
HAL Id: hal-01870812
https://hal.science/hal-01870812v1

Submitted on 9 Sep 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Evaluating Multi-Tenant Live Migrations Effects on
Performance

Guillaume Rosinosky, Chahrazed Labba, Vincenzo Ferme, Samir Youcef,
François Charoy, Cesare Pautasso

To cite this version:
Guillaume Rosinosky, Chahrazed Labba, Vincenzo Ferme, Samir Youcef, François Charoy, et al..
Evaluating Multi-Tenant Live Migrations Effects on Performance. CoopIS 2018 - 26th International
Conference on Cooperative Information Systems, Oct 2018, Valetta, Malta. pp.16. �hal-01870812�

https://hal.science/hal-01870812v1
https://hal.archives-ouvertes.fr


Evaluating Multi-Tenant Live Migrations Effects
on Performance

Guillaume Rosinosky1[0000−0001−8980−1231], Chahrazed
Labba1[0000−0002−7921−273X], Vincenzo Ferme2,3[0000−0002−0640−6613], Samir

Youcef1[0000−0001−7637−7427], François Charoy1[0000−0002−0640−6613], and Cesare
Pautasso3

1 Université de Lorraine, CNRS, Inria, LORIA F-54000 Nancy, France
{guillaume.rosinosky, chahrazed.labba, samir.youcef,

francois.charoy}@loria.fr
2 Reliable Software Systems, University of Stuttgart, Germany

3 Software Institute, University of Lugano, Switzerland
{vincenzo.ferme, cesare.pautasso}@usi.ch

Abstract. Multitenancy is an important feature for all Everything as a
Service providers like Business Process Management as a Service. It al-
lows to reduce the cost of the infrastructure since multiple tenants share
the same service instances. However, tenants have dynamic workloads.
The resource they share may not be sufficient at some point in time. It
may require Cloud resource (re-)configurations to ensure a given Qual-
ity of Service. Tenants should be migrated without stopping the service
from a configuration to another to meet their needs while minimizing
operational costs on the provider side. Live migrations reveal many chal-
lenges: service interruption must be minimized and the impact on co-
tenants should be minimal. In this paper, we investigate live tenants
migrations duration and its effects on the migrated tenants as well as
the co-located ones. To do so, we propose a generic approach to measure
these effects for multi-tenant Software as a Service. Further, we propose a
testing framework to simulate workloads, and observe the impact of live
migrations on Business Process Management Systems. The experimental
results highlight the efficiency of our approach and show that migration
time depends on the size of data that have to be transferred and that
the effects on co-located tenants should not be neglected.

Keywords: Live migration · Multitenancy · BPMS · Performance

1 Introduction

A software service provider that wants to provide its service in the Cloud needs
to adjust the Cloud resources it consumes to the needs of his customers. A Web
based business application requires the deployment of a software stack including
application servers and databases. In order to accommodate multiple customers,
the provider can rely on a multi-tenant architecture that allows managing several



2 Rosinosky et al.

customers on the same server. Thus, to accommodate all customers with the min-
imal set of resources, it might be necessary to «move» tenants from one installa-
tion to another one. During peak hours, many resources might be required, while
at night a single resource could respond to all the requests from all customers.
Live migrations can be used to ensure such kind of optimization. It can lead to
significant gains in the operational costs. Migrating a tenant from a ressource to
another has consequences. It takes time during which the service is not available
for the customer. It consumes resources as CPU, networking, and disk IO that
may affect the Quality of Service (QoS) for other co-located customers. In this
work, we investigate the effects of multi-tenant Web applications live migrations.
To the best of our knowledge, our work is the first to focus on evaluating the
impact of live migrations on both service interruption time and co-located ten-
ants performances for a service including both application and database servers.
To investigate the effects of tenants live migration, we propose an approach to
evaluate: (i) the duration of service interruption when a tenant is migrated; (ii)
the effects of a live migration on the migrated tenant; and (iii) the effects on the
performances of other tenants hosted on both origin and destination resources
during the migration. The proposed approach is generic and can be applied for
all multi-tenant Web applications sharing a set of resources (computing and/or
storage). We apply it to a multi-tenant Business Process Management System
(BPMS), representing a classical transactional application. To do so, we propose
a performance test framework to investigate the efficiency of our approach in
determining the effects of migrations for multi-tenant BPMS. The main design
goal of the proposed framework is to create a dynamic testing environment that
scales in terms of resources and tenants numbers.

