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RELATIVE ENTROPY FOR COMPRESSIBLE NAVIER-STOKES EQUATIONS
WITH DENSITY DEPENDENT VISCOSITIES AND VARIOUS APPLICATIONS

DIpIER BRESCH!, PASCAL NOBLE? AND JEAN-PAUL ViILA?

Abstract. This paper provides the full proof of the results announced by the authors in [C. R. Acad.
Sciences (2016)]. We introduce an original relative entropy for compressible Navier-Stokes equations
with density dependent viscosities and discuss some possible applications such as inviscid limit or low
Mach number limit. We first consider the case u(g) = po and A(9) = 0 and a pressure law under the
form p(g) = ag” with v > 1, which corresponds in particular to the formulation of the viscous shallow
water equations. We present some mathematical results related to the weak-strong uniqueness, the
convergence to a dissipative solution of compressible or incompressible Euler equations. Moreover, we
show the convergence of the viscous shallow water equations to the inviscid shallow water equations in
the vanishing viscosity limit and further prove convergence to the incompressible Euler system in the
low Mach limit. This extends results with constant viscosities recently initiated by E. FEIREISL, B.J.
JIN and A. NOVOTNY in [J. Math. Fluid Mech. (2012)].

1. INTRODUCTION

Since the pioneering works of C. DAFERMOS [8] and of H.-T. YAu [23], relative entropy methods have become
a crucial and widely used tool in the study of asymptotic limits and long-time behavior for nonlinear PDEs.

In a recent paper E. FEIREISL, B.J. JIN, A. NOVOTNY (see [10]) have introduced relative entropies, suitable
weak solutions and weak-strong uniqueness for the compressible Navier-Stokes equations with constant viscosi-
ties. The interested reader is referred to [18], [9] and references cited therein. Based on such relative entropies,
various papers have been dedicated to singular perturbations, see the interesting book [11], the articles [1], [20]
for instance. See also the recent interesting work by TH. GALLOUET, R. HERBIN, D. MALTESE, A. NOVOTNY
in [12] where relative entropy technics are developed to obtain error estimates for a numerical approximation of
the compressible Navier—Stokes equation with constant viscosities.

Here we focus on the extension of the results by [10], [1] and [20] to the compressible Navier-Stokes equations
with degenerate viscosities depending on the density. This extension is not straightforward: relative entropy
for the one-dimensional compressible Navier-Stokes equations with degenerate density dependent viscosity has
been, for instance, recently studied by B. HASPOT in [14] under the rather restrictive assumption that the
viscosity function p(p) equal to the pressure law p(p) up to a multiplicative constant. The main objective
is to get rid of this hypothesis and to extend the result to the multi-dimensional in space case. For that
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purpose, we will take advantage of the k-entropy introduced recently by the first author, B. DESJARDINS and
E. ZATORSKA in [5]. We introduce a new relative entropy based on a monotonicity property which allows to
relax the relation between the viscosity and the pressure asked in [14]. In particular, we are able to handle the
case u(0) = po and a general pressure p(p) strictly monotone like p(9) = ag? with v > 1. This corresponds
to the compressible Navier Stokes system considered by A. VASSEUR and C. YU in [22]. By a combination of
estimates based on the so called B-D (Bresch-Desjardin) entropy [4], Mellet-Vasseur estimates [17] and some
original renormalization techniques, they recently obtained the first existence result of global weak solutions
without additional regularizing/damping terms (friction, surface tension). The readers are also referred to an
other approach by J. L1 and Z. XIN in [15]. Note that such relative entropy will be used to design appropriate
schemes for the compressible Navier—Stokes equation with degenerate viscosities in [6] and prove convergence.

As an application of our relative entropy estimate, we present some mathematical results related to the weak-
strong uniqueness, the convergence to a dissipative solution of compressible or incompressible Euler equations.
In particular, this mathematically justify the convergence of the solutions of the viscous shallow-water system
to the solutions of inviscid shallow-water system or to the incompressible Euler system in the vanishing viscosity
and/or low Mach limit. In contrast to constant viscosities, we prove an exponential rate of decay for density
dependent viscosities. Finally, we discuss more general viscosities (o) and A(p) assuming an algebraic relation
on the coefficients that was introduced by the first author and B. DESJARDINS in [3].

