because of the
simplified algebra. In effect, the computational time of the inverse problem is almost negligible
compared to the forward model. For a single IASI sounding the inverse procedure takes ≈ 1 s (with a
processor Intel(R) Core (TM) i7-4712HQ CPU 2.30 GHz (Santa Clara, CA, USA), 16 GB Ram) to retrieve
the complete list of parameters: surface temperature (Ts) and emissivity spectrum (ε), the atmospheric
profiles of temperature (T), water vapour (Q), ozone (O), HDO, and CO2, and the column amount
of N2O, CO, CH4, SO2, HNO3, NH3, OCS and CF4. Another important aspect of our methodology
is that atmospheric parameters are simultaneously retrieved with the surface parameters, therefore,
the retrieval scheme does not require an atmospheric correction.

A set of in situ emissivity measurements over the spectral range from 750 to 1250 cm−1 has
been compared IASI emissivity retrievals: the results show very good agreement, particularly if the
dependence on zenith angle and the inherent variability of emissivity are properly considered.

The fact that the methodology depends mostly on the data and much less on background
constraints opens the way to effective change detection analysis with hyper-spectral sensors such as
IASI and allows addressing important applications, e.g., the monitoring of ice sheet and desert extent,
oil spills, forest fires and agriculture, to name but a few.
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MIUR Italian Ministry of Education, University and Research
NPL National Physical Laboratory
PCA Principal Component Analysis
SAF Satellite Applictaion Facility

References

1. Masiello, G.; Serio, C.; De Feis, I.; Amoroso, M.; Venafra, S.; Trigo, I.F.; Watts, P. Kalman filter physical
retrieval of surface emissivity and temperature from geostationary infrared radiances. Atmos. Meas. Tech.
2013, 6, 3613–3634. [CrossRef]

2. Masiello, G.; Serio, C.; Venafra, S.; Liuzzi, G.; Göttsche, F.-M.; Trigo, I.F.; Watts, P. Kalman filter
physical retrieval of surface emissivity and temperature from SEVIRI infrared channels: A validation
and intercomparison study. Atmos. Meas. Tech. 2015, 8, 2981–2997. [CrossRef]

3. Knuteson, R.O.; Dedecker, R.G.; Feltz, W.F.; Osbourne, B.J.; Revercomb, H.E.; Tobin, D.C. Infrared land
surface emissivity in the vicinity of the ARM SGP central facility. In Proceedings of the Thirteenth ARM
Science Team Meeting, Broomfield, Colorado, 31 March–4 April 2003. Available online: https://www.arm.
gov/publications/proceedings/conf13/extended_abs/knuteson-ro.pdf (accessed on 19 June 2018).

4. Knuteson, R.O.; Best, E.A.; DeSlover, D.H.; Osborne, B.J.; Revercomb, H.E.; Smith, W.L. Infrared land
surface remote sensing using high spectral resolution aircraft observations, Adv. Space Res. 2004, 33,
1114–1119,[CrossRef]

5. Smith, W.L.; Knuteson, R.O.; Revercomb, H.E.; Feltz, W.F.; Howell, H.B.; Menzel, W.P.; Brown, O.; Brown, J.;
Minnett, P.; McKeown, W. Observations of the infrared radiative properties of the Ocean-Implications for
the measurement of sea surface temperature via satellite remote sensing. Bull. Am. Meteorol. Soc. 1996, 77,
41–52. [CrossRef]

6. Fiedler, L.; Bakan, S. Interferometric measurements of sea surface temperature and emissivity.
Deutsch. Hydrogr. Z. 1997, 49, 357–365. [CrossRef]

7. Minnett, P.J.; Knuteson, R.O.; Best, F.A.; Osborne, B.J.; Hanafin, J.A.; Brown, O.B. The Marine-Atmospheric
Emitted Radiance Interferometer: A High-Accuracy, Seagoing Infrared Spectroradiometer. J. Atmos. Ocean. Tech.
2001, 18, 994–1012. [CrossRef]

