
Services organisation in IoT : mixing Orchestration
and Choreography

Sylvain Cherrier, Rami Langar
Universit Paris-Est , Laboratoire d’Informatique Gaspard Monge (CNRS : UMR8049)

Abstract—The Internet of Things (IoT) is the extension of the
Internet of Data to the physical world. It integrates a plethora
of networks of sensors and actuators (WSAN). But it lacks a
commonly adopted architecture, able to deal with its important
heterogeneity and its constraints. The major trend in IoT
Applications conception is based on a centralized architecture.
This centralization, known as Orchestration, is a legacy of sensors
and actuators networks. IoT Orchestrations are proposed by the
industry to properly manage the Objects of a single protocol.

However, a distributed approach can be imagined. The dis-
tributed architecture, called Choreography, can offer some so-
lutions for interoperability and security, which are important
issues of the IoT. This paper explores the pros and cons of
both architectures. It also presents a mix of the two, and
an implementation in our own platform (BeC3) of distributed
applications for the IoT.

Index Terms—Services architecture, IoT, Choreography, Or-
chestration.

I. INTRODUCTION

The Internet of Things (IoT) is still an evolving research
theme. As no common solution seems to be adopted by the
market, there are still challenging issues to be addressed.

IoT applications proposed on the market are mainly cen-
tralized ones. One of the main characteristics of Objects of
the IoT is their heterogeneity. As a result, industrials pro-
pose proprietary silos applications, adapted to their hardware
specificities. They provide up-to-date software controllers,
efficiently driving their Objects, but unable to integrate or even
inter-operate with other hardware.

To cope with hardware heterogeneity, a software Service
approach can be proposed. The Service Oriented Approach
(SOA) frees the programmer from constraints related to the
specificities of the hardware and programming tools supported
by the platform. Services are described by an Interface, and
then implemented on different hardware, with any program-
ming tool. Once the Services are implemented, an application
can invoke them. Creating an application that uses and com-
bines Services provides loosely coupled systems. Services can
be implemented in any language, on any platform. They must
rely on a well defined Interface, that describes the requests
accepted and the responses given by the Service.

Then again, Services may interact depending on a central-
ized organization or a distributed one [4]. In an Orchestration,
all the Services are under the control of a central node, called
an Orchestrator. The Orchestrator has a global view of the
overall logic of the application, and is in charge of calling and
using the Services. The alternative to this centralized approach
is the Choreography. In this distributed version, each Service

reacts to its environment, and make decision on its own. Then,
it can use other Services. In that case, there is no central point
of control, every stakeholder follows it own logic. When the
combination is correctly built, the resulting system is stable,
and able to cope and react to multiple stimuli. Each solution
has its pros and cons.

Issues in the IoT domain are often studied by researchers
focusing on one aspect, e.g. the network protocol, the security,
the application [2]. IoT is a result of the convergence of
different visions. These ”oriented visions” come from the
researchers’ ”perspective, depending on their specific interests,
finalities and backgrounds” [3]. L. Atzori et al. had classi-
fied these perspectives in 3 ”visions”: ”things” (i.e. sensors,
hardware, and protocols of WSAN), ”semantic” (i.e. context
awareness, analytic and pattern matching), and finally ”Inter-
net” (i.e. upper layers of IP, applications, Web...). Depending
on their background, and on the point they want to address,
these research may not pay attention to some layers that
they consider as fully functional. In their survey, S. Verma
et al. list several papers where some points (e.g. ”network
attributes required” or ”IoT Analytic structures”) (are) ”take(n)
for granted” [16].

Services Approach offers a solution to get rid of the issues
of heterogeneous hardware and programming platforms. Still,
the warning raised in [16] must be taken into account. Does
the architectural organization of a Service Oriented Approach
have an impact on some layers of the Internet of Things ?

In this paper, we will limit our study to the pros and cons of
the two main architectures used in SOA : Orchestration (i.e.
centralized) and Choreography (i.e. distributed). The remain-
der of this paper is organised as follow: Section II presents
the Orchestration and discusses advantages and disadvantages.
Section III is about the alternative, the Choreography. Section
IV presents a hybrid approach, an implementation in our
framework and a use case. The final section summarizes the
study, and presents future works.