To summarize, the main contributions of this paper are as follows:

– A generic approach to measure the impact of the live migrations in terms of
service interruption time and performances (execution time) for multi-tenant
Web applications. (Section 3)

– A performance test framework for multi-tenant BPMS. Indeed a detailed
description of the framework architecture is presented. (Section 4)

– An example on how the framework can be used for measuring the effects
of live migrations on the Performance edition of the BPMS Bonita 7.4.34.
(Section 5)

The rest of the paper is organized as follows. Section 2 describes a motivating
example that we use throughout this paper to explain the different steps of the
proposed method. Our proposed approach for evaluating migrations effects is
introduced in section 3. The test framework for multi-tenant BPMS is presented
in section 4. Experiments and empirical results are presented in Sections 5 and 6.
Related work, Threats to Validity and Conclusion and Future Work are presented
respectively in Sections 7, 8, and 9.

4 http://www.bonitasoft.com

http://www.bonitasoft.com


Evaluating Multi-Tenant Live Migrations Effects on Performance 3

2 Motivating Example

Live migrations of tenants is important for the service provider. Let’s consider
a Business Process Management as a Service setting consisting of a BPMS de-
ployed on a Cloud provider infrastructure. The Cloud provider offers a set of
computing resources. For performance reasons, a BPMS installation is deployed
on a resource that consists of at least two compute instances for both a database
and an application server. Each resource is characterized by its price per unit
of time as well as a minimum and a maximum tasks throughput per second.
Each active BPMS instance is used by customers named tenants. Each tenant
has a QoS requirement expressed in terms of BPM task throughput. In Fig-
ure 1, the tenant T4 has an initial BPM task throughput of (40 task/second)
at time (t=t0). It goes up to (60 tasks/second) at time (t=t1). The widths of
the resources and the tenants correspond respectively to the capacity and the
requirements in terms of task throughput.

Fig. 1. Tenants Distribution at Time t = t0 and t = t1

At time (t=t0), the tenants are placed on the different resources. For exam-
ple, in Figure 1, the tenants T1, T2 and T3 share the first installation deployed
on the resource R1. At time (t=t1), the tasks throughput of the different tenants
(presented in black) changes, which leads to over and under utilization, respec-
tively of R2 and R3. We reorganize the distribution of tenants on the different
resources. An appropriate solution consists in migrating T4 to R3. Migrations
may induce a service disruption on the tenant side and is not instantaneous. The
interruption time for T4, includes its deactivation on the origin installation R2,
its migration to R3, and its activation on R3. Further, it may have an impact on
the performances of the co-located tenants. Thus, we are interested in providing
a way to investigate the effects of the migrations on the service interruption time
and the performances of the co-located tenants. The next section presents the
proposed approach used to solve the aforementioned challenge.

3 Measuring the Impact of Migration

In this section we present our approach to evaluate the impacts of tenants live
migrations on both service time interruption and tenants performances. First,
we present the metrics we use to detect these impacts. After this, we describe



4 Rosinosky et al.

the assumptions we make related to the effects of live migrations. Then, we
explain the generic setup we propose to do the measurements in a way that can
be replicated for Web applications including application and database servers.

To the best of our knowledge, there is no zero-downtime technique to perform
tenants migrations from an origin to a destination resource. Further, with regular
relational databases, there exist no way to perform live migrations from one
resource to another, with a zero-downtime for the tenant. During a migration,
the tenant may undergo a limited availability of the services provided by the
Web application, causing QoS breaks. We characterize the impact of tenants
migrations on the overall software operations, using three metrics.

The migration duration or service interruption time is the time that can
be measured between the beginning of the migration on origin resource, when it
stops accepting requests and the time when it starts accepting requests on the
destination installation.

The second and third metric measures the impact of migrations on perfor-
mances of tenants hosted on origin and destination resources. We measure the
processing time for the migrated tenant and for co-located ones on the origin
and destination resources, this during, and after the migration. We name these
two metrics migration effects on migrated tenant , and migration effects
on co-located tenants.

We want to measure the processing time of the executing operations from the
customer and the service provider perspectives. Fulfilling a client request does
not imply the termination of the associated operations on the service provider
side. A BPMS engine may take additional time to terminate the operation after
satisfying the client request as there could be long executing processes running
after the answer to the client.

We have several assumptions about the negative effects of migrations on
the service interruption time and the performances, that we want to verify and
measure using our approach :

– Migrations duration is predictable and increases with the size of the data.
Migrations consist of copying Web application data from the origin resource
to the destination resource. More data means more time to copy.

– Migration effects on migrated tenant exist and are provoked by the creation
of a new tenant on the destination installation. This could have various
causes such as negative cache hit or asynchronous libraries initialization.

– Migration effects on co-located tenants exist and must be taken into account.
The live migration will have effects on both the origin and destination re-
source of the migration, and their tenants. As tenants are activated, deacti-
vated, and their data is being read, copied across the network and written
on the resources, it may induce performance degradation on both resources
executing co-located tenants operations.

