
HAL Id: hal-01870828
https://hal.science/hal-01870828v1

Submitted on 9 Sep 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Genetic Algorithm for Cost-Aware Business Processes
Execution in the Cloud

Guillaume Rosinosky, Samir Youcef, Francois Charoy

To cite this version:
Guillaume Rosinosky, Samir Youcef, Francois Charoy. A Genetic Algorithm for Cost-Aware Business
Processes Execution in the Cloud. ICSOC 2018 - The 16th International Conference on Service-
Oriented Computing, Nov 2018, Hangzhou, China. pp.14. �hal-01870828�

https://hal.science/hal-01870828v1
https://hal.archives-ouvertes.fr

A genetic algorithm for cost-aware business
processes execution in the cloud

Guillaume Rosinosky1, Samir Youcef1, and François Charoy1

Université de Lorraine, CNRS, Inria, LORIA F-54000 Nancy, France
guillaume.rosinosky,samir.youcef,francois.charoy@loria.fr

Abstract. With the generalization of the Cloud, software providers can
distribute their software as a service without investing in large infra-
structure. However, without an effective resource allocation method,
their operation cost can grow quickly, hindering the profitability of the
service. This is the case for BPM as a Service providers that want to
handle hundreds of customers with a given quality of service. Since there
are variations in the needed load and in the number of users of the ser-
vice, the allocation and scheduling methods must be able to adjust the
cloud resource quantity and size, and the distribution of customers on
these resources. In this paper, we present a cost optimization model and
an heuristic based on genetic algorithms to adjust resource allocation to
the needs of a set of customers with varying BPM task throughput. Ex-
perimentations using realistic customer loads and cloud resources capac-
ities show the gain of these methods compared to previous approaches.
Results show that, in our case, using our algorithm on split groups of
customers can provide better results.

Keywords: BPM, elasticity, cloud, optimization

1 Introduction

Consuming “Business Process Management as a Service” (BPMaaS) offer ben-
efits that IT people widely acknowledge. It reduces the operational burden and
allows to rely on the provider for the maintenance and provisioning of the service.
However, from the BPMaaS provider point of view, it increases the operational
complexity. The provider must ensure that all his customers receive the same
attention and a defined quality of service at all time. He must also ensure that
it operates at the best possible cost.

A Business Process Management System (BPMS) deployment is complex: it
requires application servers, process engines and database management systems.
Clustered installations requiring load balancers can also be deployed for high
availability. Each customer has a different usage pattern and the number of
tasks to execute evolves constantly. Each cloud compute resource is costly and
has a capacity corresponding to its CPU, memory, storage and network speed,
for a defined response time. In order to maintain an optimal infrastructure cost,
processes executions must be distributed on different cloud resources. Figure

2 Rosinosky et al.

1 shows an example with two customers (or tenants). They require different
capacity at each hour. We want to allocate the cheaper Cloud resources and
distribute the process execution of tenants on these resources to optimize the
operational cost.

Fig. 1. Multi tenant resource allocation and distribution tenants

In order to optimize resource usage, we must sometimes migrate tenants from
an installation to another. In figure 1, at time 5, tenant 1 is moved on the same
resource as tenant 2 because both require less capacity and fit on this resource.
A migration generates disruption of service on the customer side. We must stop
the processes and move the data from one installation to the other [1]. We must
find the best distribution of tenants on resources for each interval of time while
controlling the number of migrations for each tenant. This problem becomes
complex for a high numbers of tenants.

We propose an integer linear programming (ILP) model and a genetic algo-
rithm that aims at finding the best allocation strategy while limiting the number
of migrations per tenant. We improve our previous results [2] with a method that
provides a better cost elasticity.

In the next section, we describe our migration strategy model, our genetic
algorithm approach coupled to a solving of our model, and our previous iter-
ative heuristic. We then study experimental results on both of the approaches
compared to a baseline approach. We also show how we achieve interesting ex-
perimental results. Then, we compare our results with the state of the art. The
last part concludes and presents our future work.

A genetic algorithm for cost-aware business processes execution in the cloud 3

2 A migration strategy based model

In this Section we present the context for BPMaaS, our hypothesis and our
method to optimize resource cost. This can be seen as a resource allocation
problem with a constraint regarding the number of reallocations. Moving a te-
nant from a resource to another generates a service disruption. We want to limit
their number to ensure stable quality of service for the customers. Thus, one of
our problems is to find the right time to move tenants. We call it the migration
strategy.