II. SERVICES ORCHESTRATION IN THE IOT
A. The centralized approach

IoT takes its roots in the Wireless Sensor and Actuators Net-
work (WSAN). WSAN refers to a group sensors and actuators
that are connected through an often self-organized network,
according to the rules defined in their specific protocols [1].
Usually, sensors gather data from the physical world and send
them to the sink. Actuators receive the orders to execute from
the sink.



Fig. 1. IoT Services Orchestration: 3 WSAN gather data and send them to
the cloud. This central point of control analyses data (blue arrows), takes
decision, and sends back an action to be executed on the physical world (red
arrow).

When IoT connects WSAN to the Internet, the sink, which
is often the network organizer, is in charge of forwarding all
data to the outside world using Internet protocols. The IoT
extends the access to data initially offered by the Internet to
the physical access given by WSAN. As the IoT evolves, it
includes more powerful Objects that can access the Internet
on their own.

In an Orchestration, the central point of control gets a
complete view of the data (see Fig 1). Often, the application
gives access to a supervision control panel, where all the data
are displayed in graphics. The data gathered can be stored. An
important part of IoT research studies are linked to Big Data
approach. In that case, patterns are searched, or complex data
analysis are done on the data corpus in order to obtain a precise
view. Then, decisions are taken by the central Orchestrator.
The actuators available are requested to make actions on the
physical world as described by the central Orchestrator.

In this approach, using Services is a solution to ease
the integration of new devices and new network protocols.
As Services Oriented Architecture (SOA) provides a loosely
coupled systems [4], it simplifies the port of the Services on
new hardware and/or networks. By hiding the specificities
of the new element, SOA makes it easier to cope with IoT
heterogeneity. Then, the central point of control invokes the
new port of the same Service. In the SOA approach, IoT
platforms can include new stakeholders with less difficulties.

In the centralized approach, the collected data is used to
build graphical reports (e.g. graphs, percent, and different data
visualisations), for IoT data analytics [16] and IoT big data [6].
They are major and evolving fields in research.

B. Do we need all these data ?

Collecting the data raises important issues, as the WSAN
networks are constrained in terms of bandwidth, throughput
and payload. Most of all, inside WSAN, the energy must
be saved, and sending all these data represents an important

Fig. 2. IoT Services Choreography: 3 WSAN gather data and react directly,
sending messages to other nodes (inside their network or even outside). They
all collaborate, but no one has a complete view of the scenario. As an example
in this figure, the WSAN on the right sends events to a service on the Internet,
and this Service reacts by sending event to the other two WSAN, that react
to them.

consumption. Massive IoTs may encounter issues in term of
data volumetric [16]. Security and confidentiality are also
problematic [15] [5] [19].

Depending on use-cases, applications may not need to
collect all the data. Some applications need information to
take decision on-the-fly, data analytics and storage are less
important [18]. In many cases, users need a summary or an
analysis for decision making, and not the detailed data.

Finally, confidentiality and ownership of data can also raise
issues. Using cloud services or proprietary solutions may be
subject to contractual licenses that place restrictions on the
use or ownership of collected data. These restrictions may be
incompatible with the user’s needs.

III. SERVICES CHOREOGRAPHY IN THE IOT

Y. Akyildiz et al. [1] describe the differences between
a centralized and a distributed approach in WSAN. In the
centralized organisation, called Semi-Automated, sensors send
data through the sink and actuators receive orders from the
central point of control. The alternative, named Automated,
allows sensors to directly interact with actuators. In IoT SOA
approach, the distributed architecture is a Choreography.

A. Distributing the control

The Automated WSAN is based on a distributed architec-
ture. Creating a distributed application in WSAN raises issues,
due to the poor computation capabilities of the nodes, and their
heterogeneity. Processing power of Sensors is limited, as the
hardware is more oriented on sensing than computing. But to
be able to participate to a self-organized network means some
data processing capabilities. And this restricted computational
power can be used to process data.

IoT extends the WSAN to the world of Internet services
on one side, and also imports the Internet approaches in the



sensors. Objects at stake offer more computational power as
the market grows, and they may improve network accesses
to their capabilities. Some of them even give a full IPv6
access through 6LowPAN [12] [13] and simulate REST with
CoAP [14]. The more powerfull objects are (even if it is still
very limited), the more work they can do. In our platform
called BeC3 [10], we use this processing capability to process
data everywhere we need, and to build direct interactions
between Objects (see Fig 2).

