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Abstract

The freezing phenomenon is studied in connection with the low temperature behaviour
of the entropy of the Gibbs measure. In particular, in the case of the mean-field Gaus-
sian spin glass model, from the study of a functional relation between the free energies
at two different temperatures, we show that the maximum value of the inverse tem-
perature beyond which the specific entropy of the Gibbs measure cannot be strictly
positive is given by β∗ = 4log2. The low temperature entropy of the Random Energy
Model is also discussed.

1 Introduction and main result

During the last decades, the behaviour of random Gibbs measures associated with
log-correlated random distributions has been extensively studied by the physics and
mathematics communities. lnitialy addressed in the case of random polymers [7] on
trees, it has recently attracted considerable interest in the context of extreme value
statistics and the Laplace functional of the randomly shifted decorated Poisson point
processes (SDPPP)[18, 15]. The non-trivial behaviour of these measures at low tem-
peratures (essentially dominated by the local extreme values of the associated random
fields) gives rise to the freezing phenomenon. Freezing can be also characterized from
the behaviour of the free energy at low temperatures [10, 4, 15] or from the properties
of multifractal spectrum of the random measure [9].

An interesting question is whether freezing is related with the entropy of the mea-
sure. Indeed, it can be proved that freezing can be equally related with the vanishing
of the entropy of the corresponding Gibbs measures in the case of random polymers
on trees, multiplicative chaos and mean-field spin-glass models. Namely, for these
modes, there exists a freezing temperature beyond which the specific entropy of the
Gibbs measure cannot be strictly positive. This will be given in [14].

The purpose of this note is to present in detail the relationship between entropy
and freezing in the case of the (widely studied) mean-field Gaussian spin-glass model.
In particular, we introduce a simple, yet rigorous, method allowing the estimation the
value of the freezing temperature at which the mean entropy of the Gibbs measure van-
ishes. Our approach is totally self-contained; we solely make use of the existence of the
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thermodynamic limit of the quenched specific free energy [12] and its self-averaging
property [17]. Notice that the convexity of the free energy w.r.t. the inverse temper-
ature implies its sub-differentiability which is sufficient to prove some of our results
(in particular the lower bound of the free energy). Nevertheless, as we don’t use here
the Parisi measure — which is indeed differentiable [19, 16] —, we shall assume in this
work the differentiability of the free energy to simplify and complete the proof.

We recall first some basic definitions. Suppose that a finite set of n sites is given.
With each site we associate the one-spin space Σ := {1,−1}. The natural configuration
space is then the product spaceΣn =Σn = {−1,1}n , of cardΣn = 2n . For eachσ ∈Σn , the
finite volume Hamiltonian of the model is given by the following real-valued function
on Σn

Hn(σ, J ) =− 1p
n

∑
1≤i< j≤n

Ji jσiσ j ,

where the couplings J = (Ji j )1≤i< j≤n are independent centered Gaussian variables of
variance one.

At the inverse temperature β = 1
T > 0 (we take units such that the Boltzmann con-

stant k = 1), the disorder-dependent partition function Zn(β, J ), is given by the sum of
the Boltzmann factors

Zn(β, J ) = ∑
σ∈Σn

e−βHn (σ,J ).

Moreover, if E J denotes the expectation with respect to the randomness J , it is very

simple to show that E J Zn(β, J ) = 2ne
β2

4 (n−1).
For fixed randomness, the corresponding Gibbs probability measure is denoted by

µn,β,J (σ) and given by:

µn,β(σ) = e−βHn (σ,J )

Zn(β, J )
.

We recall also the definition of the entropy ofµn,β(σ): S(µn,β) =−∑
σµn,β(σ) logµn,β(σ).

The real functions

fn(β) = 1

n
E J log Zn(β, J )

and

f n(β) = 1

n
logE J Zn(β, J ),

define the quenched average of the specific free energy and the annealed specific free
energy respectively. We denote by f ∞(β), f∞(β)1, the corresponding thermodynamic
limits

f ∞(β) = lim
n→∞ f n(β, J ) and f∞(β) = lim

n→∞ fn(β, J ).

We define the critical, βc , and the freezing, β f , temperatures by

βc = sup{β : f∞(β) = f ∞(β)},

β f = inf{β≥βc : lim
n→∞

1

n
S(µn,β f r ) = 0, a.s.}.

