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Abstract

The freezing property is studied in connection with the low temperature behaviour of
the entropy of the Gibbs measure. In particular, from the study of a functional equation
relating the free energies at two different temperatures, we prove, in the case of mean-
field Gaussian spin glass model, that the maximum value of the inverse temperature
beyond which the specific entropy of the Gibbs measure cannot be strictly positive is
β∗ = 4log2. The low temperature behaviour of the REM’s entropy is also addressed.

1 Introduction and main results

The “freezing phenomenon”, initially defined in the case of random polymers [5], has
recently attracted considerable interest in the context of extreme value statistics. It
is also connected to the properties of the Laplace functional of the randomly shifted
decorated Poisson point processes (SDPPP)[10] and expected to occur in a wide class
of logarithmically-correlated Gaussian fields.

Freezing can be characterized either from the properties of the glassy phase dom-
inated by local extreme values of the random fields [8] or from the behaviour of the
free energy at low temperatures. An interesting question is whether freezing could be
related to the entropy. In [7] we prove that freezing can be equally defined by the van-
ishing of the entropy of the corresponding Gibbs measures. In particular, for random
polymers on trees, multiplicative chaos and mean-field spin-glass models, we show
that there exists a freezing temperature beyond which the specific entropy of the Gibbs
measure cannot be strictly positive.

The purpose of this note is to present in detail the relation between entropy and
freezing in the case of the (widely studied) mean-field Gaussian spin-glass model. In-
deed, we introduce a simple, yet rigorous, method in order to estimate the value of the
freezing temperature at which the mean entropy of the Gibbs measure vanishes. Our
approach is totally self-contained; we solely make use of the existence of the thermo-
dynamic limit of the quenched specific free energy [6] and its self-averaging property
[9].

We first recall some basic definitions. Suppose that a finite set of n sites is given.
With each site we associate the one-spin space Σ := {1,−1}. The natural configuration
space is then the product space Σn = {−1,1}n , of card Σn = 2n . For each σ ∈ Σn , the
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finite volume Hamiltonian of the model is given by the following real-valued function
on Σn

Hn(σ, J ) =− 1p
n

∑
1≤i< j≤n

Ji jσiσ j ,

where the family of couplings J = (Ji j )1≤i< j≤n are independent normal Gaussian vari-
ables.

At the inverse temperature β = 1
T > 0 (we take units such that the Boltzmann con-

stant k = 1), the disorder-dependent partition function Zn(β, J ), is given by the sum of
the Boltzmann factors

Zn(β, J ) =∑
σ

e−βHn (σ,J ).

Moreover, if E J denotes the expectation with respect to the randomness J , it is very

simple to show that E J Zn(β, J ) = 2ne
β2

4 (n−1).
When the randomness J is fixed, the corresponding Gibbs probability measure is

denoted by µn,β,J (σ) and given by:

µn,β(σ) = e−βHn (σ,J )

Zn(β, J )
.

We also recall the definition of the entropy ofµn,β(σ): S(µn,β) =−∑
σµn,β(σ) logµn,β(σ).

The real functions

fn(β) = 1

n
E J log Zn(β, J )

and

f n(β) = 1

n
logE J Zn(β, J ),

define the quenched average of the specific free energy and the annealed specific free
energy respectively. The ground state energy density −εn(J ) is given by

−εn(J ) = 1

n
inf
σ∈Σn

Hn(σ, J ).

We denote by f ∞(β), f∞(β)1, and ε0 the corresponding thermodynamic limits

f ∞(β) = lim
n→∞ f n(β, J ), f∞(β) = lim

n→∞ fn(β, J ),

and,

−ε0 =− lim
n→∞εn(J ) = lim

β→∞
f∞(β)

β

We define moreover the critical βc and the freezing β f temperature by

βc = sup{β : f∞(β) = f ∞(β)},

β f = inf{β≥βc : lim
n→∞

1

n
S(µn,β f r ) = 0, a.s.}.