In order to measure these metrics, we simulate users interactions with the
studied Web application. For each measurement, we observe variations such as
the nature of the workload and the quantity of operations initiated in the system.



Evaluating Multi-Tenant Live Migrations Effects on Performance 5

We store every duration of each launched operation on the Web application as
well as of each migration.

We propose an experiment where we first execute a defined workload for a
tenant, hosted on the origin resource. We then migrate this tenant from the
origin resource to the destination resource, and observe the corresponding mi-
gration duration. For each experiment, we store each corresponding time stamp,
including the relevant internal steps (such as the beginning and end of the move-
ment of data, the eventual phases of deactivation and reactivation of tenants,
etc.).

In order to evaluate the Migration effects on migrated tenant, we measure
the performances of the tenant before migration on the origin resource, and
after migration on the destination resource. We assume we can retrieve Web
application response times, if possible. This is usually stored inside the database
of the Web application. It should also be possible to retrieve these metrics from
the load testing tool point of view. All the duration of the HTTP queries and
corresponding processing durations are timestamped and fully identified so we
can compare them with the point of view of the application.

We want to compare the effects of a migration on the other tenants currently
hosted on the origin and destination resources. In this case, we propose to initiate
workloads on tenants on both origin and destination resource. We also initiate
a shorter workload for a tenant on the origin resource who will be migrated
after to the destination resource, as in previous experiments. A workload is then
executed on the migrated tenant, after the migration.

The Migration effects on co-located tenants are retrieved for the co-located
tenants hosted on both origin and destination resources. In order to do this one
should retrieve response times of the HTTP queries and corresponding process-
ing durations for tenants. We consider as “query concerned by migration" every
query running between the beginning of the migration and the end of the mi-
gration, i.e., where the timestamp of the beginning of the query is before the
end of the migration, and the end timestamp of the query is after the beginning
of the migration. We then compare to other processing durations, when there is
the same number of tenants, with the same load and on the same resources. The
differences in processing durations will show the effects of the migration on the
co-located tenants.

4 Experiment Framework

In order to validate our approach, we developed a testing framework to study
the impact of live migrations for multi-tenant BPMS. According to the type
of the performance metric to be investigated, the framework takes as input a
set of parameters and provides as output a set of measurements. The Figure 2
depicts the architecture of the proposed framework. We distinguish the following
elements:

– The migration method used to move the tenants from one installation to
another (out of the scope of this paper).



6 Rosinosky et al.

Fig. 2. The framework architecture for studying the impact of live migrations on multi-
tenant BPMS

– The load testing components used to generate variable workloads to the
System Under Test (SUT).

– The SUT represents the BPMS to be studied.

In the rest of this section, we present a detailed description of each component
as well as the orchestration of the framework to perform the measurements.

The load testing components (Figure 2) emulates the behaviour of users
within tenants interacting with the BPMS.

In the case of a BPMS, we used two different categories of load testing com-
ponents : a load tester for tenant and processes initialization and BPM agents
for BPM tasks retrieval and processing.

The goal of the load tester is the following:

– Initialize all the tenants as well as the users within each one.
– Deploy the BPM processes needed for the experiments, and add the autho-

rizations and roles needed for the proper functioning of the BPMS.
– Start process instances according to the specific test requirements, by ini-

tializing calls to the HTTP API of the BPMS.



Evaluating Multi-Tenant Live Migrations Effects on Performance 7

The load tester is implemented relying on the Faban framework5 used for the
BenchFlow framework [3]. It enables the specification of complex workload, as
well as the number of simulated users that are interacting with the SUT, and the
duration of the interaction. The Faban framework then takes care of executing
the specified load test, and ensure a correct and verified execution of the defined
load.

A BPMS tenant has an organizational structure that consists of different
groups of users. According to their profiles and roles, users carry out different
business activities within the organization. We use a multi agent system (MAS)
to model and simulate the users involved in the execution of business activi-
ties within each tenant. A MAS consists of a number of agents in a common
environment (real/virtual) where they can act and cooperate to achieve sys-
tem objectives [10]. In our work, we focus on the mapping of the organizational
settings within tenants to agents. Using agents on behalf of tenants users pro-
vides a suitable means of reproducing human behaviour. Due to their distinct
capabilities in terms of autonomy, flexibility, and adaptability agents present
effective solutions in modeling and simulating behaviours of human resources.
We use agents to imitate human resources in order to: (i) work with process
instances including various proportions of human tasks, which are similar to
those deployed within real organizations; and (ii) maintain a given threshold of
active tasks during tenants migrations to investigate its impact on the migra-
tion duration as well as on the co-localized tenants on both origin and target
installations.