1These functions are related to the usual thermodynamic specific free energies F∞ and F∞ through
f∞(β) =−βF∞(β) and f ∞(β) =−βF∞(β).
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In the previous setting, the reader can recognize the mean field spin glass Sherrington-
Kirkpatrick (SK) model. Various other mean-field models (REM, polymers on trees,
Gaussian multiplicative chaos, etc.) can be defined similarly. The SK model has been
widely studied in the mathematics and physics literature and has led to the develop-
ment of numerous important analytical techniques. Namely, after the first result on
the self-averaging [17], the long-standing problem of the existence and uniqueness of
the infinite volume limit of the free energy at low temperature (β > 1) is obtained by
the use of interpolation techniques in [12]. A subsequent work [2] provided a broad
variational principle over random overlap structures and various bounds on the free
energy. Important mathematical arguments towards a rigorous proof of the original
solution proposed by Parisi are obtained in [19] and have been completed by the proof
that the Parisi measure at zero temperature is supported by infinitely many points [3].

On the other hand, the behaviour of the entropy of the Gibbs measure in the low
temperature region remains poorly understood. For mean-field models the specific
entropy decreases with the temperature and it can easily be estimated for the high tem-
perature region. By lowering the temperature the entropy should eventually vanish [17]
and an early result, given in [1], corroborates the idea that the entropy does not vanish
very fast.

The main motivation of the present work is the link between freezing and entropy
and is summarized in the following

Theorem: Assuming the differentiability of the free energy with respect to the inverse
temperature, the freezing temperature of the Gaussian mean-field spin-glass model can-
not exceed β∗ = 4log2 = 2.77258. . .. Moreover, for the mean entropy s(µβ) of the Gibbs
measure, we have that

∀β≥β∗, s(µβ) = s(µβ∗) := lim
n→∞

1

n
S(µn,β∗) =− lim

n→∞
1

n

∑
σ

µn,β∗(σ) logµn,β∗(σ) = 0.

The formulation of the above theorem assumes that limn→∞ 1
n S(µn,β∗,J ) exists and

is independent of J . This follows from general principles and can immediately be ob-
tained from the existence and self-averaging of the low temperature specific free en-
ergy [12].

2 Proof of the theorem

Preliminaries and notation

We first recall that, for all β> 0, the quenched limit f∞(β) exists and is a convex func-
tion of β [12]. Let β1 ≡ 1. From the high temperature results [1], we have, almost surely,
that

f∞(β1) = lim
n→∞

1

n
E J log Zn(β1, J ) = lim

n→∞
1

n
logE J Zn(β1, J )

= f ∞(β1) = log2+ β2
1

4
(= log2+ 1

4
).
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Thus, forβ=β1, the quenched limit f∞(β1) equals to the annealed one f ∞(β1) =β2
1/4+

log2, where the term β2
1/4 comes from the mean value of the Boltzmann factor, i.e. the

typical behaviour and the mean behaviour coincide at this temperature.

Considering now the graph of the annealed limit f ∞(β) = β2

4 + log2 and the straight

line β
β1

f∞(β1) we can easily check that the two graphs intersect at β1 ≡ 1 and β∗ ≡
4log2 = 2,77258. . ..

Moreover, atβ=β∗, the annealed limit f ∞(β∗), is simply related to the limit f∞(β1)
by

f ∞(β∗) = β2∗
4

+ log2 = β∗
β1

(
β∗β1

4

β1

β∗
log2) = β∗

β1
(log2+ 1

4
) = β∗

β1
f∞(β1).

This simple — at first glance — functional relationship has motivated the present
work. Indeed, from the link between the limits f∞(β∗) and f∞(β1), it is intuitively ap-
pealing to expect an underlying relationship between the Gibbs measures atβ1 = 1 and
β∗ = 4log2. As we shall see later, this connection is provided by the relative entropy of
µβ∗ w.r.t. µβ1 . It should be noticed that the value β1 is crucial since the behaviour of
the the free energy and the entropy are known at β1 = 1.