For the reader convenience, let us recall the compressible Navier-Stokes equation with density dependent
viscosities:

Oy + div (eu) =0,
Ot (ou) + div(pu ® u) + Vp(p) — div(2u(e)D(u)) — V (A(0)divu) = 0. (1)

In this paper, we assume an additional algebraic relation introduced by the first author and B. Desjardins in [3]:

Ao) = 2(p'(0)o — 1(0))-

It has been observed in [5] that this system may be reformulated through an augmented system. Introducing
the intermediate velocity u + 2kV(p) with ¢'(s) = u/(s)/s , a drift velocity 24/k(1 — k)Ve(p) and a mixture
coefficient x, the augmented versions are:

i) Case u(p) = up, A(p) = 0. The augmented system reads
oo+ div (o (v — 26uVlog o)) =0,
O¢ (ov) + div(ev @ (v — 2kuV log 0)) + Vp(p) = pdiv(20(1 — &) D(v)) + pdiv(2keA(V))
—pdiv (2\//@(1 — K)QVW) , (2)

0y (ow) + div(ow ® (v — 26V log 0)) = pdiv(2koVw) — udiv(2y/k(1 — k)oVvT)

with v = u + 25uVlogp and w = 24/k(1 — k)uV 1og o. The associated energy estimate (named s-entropy)
reads for all ¢ € [0, T7:

o) o o o

+2ﬂ// (K|A(V)]2 + [D(VI = kv) — V(VEW)[?) (3)

2 2
+2Kp // |VQ\2d dx</g<v2|+|w> dx—l—/F dz
Q
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il) Case u(p) and A(p) = 2(u'(0)o — p(0)). By introducing ¢ such that ¢'(s) = p/(s)/s, one finds

Oro+div(e(v—2kVp)) =0
9 (ov) +div(ev @ (v — 26Vy)) + Vp(p)

= div(2u(p)(1 — k)D(v)) + div(2ku(p)A(v)) — div (2 k(1 — KJ)M(p)VW) (4)

+V((Mo) — 26(1'(0)e — p(o))divu),
O (ow) + div(ew @ (v — 26V¢(p)))

= div(2ru(p) VW) — div(2y/A(L — K)u(p)VvT) = V(1 (0)o — ule))divu)

with v = u+ 26Vp(p) and w = 2/k(1 — k)Vp(0). The associated energy estimate (named k-entropy) reads

for all ¢ € [0, 7]
e (55 o [roe !

—&-2/{/ / 0)|A(v)|? dxds—&—Q&/ / |Vzg|2 dz ds

— RV) — KW 2 X 5
+2/0[/Q (o) DV/T=rv) — V(Viw)? d (5)
+ [ 0/ (@0 = plo)ldiv (VT=rv) = V(i) da] ds

s/Qg("’;N;'Q) O e+ [ F0) as

The paper will be divided in six sections. In the first section, we establish the relative entropy for system
2, then we prove a weak-strong uniqueness result. The third section corresponds to the convergence of the
global k weak solution sequences of the viscous compressible Navier-Stokes system to dissipative solution of the
compressible Euler system. The fourth section concerns the convergence to the incompressible Euler equations.
In the last section we discuss possible generalization to more general viscosities satisfying the algebraic relation
introduced by the first author and B. DESJARDINS.

2. DEFINITION OF K-ENTROPY SOLUTION.

In what follows, we set Q C R? an open subset or Q = T¢ a periodic box. Let us recall here the definition
of k-entropy solution for the compressible Navier-Stokes equation with degenerate viscosities as introduced
recently in [5]

Definition 1. Let T > 0 and k be such that 0 < k < 1, the couple of functions (g, u) is called a global k—entropy
solution to compressible Navier—Stokes system with degenerate viscosities if the following properties are satisfied:

— The mass equation is satisfied in the following sense

—/OT/antg dxdT—/OT/QQu'Vf dadr = [ 5(0) da (6)

forall £ € CX([0,T) x Q).
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— The momentum equation is satisfied in the following sense

/ /Qu Oy dxdr—/ / ou®u): Ve dxd7+/ /2/1 : V¢ dxdr
/ / o)divu div¢ dxdT—/ / 0)div ¢ dxdT—/gouo #(0) d

for all ¢ € (C°([0,T) x Q))3.

