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Abstract

In this paper we present a general framework to construct 1D width averaged models when the flow is constrained -e.g. by

topography- to be almost 1D. We start from two dimensional shallow water equations, perform an asymptotic expansion of the

fluid elevation and velocity field in the spirit of wave diffusive equations and establish a set of 1D equations made of a mass,

momentum and energy equations which are close to the one usually used in hydraulic engineering. We show that in some special

cases, like the U-shaped river bed, that our set of equations reduces to the classical 1d shallow water equations. Out of these

configurations, there is an O (1) deviation of our model from the classical one.
c© 2016 The Authors. Published by Elsevier B.V.

Peer-review under responsibility of organizing committee of the 24th International Congress of Theoretical and Applied Mechanics.

Keywords: Energy Balance ; Asymptotic expansion;Saint Venant equations

1. Introduction

The so called shallow water equations (Saint Venant equations in the French community) are widely used in hy-

draulic engineering to compute stationary or transient flows in rivers. In the case of a varying river section, it is written

as

⎧⎪⎪⎪⎨⎪⎪⎪⎩
S t + Qx = 0,

Qt +

(
Q2

S

)
x
+ gHxS = gS (I − J),

(1)

where S =
∫ y+

y−
h (x, y) dy =

∫ H

0

L(s, x)ds is the wetted section (see Figure 1) , Q the total discharge rate, I the

bottom slope whereas J is the friction term usually given by J = U2

C2
hRh

with U = Q/S the average velocity, Rh =
S
P the

hydraulic radius, P = L (x, 0) + 2
∫ H

0

√
1 +

(Lz(x,z))2

4
dz the wetted perimeter and Ch is the Chezy coefficient.
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Fig. 1. Wetted Section

Note that equation (1) admits a kinetic energy balance law in the form:

(
1

2
S U2

)
t
+

1

2

(
S U3

)
x
= gQ

⎛⎜⎜⎜⎜⎝Λ − Q |Q|
C2

hRhS 2

⎞⎟⎟⎟⎟⎠ , with Λ = I − gHx. (2)

The potential gravity energy is defined as E = g
∫ H

0
L (x, z) zdz so that (2) is also written as

(
1

2
S U2 + E

)
t
+

(
U

(
1

2
S U2 + gS H

))
x
= gQ

⎛⎜⎜⎜⎜⎝I − Q |Q|
C2

hRhS 2

⎞⎟⎟⎟⎟⎠
or, equivalently (

1

2
S U2 + E + gb0S

)
t
+

(
U

(
1

2
S U2 + gS (H + b0)

))
x
= −gQ

Q |Q|
C2

hRhS 2
.

In order to take into account the fact that the cross-stream flow is not uniform, various modifications of (1) have been

proposed (see eg Chow5). For that purpose, one introduces the Boussinesq coefficient β in the momentum equation

and the Coriolis coefficient α in the definition of the kinetic energy :

βS U2 =

(∫ y+

y−
hu2dy

)
, αS U3 =

(∫ y+

y−
hu3dy

)
. (3)

In practice (see e.g. Liggett4 ) the momentum equation is transformed into

Qt +

(
β

Q2

S

)
x
+ gHxS = gS (I − J) . (4)

Note that no practical rules have been proposed in order to compute the Boussinesq coefficient (except that β ≥ 1 and

close to 1). It is also well known that the Coriolis coefficient may correct the energy balance laws. There remains an

inconsistency since once one has modified the momentum equation, one cannot get a correct balance energy equation.

We shall prove below that the exact energy balance should be taken as :

(
1

2
βS V2

)
t
+

1

2

(
αS V3

)
x
= gQ

⎛⎜⎜⎜⎜⎝Λ − Q |Q|
C2

hRhS 2

⎞⎟⎟⎟⎟⎠ . (5)

Though, equation (5) is not compatible with (4) unless β = α = 1 (which is generally untrue - see eg Table p.28 in

Chow5).
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In the following, we proceed to a direct width averaging of 2D Saint Venant equations. In order to withdraw the ad

hoc hypothesis made on the velocity field ( see e.g. Szymkiewicz3, Wu2) to close the resulting set of equations, we

compute an asymptotic expansion in regimes close to the kinematic or diffusive/kinematic waves (see eg Sing8 ), quite

representative of flood propagation in rivers. We start from the 2D shallow water equations written as (u = (u, v)T ):⎧⎪⎪⎨⎪⎪⎩
ht + div (hu) = 0

ut + u.∇u + g∇h = g
(
−∇Z − u‖u‖

C2
hhm

)
.