2.1 Context and constraints

Our approach is tenant-centric. All customers (tenants) processes are executed
on the same BPMS installation. It is easier to manage deployments by customers
rather than by processes. Customer processes share business data and security
configuration that we need to manage together. Our assumptions are the follow-
ing :

BPMS do not scale infinitely. There is no such thing as an infinitely scalable
BPMS installation. Even clustered installation reach a limit due to the transac-
tional nature of the database interactions. Thus, we use several BPMS installa-
tions. In our approach, we assume our tenants can fit on the “bigger” resource
available.

Provisioning and deprovisioning takes time. We cannot change instantly te-
nant distribution, as computing instances instantiation, software installation,
and data migration takes time. Thus we compute resource allocation in a dis-
cretized manner at fixed time interval or time slot. A time slot is a significant
period of time for the provider: it could be a few seconds or an hour.

A tenant is a customer of the BPMaaS. Tenants run BPM processes composed of
tasks. To execute them, the BPMS needs computing power, network bandwidth,
disk and memory. It relies on separated compute instances for database systems
for data persistence, and load balancers for clustered installations.

Task throughput is our performance metric. It corresponds to the number of
BPM tasks executed for one period of time (e.g. per second). This metric is
meaningful for the customers.

Our approach is offline. We assume we know the required BPM task throughput
for each tenant and each time slot.

A cloud resource has a capacity expressed in BPM task throughput. A cloud
resource (or resource) is one or several cloud compute instances that we use for
the database tier, BPM system tier, load balancer tier, etc. It supports a full
BPMS installation. A cloud resource can host several tenants. In our case, we
assume a tenant fits on one resource: tenants won’t be distributed on several
cloud resources.

4 Rosinosky et al.

The number of migrations must be limited. We name migration the action of
moving a tenant data and processes from one cloud resource to another. It re-
quires the target cloud resource to be up and running. This action takes time to
be executed. If all tenants of a cloud resource are migrated, it can be released.
Migrations generate QoS breaks for the customers [1]. We limit their number for
each tenant depending on the Service Level Agreement.

Without an optimization method, a solution to allocate tenant to resources
would be to allocate each tenant on a resource that supports its maximum task
throughput. We call this solution, baseline method. This method is often used in
production, but can become very expensive.

We proposed in [2] a method based on an iterative heuristic and time series
segmentation. It computes the list of necessary cloud resources and a mapping
of tenants on each resource, time slot per time slot. We present it in the next
Section.

2.2 Allocation with an iterative heuristic and time series
segmentation

In this part, we recall briefly our previous method [2]. It has two parts: first,
we choose a migration strategy i.e the time slots where each tenant can migrate,
and, second, we apply a heuristic using resources prices and capacity, tenants
needs, and their migration strategy in order to obtain the cloud resources and
the placement of tenants.

Fig. 2. Exemple of a migration strategy

For the first part, a time series segmentation [3] allows to select good mi-
gration times for each tenant. We present in figure 2 two examples of migration
strategies, in red for two tenants. In this figure, Tenant 1 can only be migrated
at the end of time slots 1 and 4. For Tenant 2, it is time slots 2 and 3. This
means both tenants will be migrated at most 2 times. They will stay on their
origin resource if there is no migration authorization.

For the second part, our iterative timeslot heuristic is based on Variable Cost
and Size bin packing in which we added repacking steps. It takes as input the
tenant throughput by timeslot, the cloud resource prices and capacity, and the
migration strategies for the tenants.

A genetic algorithm for cost-aware business processes execution in the cloud 5

This coupled approach provides better results than the baseline approach.
Still, the comparison with the solution computed with a solver showed that it is
far from the optimal cost. It is possible to enhance this solution. We propose to
use a genetic algorithm to find migration strategies that reduce the resource cost,
and propose an alternative to the iterative timeslot heuristic based on integer
linear programming. We present this model in the next Section.

2.3 An efficient model for migration strategies

Our problem is to find resource and tenant distributions for each time slot, for
given tenants’ loads, resource prices and capacity, and migration strategy. The
model we propose answers to this problem. Our model principle is based on the
absence of tenant migration when there no authorization to move. In this case,
simple placement constraints should exist, and no constraint exist when there is
an authorization to move in the migration strategy.

Let the following variables:

– T , the set of cloud resource types, with t its cardinality.