— Moreover (p,u) satisfies, for all t € [0,T], the following k-entropy estimates

sup [/Q<|u+2nv<,0 |2\/ (1—k) V<p )(t) dx+/QQe(Q)(t) dx}

te[0,T] 2

—|—2/€/ / 0)|A(u)? dmd3—|—2/£/ / |VQ|2 dzds
(8)

+2(1- ) / [ /Q (D) dr + / (1 ()o — (o)) |div uf? d] ds
</Qg<'“”*’"2w + L= Bevele ><o> o+ | onelan)

with ¢'(s) = i/ (s)/s, A(u) = 3(Vu — V'u) and the internal energy e(o) defined by

0*de(o)

o - (o).

3. RELATIVE ENTROPY.

In this section, we assume pu(p) = u p and we derive a relative entropy between a weak solution (p, v, w) of the
augmented system (2) and any other state (r, V, W) of the fluid. Let us consider the relative energy functional,
denoted E(p, ), defined by

E(p,v,w|r,V,W) = 1/Qg(lw—WIQ+IV—V\Q)Jr/Q(JT“(Q)—F(7‘)—F’(T)(Q—?"))

2

which measures the distance between a s-entropic weak solution (o, v, w) to any smooth enough test function
(r, V,W). We can prove that any weak solution (p, v, w) of the augmented system satisfies the following so-called
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relative entropy inequality
E(p,v,w|r,V,W)(1) — E(p,v,w|r,V,W)(0)
w2 [ [ e -viP v [ [ DT R - V) = Vitw - W)

+2nu/0 /sz [V (0)V1ogo~p'(r )Vlogr]'[woggfwogr}

< [ [ o= vw- v - w V) (V=)
/Q(@tW-(W—W)—FatV-(V—V))
Q

+/OT/QatF'( (r — o) //VF’ F“n)w)—r(V— ﬁwﬂ

[ ] o) en iy - mm

/ Vr 1
p'(0)Vo- [2#7 - mw] 9)

w2 [ [ o(DWI=RY) = TR+ (D= RV ) = TRV -~ w))

+2Ku /QA(V) AV —v +2I€M/ /g '(r)Vr - 2—@)
r o

:
S
5

+2v/ k(1 = Fa)u/ / Q[A(W) CAV-V) = Aw—W): A(V)}
0o Ja
for all 7 € [0,T] and for any pair of test functions
recl([0,7]xQ), >0, V.Wec0,T] x9Q).

Note that the right hand-side is well defined using the global weak regularity of (o, v, w). This is the analogue
for the density dependent Navier-Stokes equations of what has been proven for the constant viscosity barotropic
Navier-Stokes equations in [10]. Note also the presence of the additional new term

// 0)Vlogp — p()Vlogr}[Vlogg—Vlogr

which has a priori no sign but that we will rewrite later in an appropriate manner. This is indeed the corner-stone
of our study. The introduction of this term allows to relax the restrictive assumptions between the viscosity u
and the pressure law p made in [14]. More precisely, we prove the following result:

Theorem 1. Let Q be a periodic box. Suppose that the pressure law satisfies p(9) = ap” with v > 1. Let (p,u)
be a finite k-entropy solution to the compressible Navier—Stokes system with degenerate viscosity u(o) = po
and A(o) = 0 in the sense of definition 1. Then (p,u) satisfy the relative entropy inequality (9) for any
r € CH[0,T] x Q) withr >0 and V,W € CL([0,T] x Q).