Each agent represents an active entity that performs specific tasks on behalf
of a user within a BPMS tenant. The agent user behaviour consists of the fol-
lowing actions: the agent first connects to the BPMS platform. Then, it starts
retrieving the available tasks. If the number of ready tasks is under a given
threshold, which represents the sought tasks number before tenant migration,
the agent waits until more process instances are started. Else, the agent executes
the task after assigning it to itself.

In order to fulfill reproducibility, our framework uses Docker containers.
Docker permits easy operating-system-level virtualization. We use it to the
launch of the SUT, and for the injection and migration scripts and tools. We
used Docker Swarm6 for our cluster management, and Docker Compose for the
description of the distributed system. Swarm is a functionality of Docker to
manage containers on several nodes. Docker Compose allows to describe a com-
plete stack, which can be composed by several containers having dependencies
between them, as the use of the database by the Web application.

We also used Faban and BPM agent Docker Compose files in order to launch
them easily, with all the required parameters such as the the names of the users,
tenants, and processes.

To use the framework, we must prepare a test descriptor containing the
various parameters of the experiments. The parameters can be customized in

5 http://faban.org/about.html
6 https://docs.docker.com/engine/swarm/

http://faban.org/about.html
https://docs.docker.com/engine/swarm/


8 Rosinosky et al.

order to evaluate the behaviour depending on the BPM schema, the BPMS, the
duration of the BPM processes injection, etc.

Once a test is launched, the following steps are triggered:

1. Test initialization: creation of unique identifier for the test and experiment
directory.

2. Deploy initialization: reset and initialize Docker Swarm on the resources and
needed files for the experiment.

3. Deploy BPMS: deploy the BPMS and corresponding databases containers
on the resources.

4. Launch test: deploy the Faban load testers, the BPM agents on the concerned
resources, and execute the tests for the concerned tenants.

5. Copy results: launches queries on BPMS database in order to get processing
time, retrieve results and store them.

In step 4 we launch multiple loads on a set of tenants for a defined duration,
named "background tenants" while a loaded tenant is migrated. The tests for
the background tenants are launched in an asynchronous manner. A launch of
the Faban load tester coupled to the BPM agent is triggered on the studied ten-
ant ("migrated tenant") for a short duration. Once this first step is finished, the
framework waits for a defined duration to let all processes finish. Then the mi-
gration is triggered. After this migration, a second process injection is launched
on the destination resource. Results of the tests can be then retrieved from the
BPMS, the BPM agents and the Faban agents.

In step 5, we retrieve the measures. The results consist in the duration of the
migration, the response time and the duration of processing of each process and
tasks launched during the test. These results have a timestamp stored in CSV
file with the identifier of the BPM task and its corresponding process, and their
durations.

5 Experimentation

We explain in this section how we have adapted our framework7 for our use
case. As shown in the Figure 2, the SUT is composed of five software ele-
ments,including the origin and destination stacks consisting of one BPMS engine
and its corresponding database, and a reference database whose goal is to host
the archive and system data.

For our tests, we use BonitaBPM 7.4.38 in its commercial Performance edi-
tion9.

We conducted these tests with different parameters for the origin and target
resources, and for multiple processes quantities. We needed a method to mi-
grate tenants, a realistic workload, test scenarios, and test infrastructure. All
the experiments characteristics are described in the rest of this section.
7 https://github.com/guillaumerosinosky/migration_bpms
8 http://www.bonitasoft.com
9 Multi-tenancy is only available in this commercial licence.

https://github.com/guillaumerosinosky/migration_bpms
http://www.bonitasoft.com


Evaluating Multi-Tenant Live Migrations Effects on Performance 9

Fig. 3. Proposed database architecture. Software uses a relational database. A “refer-
ence" database for system-related and archive data is used. External tables are used for
the links between the reference database and the database used by the Web application.

Live migration of tenants requires a series of steps. BonitaBPM allows stop-
ping and restarting the tenant operations. When a tenant or his underlying op-
erations are in a stopped state, new operations cannot be launched, and current
operations are put on hold.

We have used specific Docker Compose file referencing two Bonita Docker
containers, two Postgresql 10 Docker containers for the application databases,
and one for the reference database. Figure 3 shows the corresponding five con-
tainers, which will be generated for each experiment.

We use three different business processes models to investigate the impact
of the different workflow structures on the migration duration. The processes
are modeled using the graphical standard language BPMN10. The first model
consists of a single human task.The other models represent a combination of
human and automatic tasks as well as parallel and exclusive gateways. These
models were initially defined and used in [4]. The second model, in Figure 4,
consists of a set of automatic tasks implemented as script tasks and a single
human task. The process starts by initializing an integer number (x = 0), which
is incremented by the script task situated after the first exclusive gateway. With
respect to the value of the variable (x), the upper and lower branches are fol-
lowed. The model, shown in Figure 5, has a more complex structure compared
to the processes models above. It consists of two human tasks executed in par-
allel. The process starts by initializing an integer number (x = 0), which will be
later incremented within the script task situated after the gateway "endAsk".
With respect to the value of the variable (x), the upper and lower branches are
followed. To have a deterministic behaviour, the upper path, which contains the
last exclusive gateway is executed till (x == 4) before the ending of the process.