– I, the set of tenants with n its cardinality.

– J , is T ×I the set of all possible cloud resources associated with each tenant.
its cardinality is m = t× n.

– Cj , and Wj represent respectively the cost and the capacity in terms of BPM
task throughput for the configuration j, with j in J .

– wi(k), the required capacity in terms of BPM task throughput for the tenant
i during time slot k.

– K defines all the time slots, from 0 to D, where D + 1 is the number of time
slots.

– xj
i(k), the assignment of tenant i to configuration instance j during time

slot k.

– yj(k), the activation of configuration j during time slot k.

– M , the maximum number of migrations of tenants between cloud resources
on all time slots.

– hi(k) with 0 ≤ k ≤ D−1. hi(k) is equal to 0 if the tenant i is not allowed to
be migrated between time slot k and k+1, and equal to 1, if it is allowed. The
set of all hi(k) (for each tenant and each time slot) is a migration strategy.

– migration strategies assume the maximum number of migrations allowed per
tenant: ∀i ∈ I

∑k∈K
k hi(k) = M where M is the number of migrations. This

number depends on the SLA.

The objective is to minimize the total cost for all active cloud resources, for
each time slot, as shows equation 1.

min

j∈J∑
j

k∈K∑
k

Cjyj(k) (1)

6 Rosinosky et al.

We must ensure that the following constraints are enforced:

∀i ∈ I,∀k ∈ K
j∈J∑
j

xj
i(k) = 1 (2)

∀j ∈ J ,∀k ∈ K
i∈I∑
i

wi(k)xj
i(k) ≤Wjyj(k) (3)

∀j ∈ J ,∀i ∈ I,∀k ∈ K|hi(k) = 0, xj
i(k) = xj

i(k + 1) (4)

∀i ∈ I,∀j ∈ J ,∀k ∈ K, xi
j(k) ∈ {0, 1}, yj(k) ∈ {0, 1} (5)

Equation 2 represents the obligation for a tenant to be placed at each time
slot on an active cloud resource. Equation 3 means that the sum of the required
capacity for each tenant on one cloud resource cannot exceed the capacity of the
cloud resource. Equation 5 represents the variables we use. Equation 4 represent
the migration strategy. The equality constraint means that for a tenant i and
a time slot k, assignation values xi

j(k) will stay the same on time slots k and
k + 1. When a tenant is authorized to migrate between resources, there is no
constraint for this tenant. Generalizing this on all resources produces the desired
effect: tenants will be migrated from one resource to another only during the time
slots specified by the migration strategy. The pre-defined migration strategy is
symbolized here by the variable hi(k).

Finding cheap migrations strategies is primordial in our approach. This is
the goal of our genetic algorithm. We present it in the following Section.

2.4 Cost optimization via genetic algorithms

A genetic algorithm is a well known meta-heuristic belonging to the family of
evolutionary algorithms, and inspired by natural selection [4]. Its principle is
to produce directed random evolutions on a population of individuals until it
obtains one or several individuals with a good fitness value. Individuals are
usually vectors of boolean values, whose corresponding fitness can be evaluated.
Iterations are triggered until an end condition is reached.

We want to find the best migration strategy for all the tenants and time
slots. Figure 3 shows our approach. The general principle is to use our iterative
time slot heuristic (or the restricted model we have described in the previous
Section) for evaluating migration strategies, until we find the best. To represent
an individual, we vectorize a migration strategy by concatenating migration
strategies of each |I| tenants (each one corresponding to a vector of D boolean
values, D+1 being the number of studied time slots). The size of the vector will
be D× |I|, with each element being equal to zero or one. For instance with two
tenants and three time slots, the first migrating on the second time slot and the
second tenant on the third time slot, we will have the following representation:[
0 1 0 0 0 1

]
.

A genetic algorithm for cost-aware business processes execution in the cloud 7

Fig. 3. A genetic algorithm to find better strategies

Fig. 4. Genetic algorithm phasis

The reader will find in figure 4 a brief description of the different steps of
a genetic algorithm. Compared to the traditional approach, we have switched
the mutation phase and the crossover phase. The co-hosted mutation requires
to know the cost of the migration strategy in the population. We compute the
cost in the fitness evaluation phase. The crossover phase generates potentially
unknown (not yet computed) migration strategies. Thus, we do it after the mu-

8 Rosinosky et al.

tation phase. In our case, “parents” are mutated instead of the offspring. In the
following, we describe the solution we designed.