We explain after the proof how to relax by a density argument the required regularity for the test functions.
Remark that existence of k-entropic solution for the compressible Navier-Stokes equations with p(o) = po with
p constant and A(p) = 0 without extra terms (capillary, drag, singular pressure) has been recently proved in
the nice paper [22].
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Proof of the relative entropy estimate. Let us write

E(o,v,w|r,V,W)(r) — E(o,v, W|T Vv, W)(0)

=[5 [ etw+ vy + [ Pl -5 [ eliw?+ M)+ [ F@)]0)

+[%/QQ(|V|2+\W| )—/S;(F(T)—FF/(T)(Q—T))—/QQ(W'W-FV-V)}(T)
_E/QQ(WP—&-\W|2)—/Q(F(r)+F’(r)(g—r))—/QQ(W~W+V-V)}(O)

We also calculate that

o [ gA(v—v>2+2uATAQD<m<v—v>—ﬁ(w—wmz

+2fiﬂ/ / 0V loge—p/(r)Vlogr] - [Viogo ~ Viogr|

_ zw/o /QQ|A<v>|2+2u/OT/Q@|D(M) V(VEW)[? + 25 / /Q 9]
[+210 /O ' /Q QA(V) : AV V)

+2M/T/Q(D VA=R)V) = VEW)) : (DA =m)(V =) = V(VE(W —w)))
+2Kku
QIi,LL

[ L
//QAM: *2u// V= mv) = V(/aw) - (DT = m)V)

_g,w/ / oo T

Recall the energy estimate satisfied by (o, v, w)

15 | etw+ 1P+ [ F@)r) =[5 [ elwl + v + [ Po]o)]

)V Vr Vg)}

m// |2+2u//QID VA= r)v) - fw\2+2// 218) ]

45

(10)

(11)

(12)

V(VEW))

(13)

Let us now test the equations satisfied by v and w respectively by V' and W. This computation is mathemat-
ically justified due to the regularity assumptions on V' and W. Note that we can write the weak formulation
satisfied by w = 241/k(1 — kK)Vlog p playing with the regularity satisfied by the x entropy solutions and with
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the weak formulation for the mass equation. We get the following relation

/Q,Q(V-V—i—W-W)(T)—/Q o(v-V+w- -W)( / /Qv A / /QW AW
ety [ w ) v v [ ) v ] (14)
o Ja sy =y

+2W/T/9A(v): +2u// VI —k)v) = V(VEw)) : (D(V(1 = 8)V) = V(VeW))

[ [

//2 (1 — K)kpo[A(v) : AW) — A(w) : A(V)] =0

Let us now test the mass equation by |[V'|?/2 and by [W|?/2 and add the two, we get the identity
1 2 2 1 2 2
3 ), LWVEHIWET) =35 | oV + W) (15)

=/0Tg(v-atv+W~at // ,/1;) w)-VV)-V+((v— (1fH)W)~VW)-W)~

Remark now that 9;[F(r) — F'(r)r] = =0, F'(r)r and thus

- / F(r) — F'(r)r)(r) + / [F(r) — F'(r)r)(0) = / rOF (1) (16)

Let us now multiply the mass equation by F’(r) and integrate in space and time

- [weoe+ [Emoo == [ [ore - [ [ o[G0 vre an

Recalling that F'(r)r — F(r) = p(r), we observe that

K

0= /Qdiv((F(r) — F'(r)r)(V — 7 w)) (18)

= [ p(r)div(V ‘/ AR —,/ﬁW).VF'(r)

Using (10)—(18), we get the desired relative entropy.