With what preceedes in hand, one can define for all β ≥ 0, the affine mapping Tβ :

R+ →R+, by Tβx = β
β1

x; for β=β∗, this mapping reads on the values of the limits

Tβ∗ : f∞(β1) 7→ f ∞(β∗) = β∗
β1

f∞(β1). (1)

It is worth noting that the temperature β1 is introduced in order to preserve the homo-
geneity of the formulæ. Nevertheless, not to be pedantic, the explicit dependence on
it will be often dropped in the sequel. Let moreover denote by a the deviation of the
limit f∞(β∗) from its annealed value:

a := f ∞(β∗)− f∞(β∗) = β∗
β1

f∞(β1)− f∞(β∗).

We now introduce a slightly different notation which simplifies the proof. Let Wn(σ,β1)

be the random weight defined by Wn(σ,β1) = e−β1Hn (σ,J )/e
β1
2 n . For all β ≥ β1, we de-

note by g (β) and g∞(β) the tilted annealed and quenched limits respectively,

g∞(β) = lim
n→∞

1

n
logE J

∑
σ

W
β
β1

n (σ,β1) = f ∞(β)− β

2
,

g∞(β) = lim
n→∞

1

n
E J log

∑
σ

W
β
β1

n (σ,β1) = f∞(β)− β

2
.

At the inverse temperatures β1 and β∗ the quenched free energy simply reads

g∞(β1) = f∞(β1)− β1

2
= log2+ β2

1

4
− β1

2
= log2− 1

4
,

and,

g∞(β∗) = f∞(β∗)− β∗
2

.
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Figure 1: The graph β 7→ g∞(β) depicts the annealed tilted free energy. The temperature β∗
is defined as the unique β> 1 such that g∞(β) =βg∞(1).

(The reader can recognize that the term β
2 we substract from the limit g∞(β) corre-

sponds to the lower convexity bound of the free energy).
In fig. 1, the graph of the convex function g∞(β) is plotted and it is easy to check

that the minimum is reached at β = 1. The same holds for the minimum of the limit
g∞(β) because g∞ is convex and g ′

∞(β1) = g ′
∞(β1 −0) = g ′∞(β1 −0) = 0.

With what precedes in mind, we can make two observations. First, at β1, the en-
tropy s(µβ1 ) equals g∞(β1), i.e.

s(µβ1 ) = lim
n→∞

1

n
S(µn,β1 ) =− lim

n→∞
1

n

∑
σ

µn,β1 (σ) logµn,β1 (σ)

=− lim
n→∞

1

n

∑
σ

µn,β1 (σ) loge−β1Hn (σ,J ) + f∞(β1)

=−β1

2
+ f∞(β1) = g∞(β1)(= log2− 1

4
).

Second, we recall the definition of the relative entropy density s(λ|λ′) of the probability
measure λ w.r.t. the probability measure λ′, defined on an arbitrary discrete space X :

s(λ|λ′) :=
{ ∑

x∈X λ(x) log λ(x)
λ′(x) if λ¿λ′

+∞ otherwise.

The relative entropy is a non-negative function, vanishing in case the two measures are
equal, and gives the extent to which the measureλ “differs” from the measureλ′. Using
this definition we can now relate the limit g∞(β) with the relative entropy s(µβ1 |µβ) for

5



all β≥β1: Namely,

s(µβ1 |µβ) : = lim
n→∞

1

n

∑
σ

µn,β1 (σ) log
µn,β1 (σ)

µn,β(σ)

=−s(µβ1 )+ lim
n→∞

β

n

∑
σ

µn,β1 (σ)Hn(σ, J )+ lim
n→∞

1

n
log Zn(β, J )

=−s(µβ1 )−β f ′
∞(β1)+ f∞(β)

=−s(µβ1 )− ββ1

2
+ f∞(β) =−s(µβ1 )+ g∞(β),

(where we have used the fact f ′∞(β1) =− limn→∞
∑
σµn,β1 (σ)Hn(σ, J ) =β1/2 = 1/2).

Thus, for all β≥β1, the tilted quenched limit g∞(β) is simply given by

g∞(β) = s(µβ1 )+ s(µβ1 |µβ) = g∞(β1)+ s(µβ1 |µβ). (2)

By making now use of the mapping Tβ∗ , one readily gets

g∞(β∗) = β∗
β1

g∞(β1) = β∗
β1

s(µβ1 ) = g∞(β∗)+a,

and moreover, from eq 2, we have2 that for β=β∗,

s(µβ1 |µβ∗)+a = β∗
β1

s(µβ1 )− s(µβ1 ) = (β∗−1)s(µβ1 ) = (β∗−1)g∞(β1). (3)

It is important to stress that although eq. 2 is valid ∀β≥β1, eq. 3 is valid only at β=β∗.
In fig. 1, the limits g∞(β1) and g∞(β∗) are given by the lengths of the segments AB

and A′B ′ respectively. Furthermore, the segment C A′ equals to the sum s(µβ1 |µβ∗)+a.
It follows that the (unknown) value of g∞(β∗) correspond to the length of a segment
B ′C ′, where the point C ′ lies between C and A′.