The shallow water system admits an additional energy conservation laws which reads, by denoting E = 1
2
h ‖u‖2+ 1

2
gh2

(E + ghZ)t + div
(
u
(
E + ghZ +

1

2
gh2

))
= −gh

‖u‖3
C2

hhm
.

Here, the Chezy friction coefficient can be chosen non uniform: Ch = Ch (x, y).

The aim of this paper is to provide a better understanding of the averaging process. In order to make the flow

almost one-dimensional, we assume that the bottom topography b (x, y) is given by an equation of the form Z =

B0b0

(
x
L

)
+ h0ϕ

(
x

LX
, y

Ly

)
where h0 is a typical length characteristic of the height of the flow, L a typical longitudinal

length, ε = h0

L a small parameter and LX , Ly two other length scale (to be determined later).

In this paper, we propose a methodology to build asymptotic expansions of 2D shallow water flows along the xline,

where the small parameter will be εF
2

I0
( see exact definition below) and we will prove that in the non dimensional

framework the width averaging process leads to⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
S t + Qx = 0(

1

2
βS V2

)
t
+

1

2

(
αS V3

)
x
=

I0

εF2
Q

⎛⎜⎜⎜⎜⎝Λ − Q |Q|
C2

hRhS 2

⎞⎟⎟⎟⎟⎠ .
In the spirit of the extended versions of the shallow water equations proposed recently by (Richard and Gavryliuk6)

and (Richard Ruyer Quil and Vila7), we propose a class of four equations models which are consistent both with the

width averaged momentum and the energy equations. This system is written in non dimensional form as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i) S t + Qx = 0,

(ii) Qt +

(
Q2

S
+ Ptot

)
x
=

I0S
εF2

⎛⎜⎜⎜⎜⎝I − Q |Q|
C2

hRhS 2
+ A1

(
Π(0) − Π

)⎞⎟⎟⎟⎟⎠ + B (H, x) ,

(iii) E2D
t +

(Q
S

(
E2D + Ptot

))
x
=

I0

εF2 Q
(
I − Q|Q|

C2
hRhS 2

)
,

(iv)
(
S 3Π

)
t
+ V

(
S 3Π

)
x
=

I0

εF2 A2

(
Ψ(0) − Ψ

)
,

(6)

where B (H, x) = 1
F2

∫ H
0

Lx (x, z) (H − z) dz represents the lateral pressure effects, Phydro = 1
F2

∫ H
0

L (x, z) (H − z) dz the

hydrostatic pressure effect, Ptot = 1
2
S 3 (Π − Ψ) + Phydro an effective total pressure and E2D = 1

2
Q2

S +
1
2
S 3Ψ + E a total

energy. The function Ψ is called the enstrophy (following the terminology found in (Richard & all)6, 7): it is related

to the Boussinesq coefficient through Ψ = (β − 1) U2

S , whereas the potential Π is related to the Coriolis coefficient

through the relation Π = (α − 1) U2

S .

The function Ψ(0) (resp. Π(0)) are two equilibrium distribution functions depending on S and given below by (17).

Finally, A1 and A2 are two free parameters. The above system is close to the Saint Venant standard system (1). More

precisely if Π(0) = Ψ(0) = 0 and Π = Ψ = 0 initially, then Π = Ψ = 0 for all t > 0 and the system reduces exactly to

the standard system. The condition Π(0) = Ψ(0) = 0 is true if the channel is U-shaped (Lz (x, z) = 0) and the Chezy

coefficient homogeneous in the transverse direction: in the 2D case, this means Ch = Ch (x)). Note also that by taking

Ptot = Phydro and A1 = 0, we find

Qt +

(
Q2

S
+ Phydro

)
x
=

I0S
εF2

⎛⎜⎜⎜⎜⎝I − Q |Q|
C2

hRhS 2

⎞⎟⎟⎟⎟⎠ + B (H, x) ,
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which is the conservative form (necessary to compute correctly discontinuous solution such as hydraulic jumps) of

Saint Venant equations which have been proposed in (Vila9). This equation is equivalent to

Qt +

(
Q2

S

)
x
+

1

F2
S Hx =

I0S
εF2

⎛⎜⎜⎜⎜⎝I − Q |Q|
C2

hRhS 2

⎞⎟⎟⎟⎟⎠
which is the non dimensional form of the momentum equation (1).