In order to evaluate the three metrics presented in section 3, we have con-
ducted two sets of experiments:

– The first experiment evaluates the Migration duration. In this case, we have
launched the framework for only one tenant. We executed the load on the

10 Business Process Modeling Notation



10 Rosinosky et al.

Fig. 4. AdditionalApproval BPMN schema

Fig. 5. M3Process BPMN schema

origin resource for iteratively 0, 5, 10, 30, 60, 120, 300, 600 seconds for the
three types of BPM schemas, and then we performed three migrations of the
processes from the origin resource to the destination resource, and vice versa.
We observed the total duration of the migration, including its different steps:
deactivation of tenant, migration of the data and activation of the tenant.

– The second experiment observes Migration effects on migrated tenant and
Migration effects on co-located tenants tests. In this case, we have three
tenants: one background tenant running on the origin resource (tenant1 ),
one background tenant running on the destination resource (tenant3 ). Each
one has one Faban agent injecting processes for 20 minutes, while 100 BPM
agents close their tasks. A third tenant, tenant2, is launched first for 2 min-
utes on the origin resource. The framework waits for 5 minutes in order to
let every process finish, and to have comparison for Test 3. Then a migra-
tion from the origin resource to the destination resource is triggered, and a
2 minutes load is launched for this tenant on the destination resource.

We have conducted the tests on Azure Public Cloud. We used the following
instances types:

– Databases: Standard E2s v3 (2 vcpus, 16 GB memory) - 3 instances
– BPMS: Standard F4s (4 vcpus, 8 GB memory) - 2 instances
– Faban load tester (Harness and Agent): Standard F1s (1 vcpus, 2 GB mem-

ory) - 1 or 3 instances respectively for the first and second experiment
– BPM Agents: Standard F2s (2 vcpus, 4 GB memory) - 0 or 3 instances

respectively for the first and second experiment
– Orchestrator: Standard B2ms (2 vcpus, 8 GB memory) - 1 instance



Evaluating Multi-Tenant Live Migrations Effects on Performance 11

E-series are memory-optimized instances11. We used it for the database in-
stances. F-series12 are computing-optimized instances. We have chosen it for the
BPMS, the BPM agent and the Faban load tester. The instance we have used
for the orchestration and data collection is a small size burstable instance.

6 Empirical Results and Analysis

In this section, we present the results we obtained following our experimentation.
Due to space limitations, detailed results are shared here13

Fig. 6. Mean duration vs number of processes

Figure 6 shows the duration for: the deactivation of the tenant on the origin
resource, the migration of the data, the activation on the destination resource,
and the total duration of the migration.

The deactivation of tenants is very fast (less than 1 second) and stable re-
gardless the number of active processes or the BPM schema. The activation of
tenants is less stable, and last for a few seconds. The copy of the data seems very

11 Standard memory optimized instance: https://docs.microsoft.com/en-us/azure/
virtual-machines/linux/sizes-memory

12 Standard computing optimized instance: https://docs.microsoft.com/en-us/azure/
virtual-machines/linux/sizes-compute

13 http://dx.doi.org/10.5281/zenodo.1402632

https://docs.microsoft.com/en-us/azure/virtual-machines/linux/sizes-memory
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/sizes-memory
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/sizes-compute
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/sizes-compute
http://dx.doi.org/10.5281/zenodo.1402632


12 Rosinosky et al.

linear. It is the fastest for the smaller schema, TestHumanTask (about 20 sec-
onds for 10000 processes), then longer for the schema addtionalApproval (more
than 30 seconds), and even longer for the M3Process schema. All durations stay
the same for 0 processes, and there is some variability, which may be linked to
the uncertainties of Cloud behaviour.

Fig. 7. Duration distribution vs order of launch

Figure 7 provides details on the duration of the deactivation and activation
of tenants compared to the number of invocation. The duration is stable for the
deactivation, between 0.05 and 0.4 seconds for all the experiments. This is not
the case for the activation corresponding to the first migration. It always last
for more than 3 seconds when most other last around 1.5 seconds. The second
migration has a higher duration than the rest. Apart of some longer experiments,
which are occasional, the behaviour of both activation and deactivation is similar
regardless the BPM schema, and the number of migrated processes.