Population initialization We initialize the population with several segmenta-
tion algorithm combinations (as we described in Section 2.2), and with random
individuals with the correct number of migrations for each tenant.

Fitness evaluation We want to find the migration strategies that produces the
lowest cost. The fitness score corresponds to the total cost of all the active re-
sources on the time slots. To evaluate it on the different individuals, we compute
the cloud resources allocation and placement of the tenants on it. In our case,
we run our iterative time slot heuristic [2] or a solver on our model presented
in Section 2.4, for each individual (migration strategy) we need to evaluate. We
keep the cloud resources and tenants assignation distribution in memory for the
next steps, and the fitness score.

Termination condition We use a time limit termination condition. This allow us
to compare different solutions based on this limit.

Parent selection For this step, we use a classical rank selection strategy. We sort
the population by fitness and we select randomly, and with a higher priority, the
individuals with the higher rank (lower fitness or price in our case) for parents.

A specific mutation: co-hosted tenant migration mutation strategy In
classic approaches, mutation updates randomly individuals, depending on a mu-
tation rate, switching scalar values from zero to one or the other way around [4].
Here, the goal is to generate brand new individuals in the population, with non
tested configurations. In our case, we cannot use a totally random approach, as
the number of migrations for each tenant is bounded. However, even a random-
ized approach keeping a fixed number of migrations will not provide the desired
effects as we can see on the left side of figure 5. We have noticed that most of the
times, resources are not liberated as only one of their tenants is authorized to
migrate. It limits the savings of resources liberation. We developed an alternative
mutation more suited to our problem.

It consists in shifting the authorization to migrate for each co-hosted tenant
at the indicated time slot for the reference tenant’s resource. To achieve this goal,
for each tenant, we browse the past time slots until we find an authorization to
migrate or until we reach the beginning of the time slot space. If we find one, we
set it to zero while setting to one the “destination” time slot. If the “destination”
time slot is already set to one, we ignore this behavior. The example on the right
side of figure 5 describes this principle. There, it is possible to migrate all the
tenants of resource R1 to the cheaper resource R2, and thus reduce costs 1.

1 The simple approach on the left of figure 5 keeps tenants on resource R1, it can
never be freed

A genetic algorithm for cost-aware business processes execution in the cloud 9

Fig. 5. Basic tenant mutation vs cohosted mutation

Specific offspring generation: the tenant crossover strategy The crossover phase
consists in randomly mixing individuals (parents) of the current population in
order to generate new individuals (children) having characteristics of both par-
ents. The crossover technique that we use consists in switching the migration
time of random tenants. First, two children identical to two migration strategies
parents are generated. Then, depending on the number of tenants specified, each
one will see its migration times switched in the children.

Generational replacement We replace the entire population with the offsprings,
except for the best individuals from the original population (named elites). They
replace the less fit offspring in the future population.

In the next Section, we present our experiments and the results.

3 Experimentation

We have conduct tests with the cloud resource prices and sizes, and the seeds
of our previous work [2]. We consider 12 configurations, each composed of two
Amazon Web Services compute resources: one database resource (RDS) for the
database, and one compute instance (EC2) for the application server. Prices are
comprised between 0.177 $ per hour for a BPM task throughput of 16.4 tasks
per second, and 4.126 $ per hour for a BPM task throughput of 129.279 tasks
per second.

For the customer part, we vary the number of tenants (10, 25, 50 and 100),
and we use different throughputs in terms of BPM task per second. These
throughputs are based on usage of anonymous customers of the BPMS Bonita2.
We consider 6 configurations, needing a throughput respectively between 1 and
120, 14 and 16, 0 and 120, 1 and 3, 5 and 120, and 0 and 43.

We generate each tenant’s initial time slot throughput randomly following an
uniform distribution between the two throughputs. Our next step is to generate

2 http://www.bonitasoft.com/
3 The data and the results are available at: https://doi.org/10.5281/zenodo.

1173617. The source code of the framework is not public, except for the segmentation
library, available at https://github.com/guillaumerosinosky/Segmentation/.

10 Rosinosky et al.

the variation of throughput between time slots by adding or removing a random
value limited to one quarter of the difference between the maximum and the
minimum throughput. For our experiments, we used the Python library Inspyred
[5] for the genetic algorithm that integrated well with our environment.