B. Energy and security constraints

Sending all the physical measure gathered by all the sensors
can generate an important energy consumption. Often users
need to get all these data for decision making. The issue here is
that sending data to the sink uses important energy resources.
The wireless network used at this level is often not reliable,
slow, and limited in throughput. A solution to leverage the
impact of such a use of the network and the objects can be
based on network coding [17].

Processing sensed data directly on the node is often less
energy consuming that sending them. On a Texas Instrument
TI CC2538 System-On-Chip, receiving data consumes1 from
20 to 27 mA, transmitting consumes1 from 24 to 34 mA, while
computing costs1 from 7 to 13 mA. Furthermore, building the
packet adds computational energy cost.

Security is a big issue in IoT. Due to the lack of energy
and the limited computational capabilities of the Objects, the
level of encryption of transmitted data is not at the level of
that usually encountered on the Internet. By impact, one of
the strengths of Choreographies is that it limits access to data
from the outside. Local processing increases confidentiality
by limiting the data dissemination, even if it does not protect
against an attack. The less data is transmitted, the more
confidentiality is assured. An example of the utility of data
local processing, linked to the security issue, is presented in
the port of blockchain for the IoT [11].

C. Coherence and expressivity issues

Services Choreography raises its own challenges. On one
hand, distributed architectures leverage the impact on the
network, save energy and protect from security issues. On the
other hand, the lack of central point of control may lead to loss
of consistency in the application logic. If messages get lost,
some Objects of the Choreography may stand in an invalid
state, loosing the coherence of the whole application. Some
mechanisms can be used to avoid it, or to take into account
this issue, as we have described in our previous work [7].

Another issue is the expressiveness of the Choreography. As
it is composed of a combination of Services, the application
is limited to the capabilities of each Service to cope with
the logic to implement. Expressive power is always relative
to the algorithms that the Services can describe. Each IoT
Service is implemented on the limited processor of Objects,
so restrictions are important. However, the IoT applications

1http://www.ti.com/lit/ds/symlink/cc2538.pdf

needs in terms of expressiveness are not very challenging,
because the data processing is often quite simple, linked
with the limited semantic content of the data measured (i.e.
physical value such as temperature, pressure, light, etc, or
simple on-off, as in contact, presence, switch, etc). The limited
expressivity is offset by the high distribution of processing and
the simplicity of the data to which it applies.

IV. AN HYBRID APPROACH

BeC3 [10] is our framework for building IoT distributed
applications. With this framework, it is possible to define a
combination of Services that will be created on-the-fly on the
Objects, by programming them remotely [9]. This ”Object-
as-a-Service” approach gives the ability to dynamically create
new logical interactions between user’s Objects.

BeC3 was designed to process the data locally. It focuses on
checking the exchanges validity, in order to allow the interac-
tions between logical blocks implemented on the participating
Objects. No data are transmitted, but orders from Objects to
Objects. The entire application corresponds to a combination
of events, each of which is deduced from the data analysis
carried out by each Service, locally, closest to their source.

A. Why choosing ?

This radical choice has not stood the test of real users
needs. Even if the local processing of data gives a good
protection against hackers, users still often need to access their
data, to process pattern matching or simply to log a part of
them. An a-posteriori analysis enhances the knowledge of the
environment, and helps improve applications.

In that purpose, our Object-Service has been enriched by a
remotely configurable MQTT client. Thus, it is now possible to
configure each object to transmit the sensed values to a given
server. Each Object can be set (or not) as client of a given
MQTT server, which can be different or unique. Depending
on the accuracy of the data he wants to collect, each user
can choose which object emits. For example, it can be limited
to actuators, and recover only the received orders resulting
from the Service that has made the data processing. It can
also recover the original data by configuring the MQTT client
of each sensors, or only some of them. Finally, it can use one
or more MQTT servers, scattered in the network, near or far
from the capture network.

Mixing Choreography and data gathering in the same appli-
cation offer multiple interests to the user. The distributed ap-
proach reduces network traffic and limits power consumption
in the WSAN at work. The user controls which amount of data
is sent on the network, their destinations and the impact on the
network. These destinations can be set at different places in
the network or to a central point, on the Edge or in the Cloud.
After an analysis, a new Choreography can be designed, and
then deployed as a new IoT application.