We can now prove the theorem in two steps.

Step 1: establishing a lower bound for the free energy

Thanks to eqs. 3 and 3 we shall obtain a lower bound for the relative entropy s(µβ1 |µβ∗)
by comparing the limits a and g∞(β1)(= s(µβ1 )) and by providing a geometric sketch
of it. On one hand, we have that g∞(β∗) = β∗s(µβ1 ) and g∞(β∗) = s(µβ1 )+ s(µβ1 |µβ∗),
i.e. the limit g∞(β∗) exceeds s(µβ1 ) by the relative entropy s(µβ1 |µβ∗). Moreover, on
the other hand, we have shown that s(µβ1 |µβ∗)+a = (β∗−1)s(µβ1 ). Suppose now that
in fig. 1, the segment whose length equals a is transported to some point D below the
point C (with DC ′ = C A) and since the lowest position of D is when it coincides with
B ′, it follows that a cannot be bigger than s(µβ1 ) and s(µβ1 |µβ∗)) ≥ (β∗−2)s(µβ1 ) =CC ′.
In other words, a ≤ s(µβ1 ), and,

s(µβ1 |µβ∗) ≥ (β∗−2)s(µβ1 ).

This implies the following lower bound for the limit g∞(β∗):

g∞(β∗) ≥ s(µβ1 )+ (β∗−2)s(µβ1 ) = (β∗−1)s(µβ1 ) = (β∗−1)g∞(β1).

2It is recalled that (β∗−1)s(µβ1 ) means (β∗
β1

−1)s(µβ1 ).
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Step 2: vanishing of the entropy at β∗

In the second step of the proof we shall show that in case the previous lower bound
is saturated, the entropy s(µβ∗) vanishes. For this, we consider the relative entropy
s(µβ∗ |µβ1 ),

s(µβ∗ |µβ1 ) : = lim
n→∞

1

n

∑
σ

µn,β∗(σ) log
µn,β∗(σ)

µn,β1 (σ)

= −s(µβ∗)− lim
n→∞

1

n

∑
σ

µn,β∗(σ) logµn,β1 (σ)

= −s(µβ∗)−∑
σ

µn,β∗(σ) loge−β1Hn (σ,J ) + f∞(β1)

= −s(µβ∗)+ s(µβ1 )− A∞,

where

A∞ = lim
n→∞

1

n

(∑
σ

µn,β∗(σ) loge−β1Hn (σ,J ) −∑
σ

µn,β1 (σ) loge−β1Hn (σ,J )
)

.

Moreover, since limn→∞
β∗
n

∑
σµn,β1 (σ) loge−β1Hn (σ,J ) =β∗ f ′∞(β1) =β∗/2, we have that

g∞(β∗) = s(µβ∗)+ lim
n→∞

1

n

∑
σ

µn,β∗(σ) loge−β∗Hn (σ,J ) − β∗
2

= s(µβ∗)+ lim
n→∞

1

n

(∑
σ

µn,β∗(σ) loge−β∗Hn (σ,J ) −∑
σ

µn,β1 (σ) loge−β∗Hn (σ,J )
)

= s(µβ∗)+β∗A∞,

= s(µβ1 )+ (β∗−1)A∞− s(µβ∗ |µβ1 ).

Recalling now that g∞(β∗) = s(µβ1 )+ s(µβ1 |µβ∗), we obtain the following equation —
valid only at β∗ — between the two relative entropies

s(µβ∗ |µβ1 )+ s(µβ1 |µβ∗) = (β∗−1)A∞. (4)

We can now complete the proof by using the following argument. Assume that the ob-
tained bound for the limit a is saturated i.e. a = amax = s(µβ1 ) = s(µβ∗)+A∞+s(µβ∗ |µβ1 ).
In this case, smin(µβ1 |µβ∗) = (β∗−2)s(µβ1 ), and g min∞ (β∗) = (β∗−1)s(µβ1 ). From eq. 4 we
obtain that

amax = s(µβ1 ) =β∗s(µβ∗|µβ1 )+ (β∗−1)s(µβ∗),

and, moreover
A∞ = (β∗−1)s(µβ∗ |µβ1 )+ (β∗−2)s(µβ∗).