1These functions are related to the usual thermodynamic specific free energies F∞ and F∞ through
f∞(β) =−βF∞(β) and f ∞(β) =−βF∞(β).
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The reader can recognize in the previous setting mean field spin glass-models (as the
Sherrington-Kirkpatrick (SK) model and its variants). These models have been widely
studied in the mathematics and physics literature and have led the development of
numerous important analytical techniques. Namely, after the first result on the self-
averaging [9], the long-standing problem of the existence and uniqueness of the infi-
nite volume limit of the free energy at low temperature (β > 1) is obtained by the use
of interpolation techniques. A subsequent work [2] provided with a broad variational
principle over random overlap structures and various bounds on the free energy. Im-
portant mathematical arguments towards a rigorous proof of the original solution pro-
posed by Parisi are obtained in [11]. This has been recently completed by the proof that
the Parisi measure at zero temperature is supported by infinitely many points [3] .

On the other hand, the behaviour of the entropy of the Gibbs measure in the low
temperature region remains poorly understood. For mean-field models the specific
entropy decreases with the temperature and it can easily be estimated for the high tem-
perature region. By lowering the temperature the entropy should eventually vanish [9]
and an early result, given in [1], corroborates the idea that the entropy does not vanish
very fast.

The main motivation of the present work is the link between freezing and entropy
and is summarized in the following
Theorem: Almost surely, for the Gaussian mean-field spin-glass model, the specific en-
tropy s(µβ∗) of the Gibbs measure vanishes at the freezing temperature β∗ = 4log2 =
2.77258. . ., :

s(µβ∗) := lim
n→∞

1

n
S(µn,β∗) =− lim

n→∞
1

n

∑
σ

µn,β∗(σ) logµn,β∗(σ) = 0.

The formulation of the above statement assumes that limn→∞ 1
n S(µn,β∗,J ) exists and

is independent of J . This follows from general principles and can immediately be ob-
tained from the existence and self-averaging of the low temperature specific free en-
ergy.

Let us emphasize that we do not consider here the Parisi measure which is defined
on overlaps and has been studied in detail in [3]. Indeed, one can show that the entropy
of this measure is strictly positive ∀ β> 0.

2 Proof of the theorem

It should be noticed that, for all β> 0, the quenched limit f∞(β) exists and is a convex
function of β [6]. Let β1 ≡ 1. From the high temperature results [1], we have, almost
surely, that

f∞(β1) = lim
n→∞

1

n
E J log Zn(β1, J ) = lim

n→∞
1

n
logE J Zn(β1, J )

= f ∞(β1) = log2+ β2
1

4
= log2+ 1

4
.

Thus, forβ=β1, the quenched limit f∞(β1) equals to the annealed one f ∞(β1) =β2
1/4+

log2, where the term β2
1/4 comes from the mean value of the Boltzmann factor, i.e. the
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typical behaviour and the mean behaviour coincide at this temperature.
The particular value of β∗ appearing in the theorem is defined by the intersection

of the graph of f ∞(β) and the straight line β
β1

f∞(β1). As one can see in figure 1, the

annealed free energy f ∞(β) = log2+ β2

4 is plotted as a function of β and the straight

line is defined by β
β1

f∞(β1) ≡ β f∞(β1). The two graphs intersect at β1 ≡ 1 and β∗ ≡
4log2 = 2,77258. . .. We can now readily check that the annealed limit, at β = β∗, is
simply related to the limit f∞(β1) by

f ∞(β∗) = β2∗
4

+ log2 = β∗
β1

(
β∗β1

4
+ β1

β∗
log2) = β∗

β1
(log2+ 1

4
) = β∗

β1
f∞(β1).

β
1 β∗

β 7→ f ∞(β) = ln2+ β2

4

β 7→β f ∞(1)

Figure 1: The valueβ∗ = 4log2, is given by the intersection of the graph of the annealed
free energy f ∞(β) with the straight line β f ∞(1).

With the preceding in hand, we define, for all β ≥ 0, the affine mapping Tβ : R+ →
R+, by Tβx = β

β1
x; on the values of the limits and for β=β∗, this mapping reads

Tβ∗ : f∞(β1) 7→ f ∞(β∗) = β∗
β1

f∞(β1). (1)

Let moreover denote by a the deviation of the limit f∞(β∗) from its mean value:

a := f ∞(β∗)− f∞(β∗) = β∗
β1

f∞(β1)− f∞(β∗).