Duration vary between 5 seconds for no active processes to about 30 seconds
for about 10 thousands processes for the TestHumanTask processes. The process
comprised of a parallel tasks has a longer duration: 50 seconds for more than
10000 injected processes, this is about 20 seconds more than for sequential pro-
cesses. This is probably caused by the migration of two active tasks instead of
only one for other processes. This shows that in order to evaluate the duration
of live migrations, one must consider the BPM schema structure. The duration
of the migration of the schema M3process is also a bit longer than the duration
of the HumanTask. The presence of numerous automated tasks and gateways
could provoke the storage of additional data for this process.

We have seen in the last part that the duration of the activation part of the
migrations is longer for the first migrations. The reader must remember that
in this experimentation we have launched iteratively 6 migrations, 3 from the
origin to the destination and 3 for the destination to the origin, using the same



Evaluating Multi-Tenant Live Migrations Effects on Performance 13

tenant. The probable explanation here is that the first activation of the tenant
in a resource needs some initialization in the tenant’s metadata (such as library,
cache initialization, filesystem based resources, etc.), which do not exist yet in
the filesystem or memory of the target resource’s installation when it is migrated
for the first time . This behaviour happens only one time, and the duration of
the activation part stays stable after this first.

Now, we present the results for processes durations on the origin resource,
and on the destination resource of a migrated tenant. The Table 1 shows the
general statistics depending on the observed schema, and when the results have
been retrieved in the experiment(before -pre- or after -post- the migration). The
mean duration of TestHumanTask process is about 1300 milliseconds shorter
after the migration compared to before, but 1500 milliseconds longer for the
M3Process schema and 2700 milliseconds for the AdditionalApproval process.
The standard deviations are similar except for the TestHumanTask process.

Table 1. Duration of tasks grouped by BPM schema and moment compared to the
migration.

BPM schema When Count Mean Std Min 25% 50% 75% Max
M3Process post 10292.0 38449.2 16217.7 13657.0 26046.0 34401.0 44808.0 76321.0
M3Process pre 14630.0 36950.8 15909.0 4398.0 24837.0 33933.5 47169.0 87303.0
TestHumanTask post 19529.0 12579.3 9378.1 581.0 3081.0 9588.0 15921.0 32269.0
TestHumanTask pre 19688.0 13892.8 15594.2 466.0 2969.5 12282.0 19553.5 168560.0
AdditionalApproval post 17710.0 113370.0 42819.4 22915.0 78601.0 116355.0 146674.0 199938.0
AdditionalApproval pre 25749.0 110685.8 42710.7 12907.0 83799.0 114749.0 141261.0 199856.0

We obtain slower mean durations for M3Process and additionalApproval pro-
cesses after the live migration, and faster mean duration for the TestHumanTask
process. At the time of writing, we don’t have rational explanation for that.

We compare in figure 8 the duration of processes from the BPM provider
perspective (left), and task duration from the BPM agent perspective (right).
On both figures, the blue (left) boxplot for each number of active processes is
the duration when no migration is executed, and the orange (right) boxplot is
the duration during the migration.

There are a lot of variation probably due to the Cloud behaviour, and to some
non deterministic effects after the live migrations. Some processes last for more
than 200 seconds, up to 1000 seconds. Even with these effects, the duration
of both processes and tasks are positively correlated to the number of active
processes. Durations are a bit longer and less stable during migrations.

In order to have a more homogeneous comparison, we removed from the
data the processes having a duration superior to 200 seconds and tasks superior
to 15 seconds. The table 2 shows the corresponding results for the BPM tasks
response time, aggregated by tenant. The table shows that the duration is always
longer during migrations, both for the tenant on the origin resource (tenant1)
and on the destination resource (tenant3). The difference in duration is between
26 and 650 milliseconds. We cannot find correlation with the BPM schema.



14 Rosinosky et al.

Fig. 8. Process duration -BPMS point of view- distribution (left) and task duration
-BPM agent point of view- distribution (right) vs process schema and number of active
processes.

The performances of tenant1 and tenant3 are similar, sometimes faster, and
sometimes slower.

As in the previous experiments, additional process is much longer than M3Process,
which is longer than human task. The same behaviour occurs for the composing
tasks at a much smaller scale.

The effects of the live migrations on the co-located tenants are not important
but they exist. We observe a few hundred more milliseconds for each type of
BPM schema. It is higher for the more complex BPM schemas than for the
simpler. This is the same when we compare the effects on the tenant of the origin
resource to those on the destination resource. Migrations have more effects on
the AdditionalApproval process destination resource than on the origin resource.
This will require more investigations. The results we obtain are similar for the
process duration.