B. Implementation

There are several implementations of our tool providing the
”Object-as-a-Service paradigm” [9], a virtual machine called



A

DC

B

2

3

11

1

1

2

2
2

3

3

Fig. 3. Roundabouts Choreography. In each roundabout, the traffic light
number 1 is the leader of the others. They obey to its rhythm. Car sensors
are sending their sensed values to a MQTT Server.

D-LITe [8]. An implementation of D-LITe is integrated in BeC3

in order to offer the users a solution to integrate common
Internet Services in their IoT applications (e.g. Twitter, web
forms, etc). The integration of a MQTT client was not really an
issue because there are no constraints of memory or processing
power: BeC3 is running on Internet servers, with their usual
amount of resources.

We have also integrated the MQTT client in our Python port
of the D-LITe virtual machine. This version is mainly used on
Raspberry Pi. Raspberry Pi are used to control some common
WSAN such as ZWave, EnOcean, or Bluetooth LowEnergy.
It interconnects them to the Internet, acting as a gateway.
Adding the MQTT support was done with the paho-mqqt
package1. The size of this package is 272 KB. We add less than
10KB on our Python implementation to use it. There is also a
Contiki-os2 port of the virtual machine to integrate 6LowPAN
objects in our platform. As there is no MQTT client library
for Contiki, we could not integrate it in our Contiki version
of D-LITe. Writing a MQTT client for this Operating System
is a future work to be done.

C. Smart-city use-case

To illustrate our proposal, we propose a smart-city use-case.
In order to run this simulation, we have created in our platform
a test of a road management system. This test uses our Python
version of the D-LITe virtual machine. This road management
system (see Fig 3 and 4) has some car detection sensors able to
count the number of cars on a road, and their speed. Intelligent
Traffic light are also available, and give the ability to control
the traffic. We created these ”car sensors” and ”traffic lights”
with Python scripts that simulate their behaviours.

At first, the Choreography deployed uses traffic lights (see
Fig 3). For each roundabout, we chose a traffic light master.
This traffic light changes from red to green every 90 seconds.
By doing so, it sends an order to the other traffic lights of the
same roundabout and asks them to change their colours. In this
Choreography, each roundabout is autonomous and manages

1https://pypi.org/project/paho-mqtt/
2http://contiki-os.org/

A

DC

B

2

3

11

1

1

2

2
2

3

3

Fig. 4. The IoT data analysis has detected a car traffic jam, a new
Choreography is deployed to provide a solution (Green way). Now, the car
sensors are controlling the corresponding traffic light (Orange arrow), which
are now controlling their roundabout. Traffic lights A3 and C2 are now leaders
of their roundabout, while B1 and D1 remain leaders of their.

its own logic. In this scenario, the car sensors measure the
traffic of the road and send the data to an MQTT server.

In this scenario, we assume that, at some point, we detect an
abnormally high number of cars on a road. The analysis of the
data reveals a car traffic jam in the part of the town. The user
then decides to set up a priority path to facilitate the reduction
of this car traffic jam (see the green arrow in Fig 4). For each
roundabout, the car sensor will command the corresponding
traffic light. As long as the car traffic jam remains on this
portion, the flow will have priority, and the traffic light will
stay green longer than red. Our test uses mandatory value (6
times longer in our test), but the idea is to make this value
configurable instead of static. Each portion of the road receives
this same algorithm, the car sensor controlling the main traffic
light, the main traffic light controlling the secondary ones.
Once deployed, this new Choreography has modified the role
of each Object, thus in reaction of the data analysis done by
the IoT data analysis software.

V. CONCLUSION

In this paper, we have presented the pros and cons of
the two different architectures available for Services in the
IoT. On one hand, the centralized Orchestration that uses
Services implemented on Objects, hiding their specificities. On
the other hand, the distributed Choreography, which defines
autonomous groups of Objects sharing a logical task. A mix of
the two architectures is described. An implementation of a re-
motely configurable MQTT client is handled in our distributed
platform BeC3. In future works, we will concentrate on an
IoT data analytics software able to automatically define new
Choreographies. In that case, the parameters used in the on-
the-fly created Choreographies can be set by the IoT analytics
software. A reflexive loop can be built. In our car traffic jam
use-case, the traffic light’s ”red and green” time difference can
be continuously redefined as the environment evolves. Then,
each new application can be deployed through our platform
according to new requirements.