It is then intuitively appealing to expect that the previous difference depends on the
behaviour of the Gibbs measures at β1 and β∗. In order to establish this dependence,
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we introduce a slightly different notation that simplifies the proof. Let Wn(σ,β1) be the

random weight defined by Wn(σ,β1) = e−β1Hn (σ,J )/e
β1
2 n . For all β ≥ β1, we denote by

g (β) and g∞(β) the tilted annealed and quenched limits respectively,

g∞(β) = lim
n→∞

1

n
logE J

∑
σ

W
β
β1

n (σ,β1) = f ∞(β)− β

2
,

and,

g∞(β) = lim
n→∞

1

n
E J log

∑
σ

W
β
β1

n (σ,β1) = f∞(β)− β

2
.

At β1 and β∗ this reads

g∞(β1) = f∞(β1)− β1

2
= log2+ β2

1

4
− β1

4
= log2− 1

4
,

and,

g∞(β∗) = f∞(β∗)− β∗
2

.

β
β1 β∗

β 7→ g∞(β) = ln2+ β2

4 − β
2

β 7→βg∞(1)

A′

A

B B ′

C ′

C

O

Figure 2: Mappings Tβ∗ for the tilted functions.

In fig. 2, the graph of the convex function g∞(β) is plotted and it is easy to check
that the minimum is reached at β = 1. The same holds for the minimum of the limit
g∞(β) because g ′

∞(β1) = g ′
∞(β1 −0) = g ′∞(β1 −0) = 0 and the convexity of g∞.

One can now make two remarks. First, we recall the definition of the relative en-
tropy density s(λ|λ′) of the probability measure λ w.r.t. the probability measure λ′, de-
fined on an arbitrary discrete space X :

s(λ|λ′) :=
{ ∑

x∈X λ(x) log λ(x)
λ′(x) if λ¿λ′

+∞ otherwise.
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The relative entropy is a non-negative function, vanishing in case the two measures are
equal, and gives the extent to which the measureλ “differs” from the measureλ′. Using
this definition, the limit g∞(β) can now be related to the relative entropy s(µβ1 |µβ) for
all β≥β1. Namely,

s(µβ1 |µβ) : = lim
n→∞

1

n

∑
σ

µn,β1 (σ) log
µn,β1 (σ)

µn,β(σ)

=−s(µβ1 )− lim
n→∞

1

n

∑
σ

µn,β1 (σ) logµn,β(σ)

=−s(µβ1 )− β

2
+ f∞(β) =−s(µβ1 )+ g∞(β).

Thus, for all β≥β1, the limit g∞(β) is simply given by

g∞(β) = s(µβ1 )+ s(µβ1 |µβ). (2)

Second, since for β1 = 1,

s(µβ1 ) = lim
n→∞

1

n
S(µn,β1 ) =− lim

n→∞
1

n

∑
σ

µn,β1 (σ) logµn,β1 (σ)

=− lim
n→∞

1

n

∑
σ

µn,β1 (σ) loge−β1Hn (σ,J ) + f∞(β1)

=−β
2
1

2
+ f∞(β1) = log2− β2

1

4
= g∞(β1),

we also obtain that g∞(β) = g∞(β1)+s(µβ1 |µβ). By making use of the mapping Tβ∗ , one
readily obtains that

g∞(β∗) = β∗
β1

g∞(β1) = β∗
β1

s(µβ1 ) = g∞(β∗)+a,

and, moreover,

s(µβ1 |µβ∗)+a = (β∗−1)s(µβ1 ) = (β∗−1)g∞(β1). (3)

It should be noticed that although eq. 2 is valid ∀β ≥ β1, eq. 3 (establishing the con-
nection between the limit a and the entropy s(µβ1 )) is valid only at β=β∗.
The reader can furthermore remark that, in figure 2, the segment C A′ equals s(µβ1 |µβ∗)+
a and the limits g∞(β1) and g∞(β∗) are represented by the lengths of the segments AB
and A′B ′ respectively.