3.1. Relaxation of the regularity on the test function (r,V,W):

Let us recall the regularity on the global weak-solution of the degenerate compressible Navier-Stokes equations
with linear degenerate viscosity p(o) = po and A(g) = 0 and assuming the pressure law to be p(g) = ap”:

Vovu e L(0,T; L*(Q)), F(o) € L*=(0,T; L} (Q)),

Vow € L*(0,T; L*(Q)), /ev € L*=(0,T : L*(2)), ‘/Z%Vg € L*(0,T; L*(Q))
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with the relation oF’(p) — F(0) = p(0) assuming that initially

1 Mo 2 0
F(QO) €L (Q)a \/@0 €L (Q)a \/@0

where my = 0owg and My = pgvy if o9 # 0 and 0 if g9 = 0. Moreover we have the following estimates on the
velocity due to the Mellet-Vasseur estimate

c L*(Q),

eln(1+ [u*)(1 + |ul*) € L=(0,T; L*(2))

if initially it is the case. We need to impose at least the weak regularity on the target (r,V,W) and 0 < ¢ <
r < 400 to define the left-hand side namely

VIVU € L*(0,T; L3(Q),  F(r) € L®(0,T; L'(%)),

/
VIW € L0, T; L*(Q)), 7V € L>(0,T : L*(R)), @w € L*(0,T; L*(Q)).
Concerning the right-hand side to be well defined, we need the extra regularity

AF'(r) € L0, T; L¥2(Q)) Nn LY/ O =1 (Q)), VF'(r) e LY(0,T; L*(Q) N L*/0=Y(Q))

VV, VW € LY(0,T;L>(Q))

Vr € L>(0,T; L3(Q)).

4. WEAK-STRONG UNIQUENESS.

Let us consider a k-entropy solution (g, u) of (2) and define the modified velocities v = u + 2kuV log ¢ and
w = 2u\/k(1 — k)Vlog p. Moreover, we assume that (r, W, V) satisfies the augmented system together with
the regularity assumptions of the previous section. We further suppose that W = 2u+/k(1 — k)V1ogr. Then
let us prove that (o, v,w) = (r, V, W) that means weak-strong uniqueness property. This gives (g,u) = (r,U)

with U =V — /kW//(1 — k).
More precisely let us prove the following result

Theorem 2. Let Q be a periodic box. Suppose that the pressure law satisfies p(p) = ap” namely the power law
pressure. Let (o,u) be a k-entropy solution to the compressible Navier—Stokes system in the sense of the definition
1. Assume that there exists a strong solution of the compressible Navier-Stokes equations satisfying the positivity
and regularity properties described previously in (3.1) and that log(r) € L?(0,T; W1 (Q))NLY(0,T; W2°°(Q)).
Then we have the weak-strong uniqueness result: (o,u) = (r,U).

Remark that we cannot test the equations satisfied by V and W by V — v and W —w because v and w are
not controlled close to vacuum but ,/ov and /ow are well defined. Thus, let us take the equations satisfied by
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V and W and test them respectively against o(W — w)/r and o(V — v)/r, we get

) VV) - (V =)
2u(1 — k)oD(V) : D(V —v) /7/2,“@/1

/
I
/2;1\/ 1—k)oVW : D(V —v) //2;1\/ 1—k)oVW : A(V —v)
Y
/

Q2u(1 k)rD(V )V —v) //2um"A -v)
/92 VAL oW T (E) WV —v) =

and

/T/g[atw-<W—w>1+/oT/Qg(<<v— T W) VW) (7 —w)

o, fawor

//2”‘/1—“91) V(W - w) //%x/lifwA —w)
/0/92’“””V VW —w) /0/Q2um (VW) V()W = w) =0,

Collecting the two previous equality, we get

/OT/QQ[&&V' (V—-v) +/T/98tW~(W—

+2u/f D(/(I=R)V) = V(/EW)] : [D(V (T = R)(V = v)) = VVE(W — w))]

+2/m//gA AV —v) +2/k(1 — mu// Alw —W): A(V)]
/ng (V—v) //le k)rD(V (V V)

2u(1 — k)rA(V )V —v) //ZMI k)rv(W V v)

QUKTV(W).V(; YW —w) /O/QQHV k(1 —r)r(VV):: ;)(W—w)

_/OT

o\:‘c\
S— 55— 35

— [ [ o[« - —// [T v - w)

(19)