2. Non dimensional form of Equations

We choose reference velocity, length, and time scale according to u = u0u′, v = v0v′, x = Dxx′, y = Dyy′, t = Dx
u0

t′
with

gh0

u2
0

=
1

F2
,Rv =

v0

u0

,RL =
Dy

Dx
, I0 =

B0

Dx
, J0 =

u2
0(

C0
h

)2
hm

0

, ε =
h0

Dx
.

We expect Rv � 1 and RL � 1. The longitudinal slope is I0 =
B0

Dx
whereas the transverse slope is IT =

h0

Dy
. We take

Z = Z
(

x
Dx
, y

Dy
, Dx

DX

)
with

Z = B0b0

(
x

Dx

)
+ h0ϕ

(
x

DX
,

y
Dy

)
= B0

(
b0

(
x

Dx

)
+

h0

B0

ϕ

(
x

DX
,

y
Dy

))
= B0b

(
x

Dx
,

y
Dy
,

Dx

DX

)

In order to simplify the analysis, we assume RX =
Dx
DX
= 1, Rv = RL = ε and J0 = I0. We get b (x, y,RX) =

b0 (x) + ε
I0
ϕ (x, y). We take Ch = C0

hC (x, y,RX) which turns to C2 (x, y,RX) = (1 + c (x, y))2. Omitting the ′ and

denoting E = 1
2
h
(
u2 + (ε)2 v2

)
+ 1

2F2 h2, the 2D shallow water system in non dimensional form reads :

(i) ht + (hu)x + (hv)y = 0

(ii) ut + uux + vuy +
1

F2
hx =

1

εF2

(
−I0b0,x − εRXϕ,1 − I0

u (1 + c)−2

hm

√
u2 + ε2v2

)

(iii)
(
hy + ϕy

)
= ε2

(
− I0

ε

v (1 + c)−2

hm

√
u2 + ε2v2

)
− F2 (Rv)2

(
vt + uvx + vvy

) (7)

(
E +

I0

F2ε
hb

)
t
+

(
u
(
E +

I0

F2ε
hb +

1

2F2
h2

))
x
+

(
v
(
E +

I0

F2ε
hb +

1

2F2
h2

))
y
= − I0

εF2
h (1 + c)−2

(
u2 + ε2v2

) 3
2

hm (8)

whereas the 1D standard system in non dimensional form is obtained by setting with u = u0u′, S = h0LyS ′, x =

Dxx′, Q = h0Lyu0Q′, t = Dx
u0

t′,I = I0I′,C2
h = C2

0hC
′2
0h,Rh = h0R′h, taking

U2
0

H0(C0h)2 = J0 :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
S t + Qx = 0

Qt +

(
Q2

S

)
x
+

1

F2
HxS =

I0

εF2
S

⎛⎜⎜⎜⎜⎝I − Q |Q|
C2

hRhS 2

⎞⎟⎟⎟⎟⎠ . (9)

Note that the above 1D systems admit an energy balance equation which can also be written as a kinetic energy

balance law (
1

2
S U2

)
t
+

1

2

(
S U3

)
x
=

I0

εF2
Q

⎛⎜⎜⎜⎜⎝Λ − Q |Q|
C2

hRhS 2

⎞⎟⎟⎟⎟⎠ (10)

where Λ = I − εI0
Hx. By introducing the potential gravity energy E = 1

F2

∫ H
0

L (x, z) zdz, one also finds

(
1

2
S U2 + E + I0

εF2
b0S

)
t
+

(
U

(
1

2
S U2 +

1

F2
S

(
H +

I0

ε
b0

)))
x
= − I0

εF2
Q

Q |Q|
C2

hRhS 2

which is close to energy equation (8).
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3. Two Asymptotic Regime

We focus on two asymptotic regimes connected with kinematic waves and wave diffusive approximation of river

flood (see eg (Singh8) or the seminal work of (Lighthill and Whitham9)). We consider:

Regime 1. Small parameter : εI0
F2 = εq with ε

I0
= O (1), it copes in particularly with flows in large estuaries where

mascaret (or tidal bore) may occurs in the x direction, the main equilibrium is

1

F2

(
hx +

I0

ε
b0,x + RXϕ,1

)
≈ 1

F2

(
− J0

ε

u (1 + c)−2

hm

√
u2 + ε2v2

)

and we can refer it as the diffusive wave approximation .