We notice that in case the entropy of the measure vanishes, i.e. s(µβ∗) = 0 one has
amax =β∗s(µβ∗ |µβ1 ), A∞ = (β∗−1)s(µβ∗ |µβ1 ) and g min∞ (β∗) =β∗A∞.

To prove the converse, we remark that the limit g min∞ (β∗) can be pulled backwards
at β=β1 by the mapping Tβ, namely

T −1g min
∞ (β∗) = β1

β∗
g min
∞ (β∗) = β1

β∗
(β∗−1)s(µβ1 ).
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Similarly,

T −1amax = β1

β∗
s(µβ1 ).

Since now

g min
∞ (β∗) = (β∗−1)s(µβ1 )

=β∗T −1g min
∞ (β∗) =β∗

(
β1

β∗
(β∗−1)s(µβ1 )

)
,

we conclude that

A∞ =β1(β∗−1)
s(µβ1 )

β∗
= (β∗−1)

s(µβ1 )

β∗
, s(µβ∗ |µβ1 ) =β1

s(µβ1 )

β∗
= s(µβ1 )

β∗
.

Recalling that s(µβ1 ) = s(µβ∗)+ A∞+ s(µβ∗ |µβ1 ), we obtain that

s(µβ∗) = 0.

We have thus established that, under the assumption of saturation of the lower
bound for g∞(β∗), the entropy s(µβ∗) vanishes and, moreover, a =β∗s(µβ∗ |µβ1 ). Thus,
the sum s(µβ∗ |µβ1 )+A∞ reaches its maximum value, i.e. the maximum value of the dif-
ference s(µβ1 )−s(µβ∗). One can now remark that, if g∞(β∗) > g min∞ (β∗), (i.e. the relative
entropy s(µβ1 |µβ∗) is bigger than its lower bound), the entropy s(µβ∗) has already van-
ished at an inverse temperature smaller3 than β∗ since (β∗−1)s(µβ1 )/β∗ ≤ A∞ ≤ s(µβ1 )
and, contravariantly 0 ≤ s(µβ∗ |µβ1 ) ≤ s(µβ1 )/β∗ so that their sum is always s(µβ1 ).

For β>β f the entropy remains zero and (since the entropy cannot be strictly posi-
tive for all values of β>β∗), the freezing temperature of the model is given by β f ≤β∗.
Thus, the value β∗ provides the maximum value beyond which the specific entropy of
the Gibbs measure cannot be strictly positive. �

Recalling the positivity of the entropy and the geometric fact that at each point on
the graph of a convex function lies above its sub-differential, we obtain ∀β ≥ β∗, the
lower boundary of the limit g∞(β), illustrated by the dotted line in the fig. 1 which
improves an early result obtained in [13]. Using also the upper spherical bound of [6],
we conclude that the quenched limit g∞(β) lies inside the shaded area illustrated in
figure 2.

One could notice that the obtained lower bound for the tilted limit g min∞ (β∗),

g∞(β∗) = s(µβ1 )+ s(µβ1 |µβ∗) ≥ g min
∞ (β∗) = (β∗−1)s(µβ1 ) = β2∗

4
− β∗

2
+ β2

1

4
,

implies, for the quenched free energy f∞(β∗) of the model,

f∞(β∗) = g∞(β∗)+ β∗
2

≥ β2∗
4

+ 1

4
= 2.1718. . . .

By making now use of the raw spherical (upper) bound [6] one has that almost
surely,

2.1718. . . ≤ f∞(β∗) ≤ 2.2058. . . .
3As explained in the Appendix, this arises in particular in the case of the REM.
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Figure 2: The graph β 7→ g∞(β) depicts the annealed tilted free energy. The (low temperature)
quenched function must lie within the shaded region, delimited from above by the spherical
bound of [6] and below by the combination of the bound previously established in [13] and the
lower bound obtained in the present work.