REFERENCES

[1] I. Akyildiz and I. Kasimoglu. Wireless sensor and actor networks:
research challenges. Ad hoc networks, 2(4):351–367, 2004.

[2] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and
M. Ayyash. Internet of things: A survey on enabling technologies,
protocols, and applications. IEEE Communications Surveys & Tutorials,
17(4):2347–2376, 2015.

[3] L. Atzori, A. Iera, and G. Morabito. The internet of things: A survey.
Computer Networks, 54(15):2787 – 2805, 2010.

[4] A. Barros, M. Dumas, and A. Ter Hofstede. Service interaction patterns.
Business Process Management, pages 302–318, 2005.

[5] E. Bertino and N. Islam. Botnets and internet of things security.
Computer, (2):76–79, 2017.

[6] H. Cai, B. Xu, L. Jiang, and A. V. Vasilakos. Iot-based big data storage
systems in cloud computing: Perspectives and challenges. IEEE Internet
of Things Journal, 4(1):75–87, 2017.

[7] S. Cherrier, Y. Ghamri-Doudane, S. Lohier, and G. Roussel. Fault-
recovery and coherence in web of things choreographies. WF-IoT 2014
(Soumis).

[8] S. Cherrier, Y. Ghamri-Doudane, S. Lohier, and G. Roussel. D-lite :
Distributed logic for internet of things services. In IEEE International
Conferences Internet of Things (iThings 2011), pages 16–24. IEEE,
2011.

[9] S. Cherrier and Y. M. Ghamri-Doudane. The ”object-as-a-service”
paradigm. In Global Information Infrastructure and Networking Sym-
posium (GIIS), 2014, pages 1–7. IEEE, 2014.

[10] S. Cherrier, I. Salhi, Y. Ghamri-Doudane, S. Lohier, and P. Valembois.
Bec3: Behaviour crowd centric composition for iot applications. Mobile
Networks and Applications, pages 1–15, 2013.

[11] Z. Huang, X. Su, Y. Zhang, C. Shi, H. Zhang, and L. Xie. A
decentralized solution for iot data trusted exchange based-on blockchain.
In Computer and Communications (ICCC), 2017 3rd IEEE International
Conference on, pages 1180–1184. IEEE, 2017.

[12] N. Kushalnagar, G. Montenegro, and C. Schumacher. Rfc 4919: Ipv6
over low-power wireless personal area networks (6lowpans): overview.
Assumptions, Problem Statement, and Goals, 2007.

[13] Z. Shelby and C. Bormann. 6LoWPAN: The Wireless Embedded Internet.
Wiley, 2010.

[14] Z. Shelby, B. Frank, and D. Sturek. Constrained application protocol
(coap). An online version is available at http://www.ietf.org/id/draft-ietf-
core-coap-18.txt, 2010.

[15] N. Sklavos and I. D. Zaharakis. Cryptography and security in internet
of things (iots): Models, schemes, and implementations. In New Tech-
nologies, Mobility and Security (NTMS), 2016 8th IFIP International
Conference on, pages 1–2. IEEE, 2016.

[16] S. Verma, Y. Kawamoto, Z. M. Fadlullah, H. Nishiyama, and N. Kato.
A survey on network methodologies for real-time analytics of massive
iot data and open research issues. IEEE Communications Surveys &
Tutorials, 19(3):1457–1477, 2017.

[17] S. Wunderlich, J. A. Cabrera, F. H. Fitzek, and M. Reisslein. Network
coding in heterogeneous multicore iot nodes with dag scheduling of
parallel matrix block operations. IEEE Internet of Things Journal,
4(4):917–933, 2017.

[18] I. Yaqoob, E. Ahmed, I. A. T. Hashem, A. I. A. Ahmed, A. Gani,
M. Imran, and M. Guizani. Internet of things architecture: Recent
advances, taxonomy, requirements, and open challenges. IEEE wireless
communications, 24(3):10–16, 2017.

[19] J. Zhou, Z. Cao, X. Dong, and A. V. Vasilakos. Security and privacy for
cloud-based iot: challenges. IEEE Communications Magazine, 55(1):26–
33, 2017.