Regime 2. Small parameter : ε F2

I0
= εs with 1

F2 � I0

F2ε
or equivalently with ε

I0
= o (1). It copes with standard flood

flow. In the x direction, the main equilibrium is.

1

F2

( I0

ε
b0,x

)
≈ 1

F2

(
− J0

ε

u
hm

√
u2 + ε2v2

)

and is closer to the kinematic wave approximation of the literature. In our framework, results on regime 2 are deduced

from the results on regime 1.

3.1. Width integrated equations

By setting I = −b0,x and recalling that E = 1
2
h
(
u2 + ε2v2

)
+ 1

2F2 h2, the mass, x-momentum and energy equations

averaged over the width of the channel are:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i) S t + Qx = 0

(ii) Qt +

(∫ y+

y−

(
hu2

)
dy

)
x

+

(∫ y+

y−

h2

2F2
dy

)
x

=

I0

εF2

(∫ y+

y−
h
(
I − RX

I0

ϕ,1

)
dy −

∫ y+

y−
h1−m (1 + c)−2 u

√
u2 + ε2v2dy

)

(iii)
(∫ y+

y−

(
E +

I0

εF2
hb

)
dy

)
t

+

(∫ y+

y−
u
(
E +

I0

εF2
hb +

1

2F2
h2

)
dy

)
x

= − I0

εF2

∫ y+

y−
h1−m (1 + c)−2

(
u2 + ε2v2

) 3
2 dy

(11)

These equations have a structure which is similar to the one of standard Saint Venant system (1).

3.2. Transverse water level and preliminary computations

We first use the y-momentum equation (ii) (7) to expand the fluid elevation. By assuming that
∫ y

y−
v

hm

√
u2 + ε2v2dy =

O (1), one finds that (h + ϕ)y = O
(
εI0 + F2ε2

)
which in turns yields:

h = H (x, t) − ϕ(x, y) + O
(
ε2

)
(12)

where H (x, t) is a new unknown ( the local level of the water ). Thus the free surface is nearly horizontal in the

cross-stream direction. For later use, we introduce some tools to compute integrals of the type
∫ y+

y−
(1 + c(x, y))p hqdy

for q > 0 which comes later in the derivation of the asymptotic expansion. We compute them by introducing the

surface width function :L (x, z) = y+ (z) − y− (z). Note that L (x, z) may possesses a finite number of discontinuities in

z, located at {zi}. Thus Lz(x, z) = Lsmooth
z (x, z) +

∑
i [Li] (x) δ (z − zi). We introduce a “Chezy” weighted surface width

function Lp such that (1 + c(x, y(z)))p Lz(x, z) := Lp,z(x, z). Finally, by taking

Mq,Lp (H, x) =

∫ H

0

(H − z)qLp,z(x, z)dz

one finds
∫ y+

y−
(1 + c(RX x, y))p hqdy =

∫ H
0

(H − z)qLp,z(x, z)dz + o (ε).
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3.3. Asymptotic Expansion of the Velocity field

With these tools at hand, we can deduce an asymptotic expansion of the velocity field from the x-momentum

equation and relation (12). We start from

(1 + c)−2 u |u| =
(
I (x) − εI0

Hx

)
hm − εF2hm

I0

(
ut + uux + vuy

)
+ O

(
ε2

)
and get successively, by introducing Λ (x, t) = I (x) − εI0

Hx

u = u(0) + εF
2

I0
u(1) + O

(
εt+1

I0

)
with

u(0) = (1 + c) sgn (Λ (x, t))
√

hm |Λ (x, t)|, u(1) = −u(0)

2Λ

(
u(0)

t + u(0)u(0)
x + v(0)u(0)

y

)
We also get

Q =
∫ y+

y−
hudy = Q(0) (H, x) + O

(
ε

I0

F2

)
, Q(0) (H, x) = sgn (Λ)

√
|Λ|M1+m/2,L1

and

hv(0) (x, y) = − (y − y−) Ht −
∫ y

y−

(
(1 + c) h1+ m

2 sgn (Λ)
√
|Λ|

)
x

dy.