3 Comments and concluding remarks

In this note we proved that the mean entropy of the Gibbs measure is zero at the in-
verse (freezing) temperature β∗ = 4log2 = 2.7725. . .. Obviously, the low temperature
ultrametric picture occurs in the interval [β1,β f ] and is related to the Parisi solution.

The peculiar property arising at β∗ is the relationship between the deviation a and
the relative entropy (i.e. a = β∗s(µβ∗ |µβ1 )). This relationship is observed in all mean-
field models. In [14] we study the relation of of freezing with the entropy of the Gibbs
measure for random polymers on trees [7] and the multiplicative chaos [5]. One can
also readily check that β∗ = β2

c , where βc = 2
√

log2 = 1.6651. . . is the critical tempera-
ture of the Random Energy Model (REM). Both βc and β∗ are to be compared with the
value at β1 ≡ 1, i.e. the maximum value of β where the free energies of the two models
coincide. What we learn by the comparison of the relative entropies of the two models
is that the Gibbs measure of the Sherrington-Kirkpatrick has seemingly different con-
centration properties than for the REM. As recalled in the Appendix, in the case of the
REM, the quenched and annealed limit of the free energy are equal for all temperatures
of positive entropy and consequently the critical temperature coincides with the freez-
ing one. This does not occur in the case of SK, where the two limits are equal only for
β≤ 1. Rather surprisingly, one verifies that this lower bound can also be expressed by
the free energy at the “dual" [11] temperature 1/βc . In particular,

f∞(β∗) ≥β∗ f∞(1/βc ),

where βc is the critical temperature of the REM.
Another remark concerns the Hausdorff dimension of the support of the Gibbs

measure. Using the theorem of this note one can show that this dimension vanishes at
β∗ and thus relate the freezing transition with the behaviour of the multifractal spec-
trum introduced in [9].
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We also mention two open questions of particular interest, namely the pertinence
of our result to the low temperature behaviour of the Parisi measure and the precise
connection of the duality [11] with the freezing transition.

Note also that, although evident, the non-standard expression of the free energy
in terms of the entropy s(µβ1 ) and the relative entropy s(µβ1 |µβ) (eq. 2), ∀β > β1, has
special importance not only for the present proof. Indeed, one can apply this expres-
sion to recover information about the measure at β1, from information represented by
s(µβ1 |µβ) (for instance, in the case of compressed sensing in signal processing).
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A Appendix: The REM example

In the following we apply our approach in the case of the Random Energy Model (REM).
The REM, introduced in [8], is defined by a family (Ei )i=1,...,2n of random, independent,
centerd, identically distributed Gaussian variables of variance n/2, corresponding to
the ad hoc energy levels of the model. The high temperature behaviour of the REM is
the same as the SK model. It is well known that the REM undergoes a phase transition
at the critical inverse temperature βc = 2

√
log2 and the entropy of the Gibbs measure

vanishes almost surely ∀β≥βc i.e. the freezing temperature coincides with the critical
one. We recall moreover

f∞(β) =
{
β2

4 + log2 for β≤βc ,

β
√

log2 for β≥βc .
(5)

One can readily see that the functional relationship (1) between the annealed limits
f ∞(β∗) and f∞(β1) is also valid in the case of the REM. In the figure 3, we present the
mappings for the REM tilded functions.

0 β1 βc β∗
0

g (1)

A′
β 7→ g∞(β)

β 7→βg∞(1)

β 7→ g∞(β)
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Figure 3: Mappings for the tilted functions of the REM.

Namely, the segment C ′
REM A′ corresponds to the difference aREM and one can easily

verify that

aREM = g∞(β∗)− g∞(β∗) = β2∗
4

+ log2−β
√

log2 = log2(β∗−2βc +1).
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The relative entropy sREM(µβ∗ |µβ1 ) is given by

sREM(µβ∗ |µβ1 ) : = lim
n→∞

1

n

∑
σ

µn,β∗(σ) log
µn,β∗(σ)

µn,β1 (σ)

= −s(µβ∗)− lim
n→∞

1

n

∑
σ

µn,β∗(σ) logµn,β1 (σ)

= s(µβ1 )− AREM
∞

= 1

4
(β∗−2βc +1) = aREM

β∗
.

As expected, the relative entropy sREM(µβ∗ |µβ1) is smaller that the relative entropy we
have obtained in the previous section; indeed the "difference" between the Gibbs mea-
sures at β∗ and β1 is smaller in the case of REM than the SK.
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