(20)
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[ [ &5 v v

Q T
[ "(r) - —-v) — il —W—T 04l (r)Vr - n -w
—— [ [P (Vv =\ [qEsw —w] = [ [ e [ —w)
Thus, using the following identity
POV iy — e W 2 ()9 [ = ) = 09 [0V —w) =0
which is true if W = 2u+/k(1 — k)Vlogr and w = 2u+/k(1 — k)V log o, we get
E(p,v,w|r,V,W)(T)—E(p,v,w|r7V7W)(0)
s [ [ oA =vIP 2 [ [ DGR = V) = Viw = W)
T [p'(0) [P'(1) o 12
+2;‘£/; /Q| TVQ— TVT‘
<[] el - v = [g W v v )
[ o= [ =V = s W) YW - (7 - w)
+/OT/Q((9,5F’(7") + (V- /FKH)W) -VF'(r))(r — o)
[ o) = penaty -\ [ w)
—/T/QM(I—K)TD(V):V(g)(V—v)
0 Q
’ : g —V ! — R)T . g —V
[ [t =nraw): 9@ v+ [ [ 20 -mpvn): 9w -v)
—/ / 2ukrV (W) : V(g)(W - W) —l—/ / 20/ k(1 — K)r(VV) V(g)(W —w)
0 Q 0 Q
Note now that
OF )+ (V= [ W) TE () = 0) = =div(V =\ [ W) (e =/ ()

because

F'(r)= p’fﬂ?‘) and Ogr + div(r(V — ﬁW)) =

0.

49

We first remark that F”(r) = p/(r)/r and therefore we can
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Thus we conclude that

E(p,v,w|r, ‘/v W)(T) - E(p,v,w|fr, ‘/7 W)(O)
s [ [ =viP e [ [ DGR = V) = Vi - W)

+2n// '(0)Vlog o — p'( )Vlogr}[Vlognglogr]

Note that

+ [ o) = pl) + 7 1) o - »mwv afgw
< c([IVV] (@) + IVW | Lo () E(0, v, w|r, V, W)

Finally recalling that w = 24/k(1 — k)Vo/p, we remark that
1
V(Q) Q[Vlogg Viogr] = 7Q(W—W>
r r 2./ K

Then we write

[/Q (1 — k)rD(V) : V(E)V — v)

r

(1~ w)rA(WV) : VOV ) + /Q 2u(1 — RV (W) : V()W )

:o\zz\

2V (W) : V(g)(w W)+ /Q 20/ — K)r(VV)E : V(g)(W —w)
< c(IVV L) + VWL (@) E(o, v, w|r, V, W)

(23)
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Let us now study the term in the left hand-side

11:/ /g[p’(g)Vlogg—p’(r)Vlogr]-(VlogQ—Vlogr]
0o Jo

which has a priori no sign. We can write it as

I=/ /Qp’(@)|V10g9—Vlogrl2+/ /@(p’(@)—p’(r))Vlogr-(Vlog@—VIOgT)=11 + I
0 Q 0 Q

The first term I is positive, there it remains to bound the second term I5. Let us recall that we consider the
case p(g) = ap”. Then, we have to consider the quantity

I:/ /Q[Q'Y_lVlogQ—r'Y_lVIOgr}-(Vlogg—Vlogr]
o Ja

which may be written

I:/ /g”|Vlogg—Vlogr\2+/ /[Q“’—Qr'yfl}Vlogr-[Vlogg—Vlogr]:Il+Ig
0o Ja 0o Jo

The first quantity I is positive. It remains to control Is. It is important now to observe the following identity
Let us notice that

o[p' (@) = p'(r)]Vlogr- [Viog o — Viegr] = V(p(e) — p(r) — p'(r)(¢ — 7)] - Viogr (25)
—[o(p'(0) = ¥'(r)) = p"(r)(0 — r)r]|VIogr|?

Thus

<[ [ 00) =) 5 ) e =) Alogr] (26)

T ’ — o' () — " (r — )y 07”2
+/0 /Q|(9(p(9) p'(r) = p"(r)(e—r)r|[Viog |]
§J1+J2.