Experiment Parameters In order to obtain significant and realistic results, we
used the following parameters:

– each test is launched for 10 different random seeds (i.e tenants’ loads)
– a time slot size of one hour, as it was the reference duration of AWS cost

model for computing instances at the time of the experiment.
– we choose to consider 4 migrations per day. A migration produces an inter-

ruption of around 10 seconds depending on the quantity of data.
– we consider a 2 days period (thus limiting migrations to 8, for 48 time slots).
– we consider the following parameters for the genetic algorithm: the number

of elites individuals to 5, a mutation rate of 0.4, a population size of 20, a
number of mutation points corresponding to the number of tenants divided
by 5. These parameters were chosen following tests on multiple values for a
limited number of seeds each. Details on this choice cannot be included for
space restriction reasons.

– we limit the genetic algorithm computation to 600 or 1800 seconds and the
solver computation time to 5 seconds.

3.1 Results

Fig. 6. Mean genetic algorithm gain on best initial segmented population for 600 second
of running time

In figure 6, we show the relative gain of this approach compared to our previ-
ous approach (segmented approach) in red (in the upper part of the figure), and
to a baseline approach in blue (in the lower part of the figure). The gain is better

A genetic algorithm for cost-aware business processes execution in the cloud 11

for 10 tenants than for 100 tenants since the system has more time to search
for the cheapest solution. For 10 tenants, we obtain more than 10 % enhance-
ment compared to the previous approach, and more than 45 % compared to the
baseline approach. However for 100 tenants, we have only a 1 % enhancement.

It appears that either the iterative usage of the heuristic, the genetic algo-
rithm or the two of them is more efficient for a small number of tenants for the
same number of generations. This is why we conducted experiments where we
apply the proposition to subsets of the tenants and we aggregated the results as
described in the next Subsection.

3.2 The splitting strategy

For this solution, we split the set of tenants into small groups selected randomly.
We have tested different size of groups with various number of tenants and we
applied the previous method keeping the same total computation time. Figure
7 shows the results we obtained with the genetic algorithm and the iterative
heuristic. The x axis corresponds to the size of the groups of tenants. The y axis
shows the relative gain compared to the results with no partition. A subset size
with the same size as the number of tenants corresponds to no split, the gain is
zero.

Fig. 7. Gain depending on splitting strategy for various split quantities.

We obtain the best results with partitions of 5 tenants in all cases. For the
experiments we ran, the gain varies from 5% to 15%. We have no good expla-

12 Rosinosky et al.

nation for this result that we can reproduce. Our tests with the solver give the
same results for the size of the groups as with the heuristic. In the next Section
we present our results with groups of 5 tenants.

3.3 Results for solver and iterative heuristic

We implemented our model (presented in Subsection 2.4) using the optimization
library PuLP 4 with the Gurobi solver5. For execution time and cost reasons,
we were not able to test every set of parameters. For instance, with our current
implementation, we managed to obtain results with the solver only up to a size
of 25 tenants for the partition. Indeed, the duration of the initialization part
and the required memory makes it impossible to run with more tenants. Thus
we have limited our tests to parts of 5 tenants, for a total of 50 and 100 tenants.
As we can see, the results stay close to the results of the heuristic. Figure 8 shows
the absolute gain we obtained, and the corresponding percentage compared to
the baseline approach cost, for 600 seconds and 1800 seconds of running time.
We also present the non-split result for the segmented approach (results of the
previous paper), and the split segmented approach where we apply time series
segmentation on the groups of 5 tenants instead of all the tenants simultaneously.

Fig. 8. Mean cost comparison for 50 and 100 tenants per group of 5

For 1800 seconds of execution time of the genetic algorithm, split heuristic
give the best results. Mean distribution costs are 51.34 % for 50 tenants, and
51.72 % for 100 tenants compared to the cost of the intuitive approach. Using
the solver gives good results but more expensive (respectively 55 % and 54.19

4 https://pythonhosted.org/PuLP/
5 http://www.gurobi.com/

A genetic algorithm for cost-aware business processes execution in the cloud 13

%). For 600 seconds of execution time, the results are more balanced: they vary
between 54.2% and 55.64%. The genetic algorithm does not enhance the results
a lot for both approaches after 600 seconds: 3% for the heuristic and less than 1
% for the solver. Still, it enhances the initial split segmented results from 61.3
% to 51.34% for 50 tenants, and from 59.34 % to 51.72 % for 100 tenants.