Evaluating Multi-Tenant Live Migrations Effects on Performance 15

Table 2. Duration of tasks during migration compared to before grouped by BPM
schema and tenant

BPM schema Tenant Migration
running Count Mean Std Min 25% 50% 75% Max

M3Process tenant1 False 11745.0 1018.9 511.4 183.0 668.0 884.0 1157.00 5819.0
M3Process tenant1 True 4602.0 1126.4 695.8 115.0 738.0 962.0 1302.75 13926.0
M3Process tenant3 False 11351.0 1003.2 475.9 208.0 674.0 874.0 1174.00 3612.0
M3Process tenant3 True 3995.0 1208.9 600.1 297.0 795.0 1025.0 1533.50 5270.0
TestHumanTask tenant1 False 17375.0 718.0 1171.1 114.0 330.0 482.0 687.00 11671.0
TestHumanTask tenant1 True 4107.0 734.1 464.6 124.0 439.0 617.0 791.50 4665.0
TestHumanTask tenant3 False 18857.0 609.5 393.7 122.0 345.0 505.0 704.00 2959.0
TestHumanTask tenant3 True 4667.0 738.6 491.7 145.0 426.5 603.0 791.00 3444.0
AdditionalApproval tenant1 False 15131.0 2790.5 2055.7 360.0 1281.0 2100.0 3404.00 12241.0
AdditionalApproval tenant1 True 5405.0 2883.6 2359.1 398.0 1313.0 2152.0 3484.00 14949.0
AdditionalApproval tenant3 False 19530.0 3050.3 2109.8 354.0 1458.0 2255.5 4110.00 12673.0
AdditionalApproval tenant3 True 8299.0 3702.0 2349.8 558.0 1751.0 2935.0 5521.00 12882.0

7 Related Work

Performance is a major concern for multi-tenant service providers. In the lit-
erature, performance evaluation for multi-tenant environments is tackled from
different perspectives including evaluation of tenant placement [12][11], live mi-
grations [5][2] and the suitability of the sharing approach [6][8]. The target ap-
plications are mainly multi-tenant databases, whereas in our work, we focus on
evaluating the tenants migration effects for a Web application including both
application and database servers. Initially, the live migration is used for Vir-
tual Machines [1]. The approach consists in moving a virtual machine and its
dependencies from one hardware resource to another without being shutdown.
The aim is to decommission the hosting of resources, which are not needed any-
more, while minimizing the downtime and the negative effects. In [6], the authors
extend the TCP application for benchmark to support multi-tenant platforms.
The performance evaluations focus on determining the maximum throughput as
well as the tenants number supported by the platform, which can be used later
to provide insights about the suitable sharing approach. Although, in our work,
the number of the tenants as well as their requirements in terms of throughput
are known in advance, our main focus is on investigating tenants live migrations
impacts on duration and response time, which is not supported in [6]. In [12],
the authors present the STeP framework for scheduling multi-tenant databases
on the suitable resources. SteP provides a new set of tenants packing algorithms
to optimize both static and dynamic resource allocation. Further, it uses a set of
metrics including performance objective violation, the operations cost and the
monetary penalty to determine the efficiency of the placement approach. In our
work, we focus on the impact of the dynamic placement and its effects on the
tenants where the authors consider only scheduling. In [9], the authors present
a profit-driven tenant placement strategy for multi-tenant databases. Similar to
[12], a set of placement algorithms are proposed, which were evaluated based
on operations cost and the SLA penalty costs. Although the authors discuss



16 Rosinosky et al.

the suitable deployment of multiple tenants, the migration of tenants and its
impacts are kept as a future extension of their work. In [7], the authors pro-
pose a framework that furnishes policies for hardware provisioning and tenants
scheduling according to the tenants classes and their performance SLOs. While
in our work, we assume we know in advance the required resources to deal with
the evolving requirements of tenants and we provide an approach to measure the
impact of the live migration in terms of duration and response time.

8 Threats to Validity

The proposed approach has different limits, that we tried to mitigate when
possible:

– We have tested the effects of co-located tenants only for small numbers of
active processes (0 to 200). We need to test with more active processes.

– Using Public Cloud resources induces variability problems. As we have seen
in the results, even when executing multiple tests we still have many outliers,
sometimes on a whole experiment. The only solution is to launch even more
experiments. We plan to make a more intensive analysis of migration for a
next iteration, and the framework will help us in this task.

– We have not studied the effects of multitenancy on the performance. In this
case we have compared results for a fixed number of tenants. Indeed, there
could be additional operations related to the management of tenants, but
non related to the workload. Response time could not be totally proportional
to the injection if there are more tenants. We plan to study this in a future
work.

– The results concern only one BPMS and one live migration method. We plan
to test with more BPMS from different vendors.

– In its current implementation, the framework scales in the number of Fa-
ban/BPM agents. However, when we tried to scale up the number of Faban
load tester instances, we had issues with the parameters. The SUT should to
be tuned in order to take advantage of this (resource-wise, and parameter-
wise). In this experiment, we have tuned the SUT in the same way for all
the experiments. We plan to execute tests with different configurations of
the parameters and test different resource configurations in future work.