8. Newman, S.M.; Smith, J.A.; Glew, M.D.; Rogers, S.M.; Taylor, J.P. Temperature and salinity dependence of
sea surface emissivity in the thermal infrared. Q. J. Roy. Meteor. Soc. 2005, 131, 2539–2557. [CrossRef]

http://dx.doi.org/10.5194/amt-6-3613-2013
http://dx.doi.org/10.5194/amt-8-2981-2015
https://www.arm.gov/publications/proceedings/conf13/extended_abs/knuteson-ro.pdf
https://www.arm.gov/publications/proceedings/conf13/extended_abs/knuteson-ro.pdf
http://dx.doi.org/10.1016/S0273-1177(03)00752-X
http://dx.doi.org/10.1175/1520-0477(1996)077<0041:OOTIRP>2.0.CO;2
http://dx.doi.org/10.1007/BF02764044
http://dx.doi.org/10.1175/1520-0426(2001)018<0994:TMAERI>2.0.CO;2
http://dx.doi.org/10.1256/qj.04.150


Remote Sens. 2018, 10, 976 20 of 22

9. Gillespie, A.; Rokugawa, S.; Matsunaga, T.; Cothern, J.S.; Hook, S.; Kahle, A.B. A temperature and emissivity
separation algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)
images. IEEE T. Geosci. Remote 1998, 36, 1113–1126. [CrossRef]

10. Masiello, G.; Serio, C.; Cuomo, V. Exploiting Quartz Spectral Signature for the Detection of Cloud-Affected
Satellite Infrared Observations over African Desert Areas. Appl. Opt. 2004, 43, 2305–2315. [CrossRef]
[PubMed]

11. Clough, S.A.; Shephard, M.W.; Worden, J.; Brown, P.D.; Worden, H.M.; Mingzhao, L.; Rodgers, C.D.;
Rinsland, C.P.; Goldman, A.; Brown, L.; et al. Forward model and Jacobians for Tropospheric Emission
Spectrometer retrievals. IEEE Trans. Geosci. Remote 2006, 44, 1308–1323. [CrossRef]

12. Seemann, S.W.; Borbas, E.F.; Knuteson, R.O.; Stephenson, G.R.; Huang, H.L. Development of a Global
Infrared Land Surface Emissivity Database for Application to Clear Sky Sounding Retrievals from
Multispectral Satellite Radiance Measurements. J. Appl. Meteor. Clim. 2007, 47, 108–123. [CrossRef]

13. Wan, Z.M. New refinements and validation of the MODIS Land-Surface Temperature/Emissivity products.
Remote Sens. Environ. 2008, 112, 59–74. [CrossRef]

14. Hulley, G.C.; Hook, S.J.; Baldridge, A.M. ASTER land surface emissivity database of California and Nevada.
Geophys. Res. Lett. 2008, 35, L13401. [CrossRef]

15. Péquignot, E.; Chédin, A.; Scott, N.A. Infrared continental surface emissivity spectra retrieved from AIRS
hyperspectral sensor. J. Appl. Meteor. Clim. 2008, 47, 1619–1633. [CrossRef]

16. Hulley G.C.; Hook, S.J.; Manning, E.; Lee, S.-Y.; Fetzer, E. Validation of the Atmospheric Infrared Sounder
(AIRS) version 5 land surface emissivity product over the Namib and Kalahari deserts. J. Geophys. Res. 2009,
114, D19104. [CrossRef]

17. Hulley, G.C.; Hook, S.J. Intercomparison of versions 4, 4.1 and 5 of the MODIS land surface temperature and
emissivity products and validation with laboratory measurements of sand samples from the Namib Desert,
Namibia. Remote Sens. Environ. 2009, 113, 1313–1318. [CrossRef]

18. Hulley, G.C.; Hook, S.J. The North American ASTER Land Surface Emissivity Database (NAALSED)
version 2.0. Remote Sens. Environ. 2009, 113, 1967–1975. [CrossRef]

19. Li, J.; Li, J.; Weisz, E.; Zhou, D. Physical retrieval of surface emissivity spectrum from hyperspectral infrared
radiances. Geophys. Res. Lett. 2007, 34, L16812. [CrossRef]