The term Q(1) =
∫ y+

y−
hu(1)dy can be computed by using mass conservation (i) (7) to get

Q(1) = − 1

4Λ

((∫ y+

y−
h
(
u(0)

)2
dy

)
t

+

(∫ y+

y−
h
(
u(0)

)3
dy

)
x

)
(13)

or, equivalently,

Q(1) = − 1

4Λ

(|Λ|M1+m,L2

)
t −

1

4Λ

(
sgn (Λ) |Λ| 32 M1+ 3m

2
,L3

)
x
.

Note here that (13) can be interpreted as a kinetic energy averaged balance equation. As a byproduct of this analysis,

we have established some diffusive wave equation which are consistent with our asymptotic regime. It is a direct

consequence of (averaged) mass conservation law. S t + Qx = 0 together with

Q = Q(0) + εF
2

I0
Q(1) + o

(
εF2

I0

)

4. Consistent 1D Shallow Water type models

4.1. Momentum balance and Friction model

The mass conservation equation is exact and given by (11)(i)

S t + Qx = 0.

Then we look carefully at momentum and energy conservation laws. By considering averaged momentum equation

(11)(ii) together with (12) we get (recall Λ (x, t) = I (x) − εI0
Hx) :

Qt +

(∫ y+

y−

(
hu2

)
dy

)
x

=
I0

εF2

(
ΛS −

∫ y+

y−
h1−m (1 + c)−2 u

√
u2 + ε2v2dy

)
+ O

(
εt

F2

)
. (14)

The friction term is given by T =
∫ y+

y−
h1−m (1 + c)−2 u

√
u2 + ε2v2dy. Recall that uniform stationary flows satisfy

SI =
∫ y+

y−
h1−m (1 + c)−2 u

√
u2 + ε2v2dy.
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We search for a friction model similar to standard engineering ones :
∫ y+

y−
h1−m (1 + c)−2 u2dy = (Q)2

C2
hRhS + O

(
εF2

I0

)
, we

thus need C2
hRh =

(
Q(0)

uni f

)2

IS 2 =
(M1+m/2,L1 )

2

(M1,L)
2 and take in the following

C2
h =
P (

M1+m/2,L1

)2

(
M1,L

)3
. (15)

4.2. Energy Balance

As a consequence of the choice (15), we find that I0

εF2 Q
(
Λ − Q|Q|

C2
hRhS 2

)
= −2Q(1) + O

(
εF2

I0

)
. We thus get with (13)

(
1

2
βS U2

)
t
+

1

2

(
αS U3

)
x
=

I0

εF2
Q

⎛⎜⎜⎜⎜⎝Λ − Q |Q|
C2

hRhS 2

⎞⎟⎟⎟⎟⎠ + O
(
εF2

I0

)
(16)

which is exactly the expected result. In view of providing a complete model similar to those proposed in (6) and (7),

we introduce instead of Boussinesq and Coriolis coefficient the enstrophy Ψ defined as S 3Ψ =
∫ y+

y−

(
hu2

)
dy − Q2

S ,

together with the potential Π defined as
∫ y+

y−
hu3dy =

(
Q2

S + S 3Π
)

Q
S . Note that Ψ = (β − 1) U2

S and Π = (α − 1) U2

S . We

easily obtain Ψ = Ψ(0) + O
(
εF2

I0

)
and Π = Π(0) + O

(
εF2

I0

)
with

S 3Ψ(0) = |Λ|
⎛⎜⎜⎜⎜⎝M1+m,L2

−
(
M1+m/2,L1

)2

M1,L

⎞⎟⎟⎟⎟⎠ , S 3Π(0) = |Λ|3/2 sgn (Λ)

⎛⎜⎜⎜⎜⎝ M1,LM1+3m/2,L3

M1+m/2,L1

−
(
M1+m/2,L1

)2

M1,L

⎞⎟⎟⎟⎟⎠ (17)

Introducing the enstrophy Ψ and the potential Π in ((16)) together with the potential gravity energy E , we get

(
1

2
S U2 + E + S 3Ψ +

I0

εF2
b0S

)
t
+

(
U

(
1

2
S U2 + S 3Π +

1

F2
S

(
H +

I0

ε
b0

)))
x
= − I0

εF2
Q

Q |Q|
C2

hRhS 2
+ O

(
εF2

I0

)
(18)

It can be proved that ((18)) is exactly the total energy width averaged ((11)) (iii) equation up to O
(
εF2