The proof of the theorem can now be accomplished in two steps. In the first one,
we shall obtain a lower bound for the relative entropy s(µβ1 |µβ∗) by the comparison of
the limits a and g∞(β1)(= s(µβ1 )) thanks to equations 2 and 3. Indeed, on one hand,
one has that g∞(β∗) = g∞(β1)+ s(µβ1 |µβ∗), and, on the other hand, s(µβ1 |µβ∗)+ a =
(β∗−1)s(µβ1 ). Reporting now on fig. 2 the segment B ′C ′, of length (β∗−1)s(µβ1 ), one
realizes that the relative entropy s(µβ1 |µβ∗) cannot be smaller than the segment CC ′.
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In other words,

a = (β∗−1)s(µβ1 )− s(µβ1 |µβ∗) = BC ′− s(µβ1 |µβ∗)

= s(µβ1 )+CC ′− s(µβ1 |µβ∗)

≤ s(µβ1 )(= log2− β2
1

4
),

and this provides the lower bound for the the relative entropy s(µβ1 |µβ∗) : s(µβ1 |µβ∗) ≥
(β∗−2)s(µβ1 ).

In the second step of the proof we consider the relative entropy s(µβ∗ |µβ1 ),

s(µβ∗ |µβ1 ) : = lim
n→∞

1

n

∑
σ

µn,β∗(σ) log
µn,β∗(σ)

µn,β1 (σ)

= −s(µβ∗)− lim
n→∞

1

n

∑
σ

µn,β∗(σ) logµn,β1 (σ)

= −s(µβ∗)+ s(µβ1 )− A∞,

where

A∞ = lim
n→∞

1

n

(∑
σ

µn,β∗(σ) loge−β1Hn (σ,J ) −∑
σ

µn,β1 (σ) loge−β1Hn (σ,J )
)

.

Recalling that

g∞(β∗) = s(µβ∗)+ lim
n→∞

1

n

∑
σ

µn,β∗(σ) loge−β∗Hn (σ,J ) − β∗
2

= s(µβ∗)+ lim
n→∞

1

n

(∑
σ

µn,β∗(σ) loge−β∗Hn (σ,J ) −∑
σ

µn,β1 (σ) loge−β∗Hn (σ,J )
)

= s(µβ∗)+β∗A∞,

we have the following relation between the two relative entropies

s(µβ∗ |µβ1 )+ s(µβ1 |µβ∗) = (β∗−1)A∞. (4)

We can now complete the proof by using the following argument. Assume that the ob-
tained bound for the limit a is saturated i.e. a = amax = s(µβ1 ). In that case, s(µβ1 |µβ∗) =
(β∗−2)s(µβ1 ), and g∞(β∗) = (β∗−1)s(µβ1 ). We notice moreover that thanks to the map-
ping Tβ , the limit g∞(β∗) must be pulled backwards at β=β1 as

T −1g∞(β∗) = β1

β∗
g∞(β∗) = (β∗−1)

s(µβ1 )

β∗
.
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We deduce that

g∞(β∗) = s(µβ∗)+ A∞+ (β∗−1)A∞
= s(µβ∗)+ A∞+ s(µβ∗ |µβ1 )+ s(µβ1 |µβ∗)

= T −1g∞(β∗)+ s(µβ2 |µβ1 )+ (β∗−2)s(µβ1 )

= (β∗−1)
s(µβ1 )

β∗
+ s(µβ2 |µβ1 )+ (β∗−2)s(µβ1 )

= (β∗−1)s(µβ1 ),

which is consistent only with

s(µβ∗ |µβ1 ) = s(µβ1 )/β∗, A∞ = (β∗−1)
s(µβ1 )
β∗ , and, s(µβ∗) = 0.