20. Zhou, D.K.; Goldberg, M.; Barnet, C.; Cheng, Z.; Sun, F.; Wolf, W.; King, T.; Liu, X.; Sun, H.; Divakarla, M.
Regression of surface spectral emissivity from hyperspectral instruments. IEEE T. Geosci. Remote 2008 46,
328–333. [CrossRef]

21. Zhou, D.K.; Larar, A.M.; Liu, X.; Smith, W.L.; Strow, L.L.; Yang, P.; Schlüssel, P.; Calbet, X. Global Land
Surface Emissivity Retrieved From Satellite Ultraspectral IR Measurements. IEEE Trans. Geosci. Remote 2011,
49, 1277–1290. [CrossRef]

22. Ma, X.; Wan, Z.; Moeller, C.; Menzel, W.; Gumley, L. Simultaneous Retrieval of Atmospheric Profiles,
Land-Surface Temperature, and Surface Emissivity from Moderate-Resolution Imaging Spectroradiometer
Thermal Infrared Data: Extension of a Two-Step Physical Algorithm. Appl. Opt. 2002, 41, 909–924. [CrossRef]
[PubMed]

23. Masiello, G.; Serio, C. Simultaneous physical retrieval of surface emissivity spectrum and atmospheric
parameters from infrared atmospheric sounder interferometer spectral radiances. Appl. Opt. 2013, 52,
2428–2446. [CrossRef] [PubMed]

24. Hilton, F.; Armante, R.; August, T.; Barnet, C.; Bouchard, A.; Camy-Peyret, C.; Capelle, V.; Clarisse, L.;
Clerbaux, C.; Coheur, P.; et al. Hyperspectral Earth Observation from IASI: Five Years of Accomplishments.
Bull. Am. Meteorol. Soc. 2012, 93, 347–370. [CrossRef]

25. Göttsche, F.-M.; Olesen, F.-S.; Bork-Unkelbach, A. Validation of land surface temperature derived from
MSG/SEVIRI with in situ measurements at Gobabeb, Namibia. Int. J. Remote Sens. 2013, 34, 3069–3083.
[CrossRef]

26. Göttsche, F.-M.; Olesen, F.-S.; Trigo, I.F.; Bork-Unkelbach, A.; Martin, M.A. Long Term Validation of Land Surface
Temperature Retrieved from MSG/SEVIRI with Continuous in-Situ Measurements in Africa. Remote Sens. 2016,
8, 410. [CrossRef]

http://dx.doi.org/10.1109/36.700995
http://dx.doi.org/10.1364/AO.43.002305
http://www.ncbi.nlm.nih.gov/pubmed/15098833
http://dx.doi.org/10.1109/TGRS.2005.860986
http://dx.doi.org/10.1175/2007JAMC1590.1
http://dx.doi.org/10.1016/j.rse.2006.06.026
http://dx.doi.org/10.1029/2008GL034507
http://dx.doi.org/10.1175/2007JAMC1773.1
http://dx.doi.org/10.1029/2009JD012351
http://dx.doi.org/10.1016/j.rse.2009.02.018
http://dx.doi.org/10.1016/j.rse.2009.05.005
http://dx.doi.org/10.1029/2007GL030543
http://dx.doi.org/10.1109/TGRS.2007.912712
http://dx.doi.org/10.1109/TGRS.2010.2051036
http://dx.doi.org/10.1364/AO.41.000909
http://www.ncbi.nlm.nih.gov/pubmed/11908219
http://dx.doi.org/10.1364/AO.52.002428
http://www.ncbi.nlm.nih.gov/pubmed/23670773
http://dx.doi.org/10.1175/BAMS-D-11-00027.1
http://dx.doi.org/10.1080/01431161.2012.716539
http://dx.doi.org/10.3390/rs8050410


Remote Sens. 2018, 10, 976 21 of 22

27. Göttsche, F.-M.; Olesen, F.; Poutier, L.; Langlois, S.; Wimmer, W.; Garcia Santos, V.; Coll, C.; Niclos, R.;
Arbelo, M.; Monchau, J.P. Fiducial Reference Measurements for Validation of Surface Temperature from
Satellites (FRM4STS), Report from the Field Inter-Comparison Experiment (FICE) for Land Surface Temperature
(OFE-D130-LST-FICE-Report-V1-Iss-1-Ver-1); ESA: Noordwijk, The Netherlands, accepted by ESA on
5 June 2018.

28. Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification.
Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [CrossRef]

29. Lancaster, J.; Lancaster, N.; Seely, M.K. Climate of the central Namib desert. Madoqua 1984, 14, 5–61.
Available online: https://journals.co.za/content/madoqua/14/1/AJA10115498_484 (accessed on 19 June 2018).

30. Eckardt, F.D.; Soderberg, K.; Coop, L.J.; Muller, A.A.; Vickery, K.J.; Grandin, R.D.; Jack, C.; Kapalanga, T.S.;
Henschel, J. The nature of moisture at Gobabeb, in the central Namib Desert. J. Arid Environ. 2013, 93, 7–19.
[CrossRef]

31. Seely, M.K. Standing crop as an index of precipitation in the central Namib grassland. Madoqua 1978, 9,
5–13. Available online: https://journals.co.za/content/madoqua/11/1/AJA10115498_168 (accessed on
19 June 2018).

32. Kanani, K.; Poutier, L.; Nerry, F.; Stoll, M.-P. Directional effects consideration to improve out-doors emissivity
retrieval in the 3–13 µm domain. Opt. Express 2007, 15, 12464–12482. [CrossRef] [PubMed]

33. Borel, C.C. Surface emissivity and temperature retrieval for a hyperspectral sensor. In Proceedings
of the 1998 IEEE International Geoscience and Remote Sensing Symposium, Seattle, WA, USA,
6–10 July 1998; pp. 546–549. [CrossRef]

34. Theocharous, E.; Barker Snook, I.; Fox, N.P. Results from the 4th CEOS TIR FRM Field Radiometer Laboratory
Inter-Comparison Exercise Part 1 of 4: Blackbody Laboratory Comparison, ESA Technical Report OFE-D100 (Part1);
ESA: Noordwijk, The Netherlands, 2017.

35. Theocharous, E.; Barker Snook, I.; Fox, N.P. Results from the 4th CEOS TIR FRM Field Radiometer Laboratory
Inter-Comparison Exercise Part 2 of 4: Laboratory Comparison of Radiation Thermometers, ESA Technical Report
OFE-D100 (Part2); ESA: Noordwijk, The Netherlands, 2017.

36. Masiello, G.; Serio, C.; Shimoda, H. Qualifying IMG Tropical Spectra for Clear Sky. J. Quant. Spectrosc. Radiat.
2003, 77, 131–148, [CrossRef]

37. Amato, U.; Lavanant, L.; Liuzzi, G.; Masiello, G.; Serio, C.; Stuhlmann, R.; Tjemkes, S.A. Cloud mask
via cumulative discriminant analysis applied to satellite infrared observations: scientific basis and initial
evaluation. Atmos. Meas. Tech. 2014, 7, 3355–3372. [CrossRef]

38. Amato, U.; Masiello, G.; Serio, C.; Viggiano, M. The σ-IASI code for the calculation of infrared atmospheric
radiance and its derivatives. Environ. Modell. Softw. 2002, 17, 651–667. [CrossRef]

39. Rizzi, R.; Palchetti, L.; Carli, B.; Bonsignori, R.; Harries, J.E.; Leotin, J.; Peskett, S.C.; Serio, C.; Sutera, A.
Feasibility of the spaceborne radiation explorer in the far infrared (REFIR). In Optical Spectroscopic Techniques,
Remote Sensing, and Instrumentation for Atmospheric and Space Research IV; SPIE-The International Society for
Optical Engineering: Bellingham, WA, USA, 2002. [CrossRef]

40. Esposito, F.; Grieco, G.; Masiello, G.; Pavese, G.; Restieri, R.; Serio, C.; Cuomo, V. Intercomparison of
line-parameter spectroscopic databases using downwelling spectral radiance. Q. J. R. Meteorol. Soc. 2007,
133, 191–202. [CrossRef]

41. Serio, C; Esposito, F.; Masiello, G.; Pavese, G.; Calvello, M.R.; Grieco, G.; Cuomo, V.; Buijs, H.L.; Roy, C.B.
Interferometer for ground-based observations of emitted spectral radiance from the troposphere: Evaluation
and retrieval performance. Appl. Opt. 2008, 47, 3909–3919.