I0

)
. Note also

that we can also writes

(
1

2
S U2 + E + S 3Ψ

)
t
+

(
U

(
1

2
S U2 + S 3Π +

1

F2
S H

))
x
=

I0

εF2
Q

⎛⎜⎜⎜⎜⎝I − Q |Q|
C2

hRhS 2

⎞⎟⎟⎟⎟⎠ + O
(
εF2

I0

)
(19)

4.3. Computation of Backwater curves

Taking Ψ = Ψ(0) and Π = Π(0) in ((18)) together with mass conservation equation, we get a closed system of

equation consistent up to with our asymptotic ansatz. However this system as a very poor mathematical structure (

unless 0 = Ψ(0) = Π(0), where it becomes the standard Saint Venant model). Though, it provides an efficient way to

compute backwater curves (i.e. stationary solution of the system), which are thus characterized by Q = cst and

(
1

S

(
1

2

Q2

S
+ S 3Π(0) +

1

F2
S

(
H +

I0

ε
b0

)))
x
= − I0

εF2

Q |Q|
C2

hRhS 2

which is a first order ordinary differential equation if we takeΛ = I in the definition ofΠ(0) ( which is correct if we take

asymptotic regime 2 instead of regime 1). Note that it coincides with the usual backwater curve equation iff Π(0) = 0.
An easy inspection of (17) leads easily to 0 = Ψ(0) = Π(0) in the case of square shaped channel with c(RX x, y) = c(x).

We thus have in this situation coincidence of our model with standard Saint Venant system. However the term S 3Π(0)

can be O (1) and leads to O (1) deviation from the standard Saint Venant backwater curves.
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4.4. Complete 4 equation model

Fortunately, following ideas developed in (Richard Gavrilyuk6) and ( Richard Ruyer-Quil Vila7) we can propose

the following class of model

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i) S t + Qx = 0

(ii) Qt +

(
Q2

S
+ Ptot

)
x
=

I0S
εF2

⎛⎜⎜⎜⎜⎝I − Q |Q|
C2

hRhS 2
+ A1

(
Π(0) − Π

)⎞⎟⎟⎟⎟⎠ + B (H, x)

(iii) E2D
t +

(Q
S

(
E2D + Ptot

))
x
=

I0

εF2 Q
(
I − Q|Q|

C2
hRhS 2

)
(iv)

(
S 3Π

)
t
+ V

(
S 3Π

)
x
=

I0

εF2 A2

(
Ψ(0) − Ψ

)

where B (H, x) = 1
F2

∫ H
0

Lx (x, z) (H − z) dz represent the lateral pressure effects, Phydro = 1
F2

∫ H
0

L (x, z) (H − z) dz the

hydrostatic pressure effect, Ptot = 1
2
S 3 (Π − Ψ) + Phydro an effective total pressure and E2D = 1

2
Q2

S +
1
2
S 3Ψ + E a

total energy. Equation (iii) is just (with adhoc notation ) the Energy Balance equation (19). After an inspection of

momentum equation and the additional transport equation of potential Π we observe that in our asymptotic regime we

obtain , taking first the form (16) of energy balance, that Q = Q(0) + O
(
εF2

I0

)
, then (iv) gives Ψ = Ψ(0) + O

(
εF2

I0

)
and

(ii) gives Π = Π(0) + O
(
εF2

I0

)
, turning back to ((16)) we get Q = Q(0) + εF

2

I0
Q(1) + o

(
εF2

I0

)
and complete consistency of

energy and momentum conservation equations with the original ones.

For completeness we give the analytic formulae for Ψ(0) and Π(0) in the case of a Trapezoidal channel such that

L = l (x)
(
1 + 2z ξH

)
with ξ = H

lT =
L(x,H)−l

2l . We thus get

Ψ(0) =
Hmξm2 (m + 2 ξ + 4) |Λ|

l2H2 (ξ + 1)4 (2 + m) (4 + m)2

and

Π(0) =
ΛHmξm2

(
3 ξm2 + 4 ξ2m + 6 m2 + 48 ξm + 48 ξ2 + 48 m + 144 ξ + 96

) √|Λ|
l2H2 (4 ξ + 4 + m) (4 + 3 m) (4 + m)2 (ξ + 1)4

Such a model has a structure closely related to Euler compressible equations, and is fully compatible with the

diffusive wave approximation of 2D Saint Venant equations. It reduces exactly to standard Saint Venant model in the

case of U-shaped model. We expect that future study may bring some confidence in this new model.
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