We observe that the split segmented approach allows to gain more than 2
% , and to unleash the results of the genetic algorithm. Without splitting we
gain around 1 % for 600 seconds of genetic algorithm compared to the original
population (non split segmented). When splitting, the genetic algorithm results
in a gain of 7.1 % for 50 tenants, and 4.69 % for 100 tenants compared to the
split segmented strategy. The absolute gain compared to the intuitive approach
remains worthwhile for 2 days: we save 1702 $ for 50 tenants and 3319 $ for 100
tenants for a cost of respectively 3498$ and 6874$. The respective gain compared
to our previous work is 425 $ and 763 $.

4 Related work

Many researchers have studied elasticity in the cloud and elasticity for BPM or
orchestration systems. Schulte and al. [6] did a general review on the topic and
gave directions for future research. In this paper, we focus on the resource alloca-
tion and scheduling problem and use a tenant-centric approach based on BPM
task throughput, instead of the BPM process-centric from other approaches.
Rekik et al. [7] propose an integer programming model based on general hard-
ware metrics for BPM elasticity on the cloud. They base their approach on re-
source allocation and BPM task scheduling. They do not consider multiple time
slots, tenant migration or multi-tenancy. Other attempts on BPM elasticity in
the cloud exist such as [8], [9], [10]. Though not cloud-related, Djedovic et al.
propose in [11] a genetic algorithm for BPM task scheduling to their correspond-
ing resources. It uses a representation of each resource. They want to minimize
the waiting time and the global resource cost. Junhke et al. [12] propose a task
focused genetic algorithm for BPEL workflows scheduling in distributed Clouds.

On other subjects than BPM, the machine reassignment problem 6 is close
to our problematic. It considered software reassignment problem on virtual ma-
chines including the migration cost. Gavranovic et al. [13] obtained the better
results to this challenge. However, this problem is based on hardware metrics, and
aggregate migration cost in the objective function. Our problem is not exactly
virtual machine allocation since the hardware is already defined. Numerous other
attempts target virtual machines, such as [14]. Automated approaches based on
cloud offers retrieval and hardware requirement for software such as [15] are also
valuable.

These works do not consider simultaneously multi-tenancy, multiple instance
types, and migrations, except in the form of data transfer cost for [10] or ag-
gregated migration cost for [13]. In this paper, we present an evolution of our

6 http://www.roadef.org/challenge/2012/en/

14 Rosinosky et al.

previous work [2]. We have based our approach on time series segmentation for
deducing the “good” time slots to migrate tenants, and on the iterative use of
an enhanced version of our time slot heuristic[16]. We also presented the corre-
sponding ILP (Integer Linear Programming) model. Results were encouraging
compared to a baseline approach, but could be improved regarding the results
that we obtain with a solver. We could not compare with other approaches since
most of them do not consider migrations of data as an issue. They scale up by
adding compute resources to the process engine, considering that access to the
database is not a problem. From our experience, at some point, the database is
always a bottleneck.

5 Conclusion

In this paper, we proposed a method for cost optimization of BPMaaS deploy-
ment based on tenant migration strategies and a genetic algorithm. We presented
a new integer programming optimization model. Both allows to obtain substan-
tial gains for BPMaaS providers. The result we obtain when we group the tenants
is interesting. It may be explained by the size of the objective space. The fact
that it is reproducible for different number of tenants shows that testing multiple
sizes may allow providers to save on the operation cost. Moreover, using other
metaheuristics such as simulated annealing or hill climbing could provide even
better results.

Our method was tested with BPM task throughput but could work with
other metrics that can be expressed as a scalar for both the cloud resources
and the tenants. We can consider for instance the number of processes, or the
number of HTTP requests that lead to transactional processing. Our methods
can then be generalized on systems non related to BPMS using multi-tenancy
and tenant-related persisted data. A BPMS execution engine behaves more or
less like a transactional web application. Our approach is offline and require to
anticipate on the tenant load. For many business cases, this is a valid assumption.
The server load is relative to the number of employees and the number of cases
they can execute everyday or hour with little variations. A next obvious step
would be to couple our algorithm with prediction systems. This would provide
an effective online algorithm. It could adapt to unforeseen variations.

6 Acknowledgment

The authors would like to thank Gurobi for the usage of their optimizer, and
Amazon Web Services for the EC2 instances credits (this paper is supported by
an AWS in Education Research Grant Award).