42. Bhawar, R.; Bianchini, G.; Bozzo, A.; Cacciani, M.; Calvello, M.R.; Carlotti, M.; Castagnoli, F.; Cuomo, V.;
Di Girolamo, P.; Di Iorio, T.; et al. Spectrally resolved observations of atmospheric emitted radiance in the
H2O rotation band. Geophys. Res. Lett. 2008, 35, L04812. [CrossRef]

43. Carissimo, A.; De Feis, I.; Serio, C. The physical retrieval methodology for IASI: the δ-IASI code.
Environ. Modell. Softw. 2005, 20, 1111–1126. [CrossRef]

44. Rodgers, C.D. Inverse Methods for Atmopsheric Sounding: Theory abd Practice; World Scientific: Singapore, 2000;
ISBN 981-02-2740-X.

45. Masiello, G.; Serio, C.; Antonelli, P. Inversion for atmospheric thermodynamical parameters of IASI data in
the principal components space. Q. J. Roy. Meteor. Soc. 2012, 138, 103–117. [CrossRef]

http://dx.doi.org/10.5194/hess-11-1633-2007
https://journals.co.za/content/madoqua/14/1/AJA10115498_484
http://dx.doi.org/10.1016/j.jaridenv.2012.01.011
https://journals.co.za/content/madoqua/11/1/AJA10115498_168
http://dx.doi.org/10.1364/OE.15.012464
http://www.ncbi.nlm.nih.gov/pubmed/19547618
http://dx.doi.org/10.1109/IGARSS.1998.702966
http://dx.doi.org/10.1016/S0022-4073(02)00083-3
http://dx.doi.org/10.5194/amt-7-3355-2014
http://dx.doi.org/10.1016/S1364-8152(02)00027-0
http://dx.doi.org/10.1117/12.454252.
http://dx.doi.org/10.1002/qj.131
http://dx.doi.org/10.1029/2007GL032207
http://dx.doi.org/10.1016/j.envsoft.2004.07.003
http://dx.doi.org/10.1002/qj.909


Remote Sens. 2018, 10, 976 22 of 22

46. Amato, U.; Antoniadis, A.; De Feis, I.; Masiello, G.; Matricardi, M.; Serio, C. Technical Note: Functional
sliced inverse regression to infer temperature, water vapour and ozone from IASI data. Atmos. Chem. Phys.
2009, 9, 5321–5330. [CrossRef]

47. Masiello, G.; Serio, C.; Carissimo, A.; Grieco, G.; Matricardi, M. Application of ϕ-IASI to IASI: Retrieval
products evaluation and radiative transfer consistency. Atmos. Chem. Phys. 2009, 9, 8771–8783. [CrossRef]

48. Grieco, G.; Masiello, G.; Serio, C. Interferometric vs. Spectral IASI Radiances: Effective Data-Reduction
Approaches for the Satellite Sounding of Atmospheric Thermodynamical Parameters. Remote Sens. 2010, 2,
2323–2346. [CrossRef]

49. Masiello, G.; Matricardi, M.; Serio, C. The use of IASI data to identify systematic errors in the ECMWF
forecasts of temperature in the upper stratosphere. Atmos. Chem. Phys. 2011, 11, 1009–1021. [CrossRef]

50. Masiello, G.; Serio, C.; Venafra, S.; De Feis, I.; Borbas, E.E. Diurnal variation in Sahara desert sand emissivity
during the dry season from IASI observations. J. Geophys. Res. 2014, 119, 1626–1638. [CrossRef]