We have thus established that, under the assumption of saturation of the lower
bound for g∞(β∗), the entropy s(µβ∗) vanishes and, moreover, g∞(β∗)−g∞(β∗) =β∗s(µβ∗ |µβ1 ).
If now g∞(β∗) > (β∗− 1)s(µβ1 ), (i.e. the relative entropy s(µβ1 |µβ∗) is bigger than its
lower bound), one can remark that, in this case, the entropy had already vanished at
an inverse temperature smaller than β∗.2 Indeed, if the relative entropy s(µβ1 |µβ∗) in-
creases, the difference between the entropies of the measures s(µβ1 ) and s(µβ∗) cannot
decrease. Since the entropy cannot be positive for all values of β > β∗, the freezing
temperature of the model is given by β f ≤ β∗. Thus, the value β∗ provides the maxi-
mum value beyond which the specific entropy of the Gibbs measure cannot be strictly
positive. �

The previous result implies the following lower bound for the tilted limit g∞(β∗),

g∞(β∗) = s(µβ1 )+ s(µβ1 |µβ∗) ≥ (β∗−1)s(µβ1 ) = β2∗
4

− β∗
2

+ β2
1

4
,

and, respectively, for the quenched limit f∞(β∗),

f∞(β∗) ≥ β2∗
4

+ 1

4
= 2.1718. . . .

Using now the spherical (upper) bound, we have almost surely, that at β∗ = 4log2,

2.1718. . . ≤ f∞(β∗) ≤ 2.2058. . . .

In addition, recalling the positivity of the entropy and the geometric fact that at each
point on the graph of a convex function there is a tangent line which never lies above
the graph, we obtain, ∀β≥β∗, the convexity boundary of the limit g∞(β). This bound-
ary is illustrated by the dotted line in fig. 2.

Although evident, the non-standard expression of the free energy in terms of the
entropy s(µβ1 ) and the relative entropy s(µβ1 |µβ) (eq. 2), ∀β > β1, has special impor-
tance not only for the present proof. Indeed, one can apply this expression to recover

2This arises in particular in the case of the REM.
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information about the measure at β1, from information represented by s(µβ1 |µβ) (for
instance, in the case of compressing sensing.

Let us also add that a simple calculation shows that the functional relationship (1)
between the annealed limits f ∞(β∗) and f∞(β1) is also valid for the corresponding
limits of the Random Energy Model (REM). The REM, introduced in [4], is defined by 2n

energy levels Ei (i = 1, · · · ,n), a family of random, independent, identically distributed
Gaussian variables of variance N /2; many results are qualitatively the same as those
of the model we have studied in this work. It is well known that the REM undergoes
a phase transition at the critical inverse temperature βc = 2

√
log2 and the entropy of

the Gibbs measure vanishes almost surely ∀β≥βc . One can easily apply our approach
to the REM. Indeed, it is straightforward to calculate the limit g REM∞ (β∗) and verify that
β f =βc .

3 Concluding remarks

In this note we proved that the mean entropy of the Gibbs measure is zero at the in-
verse (freezing) temperature β∗ = 4log2 = 2.7725. . . . Obviously, the low temperature
ultrametric picture occurs in the interval [βc ,β f ] and is related to the Parisi solution.

One can also readily check that β∗ = β2
c , where βc = 2

√
log2 = 1.6651. . . is the critical

temperature of the Random Energy Model (REM). Both βc and β∗ are to be compared
with the value at β1 ≡ 1, i.e. the maximum value of β where the free energies of the two
models coincide. What we learn by the comparison of the relative entropies of the two
models is that the Gibbs measure of the Sherrington-Kirkpatrick has seemingly differ-
ent concentration properties than for the REM. In the case of the REM, the quenched
and annealed limit of the free energy are equal for all temperatures of positive entropy
and consequently the critical temperature coincides with the freezing one. This does
not occur in the case of SK, where the two limits are equal only forβ≤ 1. In [7], we study
the relation of the freezing property with the entropy of the Gibbs measure in case of
Gaussian Models. Te same relation occurs for the log-correlated gaussian models as
well. Another remark concerns the ground state energy of the model and the Haus-
dorff dimension of the support of the Gibbs measure. One can show using the theorem
of this note that this dimension vanishes at β∗. We also mention the remaining open
question of particular interest, namely the correspondence between our result and the
low temperature behaviour of the Parisi measure.
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