9 Conclusion and Future Work

In this paper, we presented two contributions: (i) a generic approach to measure
the impact of live migrations in terms of service interruption and performances
evaluation for Web applications; and (ii) a performance test framework for multi-
tenant BPMS. We present an example on how the framework can be used for
measuring the effects of live migrations using a well known BPMS. The analysis
of the experimental results showed that the duration of a migration depends



Evaluating Multi-Tenant Live Migrations Effects on Performance 17

linearly on the size of the active data and that the effects on the co-located ten-
ants cannot be neglected. Indeed, live migrations may last for long and providers
should take them into account and study their effects before on their applica-
tions if they want to guarantee the same QoS. This fact could included in the
migration decision of elasticity algorithms. Further, our framework can be eas-
ily used for other Web applications or other live migration methods with the
appropriate adaptation mentioned in the paper.

As a future work, we plan to perform deeper analysis on the effects of live
migrations on co-located tenants, for various number of tenants, live migration
methods, and Web applications in order to have better view on their QoS im-
pacts. We also intend to enhance our framework, by improving the BPM agent
component through the modeling and simulation of more advanced human be-
haviours. Our work allows to have a better view on live-migrations effects and
pinpoint important criteria Software as a Service (SaaS) providers should not un-
derestimate. It can be used to evaluate deployment decision and to parameterize
elasticity algorithms when QoS constraints are very strong.

Acknowledgments

This work has been partly supported by the German Research Foundation (HO 5721/1-
1, DECLARE), and by the Swiss National Science Foundation (project no. 178653).
This work has been supported by Azure Research Grant. We thank heartfully Bonita-
soft without whom this analysis could not have been done.

References

1. Clark, C., Fraser, K., Hand, S., Hansen, J.G., Jul, E., Limpach, C., Pratt, I.,
Warfield, A.: Live migration of virtual machines. In: Proceedings of the 2nd Con-
ference on Symposium on Networked Systems Design & Implementation-Volume
2. pp. 273–286. USENIX Association (2005)

2. Das, S., Nishimura, S., Agrawal, D., El Abbadi, A.: Albatross: Lightweight elas-
ticity in shared storage databases for the cloud using live data migration. Proc.
VLDB Endow. 4(8), 494–505 (May 2011)

3. Ferme, V., Ivanchikj, A., Pautasso, C.: A framework for benchmarking bpmn 2.0
workflow management systems. In: International Conference on Business Process
Management. pp. 251–259. Springer (2015)

4. Ferme, V., Ivanchikj, A., Pautasso, C.: Estimating the cost for executing business
processes in the cloud. In: International Conference on Business Process Manage-
ment. pp. 72–88. Springer (2016)

5. J. Elmore, A., Das, S., Agrawal, D., El Abbadi, A.: Zephyr: Live migration in
shared nothing databases for elastic cloud platforms. In: SIGMOD. ACM, ACM
(06/2011 2011)

6. Krebs, R., Wert, A., Kounev, S.: Multi-tenancy performance benchmark for web
application platforms. In: Daniel, F., Dolog, P., Li, Q. (eds.) Web Engineering. pp.
424–438. Springer Berlin Heidelberg, Berlin, Heidelberg (2013)

7. Lang, W., Shankar, S., Patel, J.M., Kalhan, A.: Towards multi-tenant performance
slos. In: 2012 IEEE 28th International Conference on Data Engineering. pp. 702–
713 (April 2012)



18 Rosinosky et al.

8. Liu, R., Aboulnaga, A., Salem, K.: Dax: A widely distributed multitenant storage
service for dbms hosting. Proc. VLDB Endow. 6(4), 253–264 (Feb 2013)

9. Liu, Z., Hacigümüs, H., Moon, H.J., Chi, Y., Hsiung, W.P.: Pmax: tenant place-
ment in multitenant databases for profit maximization. In: EDBT (2013)

10. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach. Pearson Ed-
ucation, 2 edn. (2003)

11. Schaffner, J., Januschowski, T., Kercher, M., Kraska, T., Plattner, H., Franklin,
M.J., Jacobs, D.: Rtp: robust tenant placement for elastic in-memory database
clusters. In: SIGMOD Conference (2013)

12. Taft, R., Lang, W., Duggan, J., Elmore, A.J., Stonebraker, M., DeWitt, D.: Step:
Scalable tenant placement for managing database-as-a-service deployments. In:
Proceedings of the Seventh ACM Symposium on Cloud Computing. pp. 388–400.
SoCC ’16, ACM, New York, NY, USA (2016)


	Evaluating Multi-Tenant Live Migrations Effects on Performance