51. Rozenstein, O.; Agam, N.; Serio, C.; Masiello, G.; Venafra, S.; Achal, S.; Puckrin, E.; Karnieli, A. Diurnal
emissivity dynamics in bare versus biocrusted sand dunes. Sci. Total Environ. 2015, 506–507, 422–429.
[CrossRef] [PubMed]

52. Serio, C.; Masiello, G.; Liuzzi, G. Demonstration of random projections applied to the retrieval problem
of geophysical parameters from hyper-spectral infrared observations. Appl. Opt. 2016, 55, 6576–6587.
[CrossRef] [PubMed]

53. Liuzzi, G.; Masiello, G.; Serio, C.; Venafra, S.; Camy-Peyret C. Physical inversion of the full IASI spectra:
Assessment of atmospheric parameters retrievals, consistency of spectroscopy and forward modelling.
J. Quant. Spectrosc. Radiat. 2016, 182, 128–157. [CrossRef]

54. Camy-Peyret, C.; Liuzzi, G.; Masiello, G.; Serio, C.; Venafra, S.; Montzka, S.A. Assessment of IASI capability
for retrieving carbonyl sulphide (OCS). J. Quant. Spectrosc. Radiat. 2017, 201, 197–208. [CrossRef]

55. Liuzzi, G.; Masiello, G.; Serio, C.; Meloni, D.; Di Biagio, C.; Formenti, P. Consistency of dimensional
distributions and refractive indices of desert dust measured over Lampedusa with IASI radiances.
Atmos. Meas. Tech. 2017, 10, 599–615. [CrossRef]

56. Baldridge, A.M.; Hook, S.J.; Grove, C.I.; Rivera, G. The ASTER Spectral Library Version 2.0.
Remote Sens. Environ. 2009, 113, 711–715. [CrossRef]

57. Kaiser, H.F. The application of electronic computers to factor analysis. Educ. Psychol. Meas. 1960, 20, 141–151.
[CrossRef]

58. Eckardt, F.D.; Livingstone, I.; Seely, M.; Von Holdt, J. An introduction to the surface geology and
geomorphology around Gobabeb, Namib Desert, Namibia. Geogr. Ann. A 2013, 95, 271–284. [CrossRef]

59. Salisbury, J.W.; D’Aria, D.M. Emissivity of terrestrial materials in the 8-14 µm atmospheric window.
Remote Sens. Environ. 1992, 42, 83–106. [CrossRef]

60. García-Santos, V.; Valor, E.; Caselles, V.; Ángeles Burgos, M.; Coll, C. On the angular variation of thermal
infrared emissivity of inorganic soils. J. Geophys. Res. 2012, 117, D19116. [CrossRef]

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.5194/acp-9-5321-2009
http://dx.doi.org/10.5194/acp-9-8771-2009
http://dx.doi.org/10.3390/rs2102323
http://dx.doi.org/10.5194/acp-11-1009-2011
http://dx.doi.org/10.1002/jgrd.50863
http://dx.doi.org/10.1016/j.scitotenv.2014.11.035
http://www.ncbi.nlm.nih.gov/pubmed/25437760
http://dx.doi.org/10.1364/AO.55.006576
http://www.ncbi.nlm.nih.gov/pubmed/27556974
http://dx.doi.org/10.1016/j.jqsrt.2016.05.022
http://dx.doi.org/10.1016/j.jqsrt.2017.07.006
http://dx.doi.org/10.5194/amt-10-599-2017
http://dx.doi.org/10.1016/j.rse.2008.11.007
http://dx.doi.org/10.1177/001316446002000116
http://dx.doi.org/10.1111/geoa.12028
http://dx.doi.org/10.1016/0034-4257(92)90092-X
http://dx.doi.org/10.1029/2012JD017931
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Data and Methods
	Validation Site
	Data
	Retrieval Methodology
	The Forward Model 
	The Inverse Approach
	Implementation and Emissivity Error Analysis


	Results and Discussion
	Conclusions
	References