References

1. S. Das, S. Nishimura, D. Agrawal, and A. El Abbadi, “Live database migration
for elasticity in a multitenant database for cloud platforms,” CS, UCSB, Santa
Barbara, CA, USA, Tech. Rep, Tech. Rep., 2010.

A genetic algorithm for cost-aware business processes execution in the cloud 15

2. G. Rosinosky, S. Youcef, and F. Charoy, “Efficient Migration-Aware Algorithms
for Elastic BPMaaS,” in Business Process Management, J. Carmona, G. Engels,
and A. Kumar, Eds. Cham: Springer International Publishing, 2017, vol. 10445,
pp. 147–163.

3. M. Lovrić, M. Milanović, and M. Stamenković, “Algoritmic methods for segmenta-
tion of time series: An overview,” Journal of Contemporary Economic and Business
Issues, vol. 1, no. 1, pp. 31–53, 2014.

4. D. Whitley, “A genetic algorithm tutorial,” Statistics and computing, vol. 4, no. 2,
pp. 65–85, 1994.

5. A. Garrett, “inspyred: Bio-inspired Algorithms in Python — inspyred 1.0 docu-
mentation,” 2014.

6. S. Schulte, C. Janiesch, S. Venugopal, I. Weber, and P. Hoenisch, “Elastic Business
Process Management: State of the art and open challenges for BPM in the cloud,”
Future Generation Computer Systems, 2014.

7. M. Rekik, K. Boukadi, N. Assy, W. Gaaloul, and H. Ben-Abdallah, “A Linear Pro-
gram for Optimal Configurable Business Processes Deployment into Cloud Feder-
ation.” IEEE, Jun. 2016, pp. 34–41.

8. S. Euting, C. Janiesch, R. Fischer, S. Tai, and I. Weber, “Scalable Business Pro-
cess Execution in the Cloud,” in 2014 IEEE International Conference on Cloud
Engineering (IC2E), Mar. 2014, pp. 175–184.

9. J. Xu, C. Liu, X. Zhao, S. Yongchareon, and Z. Ding, “Resource Management for
Business Process Scheduling in the Presence of Availability Constraints,” ACM
Transactions on Management Information Systems, vol. 7, no. 3, pp. 1–26, Oct.
2016.

10. P. Hoenisch, C. Hochreiner, D. Schuller, S. Schulte, J. Mendling, and S. Dustdar,
“Cost-Efficient Scheduling of Elastic Processes in Hybrid Clouds.” IEEE, Jun.
2015, pp. 17–24.

11. A. Djedović, E. Žunić, Z. Avdagić, and A. Karabegović, “Optimization of business
processes by automatic reallocation of resources using the genetic algorithm,” in
Telecommunications (BIHTel), 2016 XI International Symposium on. IEEE, 2016,
pp. 1–7.

12. E. Juhnke, T. Dornemann, D. Bock, and B. Freisleben, “Multi-objective Scheduling
of BPEL Workflows in Geographically Distributed Clouds.” IEEE, Jul. 2011, pp.
412–419.

13. H. Gavranović, M. Buljubašić, and E. Demirović, “Variable Neighborhood Search
for Google Machine Reassignment problem,” Electronic Notes in Discrete Mathe-
matics, vol. 39, pp. 209–216, Dec. 2012.

14. J. Chen, C. Wang, B. B. Zhou, L. Sun, Y. C. Lee, and A. Y. Zomaya, “Tradeoffs
Between Profit and Customer Satisfaction for Service Provisioning in the Cloud,” in
Proceedings of the 20th International Symposium on High Performance Distributed
Computing, ser. HPDC ’11. New York, NY, USA: ACM, 2011, pp. 229–238.

15. J. M. Garćıa, O. Mart́ın-Dı́az, P. Fernandez, A. Ruiz-Cortés, and M. Toro, “Auto-
mated Analysis of Cloud Offerings for Optimal Service Provisioning,” in Service-
Oriented Computing, M. Maximilien, A. Vallecillo, J. Wang, and M. Oriol, Eds.
Cham: Springer International Publishing, 2017, vol. 10601, pp. 331–339.

16. G. Rosinosky, S. Youcef, and F. Charoy, “An Efficient Approach for Multi-
tenant Elastic Business Processes Management in Cloud Computing Environ-
ment.” IEEE, Jun. 2016, pp. 311–318.