The key-point is now to recall that
plo) = p(r) = p'(r)(e — 1)) = F(eo|r)

where F(o|r) = F(0) — F(r) — F'(r)(o — r) by definition and that it is possible to prove (see Lemma 2.2. [1])
that

o(p' () = p'(r)) = p"(r)(e — r)r =~ F(o|r)
Thus

B<C [ [(1atogrliso + 1V 10g7 ]~ o) E(ev, wir. V1)
0

This ends the proof of weak-strong uniqueness using Gronwall Lemma asking log 7 to be bounded in L2(0, T; W1>°(Q))N
LY(0,T; W2°°(Q)).
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5. CONVERGENCE TO A DISSIPATIVE SOLUTION OF COMPRESSIBLE EULER EQUATIONS.

Let us recall the definition of a dissipative solution of compressible Euler equations. Such concept has
been introduced by P.—L. LIONS in the incompressible setting: see for instance [16]. The reader is referred
to [9], [20], [1] for the extension to the compressible framework.

Definition. The pair (g,%) is a dissipative solution of the compressible Euler equations if and only if (g, @)
satisfies the relative energy inequality

t
E(@,E,O|r, U,0)(t) < E(@,E,O‘r, U,0)(0) exp[co(r)/ |divU (7) | o< (@) d7]
0

+/Ot exp|co(r) /St HdiVU(T)||Loo(Q):| /QQE(T‘, U) - (U —7)dxds

for all smooth test functions (7, U) defined on [0, 7] x Q so that r is bounded above and below away from zero
and (r,U) solves

Oyr + div(rU) = 0,
8U + U -VU + VF'(r) = E(r,U)

for some residual E(r,U).

We prove the following result.

Theorem 3. Let (g-,u.) be any finite k-entropy solution to the viscous compressible Navier-Stokes equations
in the periodic setting namely u(o) = o, AMo) = 0 and p(p) = ag”. Then, any weak limit (g,w) of (0e,u.),
when € — 0, in the sense

0: — 0 weakly = in L*°(0,T; L7(£2)),
Vove — /0T weakly % in L>(0,T; L*(Q))
Vo-we — 0 weakly * in L°°(0,T;L*(Q))

with ve = u. + 2exVlog o, and w. = 2e\/k(1 — k)Vlog o. as e tends to zero, is a dissipative solution to the
compressible compressible Fuler equations.
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Proof. Let us consider the k entropy solution (g.,u.) of system (2) with p(g) = o0 and A(p) = 0. It has been
shown that it satisfies the so—called relative entropy inequality

Bloe Ve W1, VW) (7) = B, v, wer, VW)(0)
%ﬁf/&HMWF%?[L&WWﬁW%WﬁWEWWQ
1 2ke A / 0 |7 (0)V log 0. — (r)v1ogr] : [v log 0. —Vlogr}
<[] ool frg e I 07 < wa (v = [ w9V (7 - v)
@a&WwW—wa+@va—w0
+/OT/Q(%F’(T)T—QE—//VF \/i V—mW)}
+[Awww>mm’ﬁ1@m

="

S

T , vr
—/f/o /Qp (0e)Voe - [257 - \/17—7& (27)

+25/OT QQE(D(\/WV) — ))) : (D(\/W(V—VE)) —V(\/E(W—wa)))
+2”5/T/96A(V)3A( — V) + 2ke /QQE '(r)Vr - E_VQE)

r Qe

HJTi?//& .<€v>m%4mwwﬂ

Let us now consider (r,U) as in the definition of dissipative solution for compressible Euler equations and
define (r, V., W¢) through the relations W, = 2e/k(1 — k)Vr/r and V. = U + 2exVr/r. Therefore

Oyr + div(rU) =0,

OV +U-VVe 4 V(1) = B(r,U) — 2 div(r(VU)!) = B (r, ) (28)
T
2 1-—
oW, +U v, = — AL RS o Uy = B )

r

Observe now that

p(oe) = p(r) = o(F'(e:) — F'(r)) — F(oz|r)

where

F(eelr) = Floc) = F(r) = F'(r) (g — 7).
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Then after some calculations we can prove that the relative entropy may be written as

E QE)V67WE

e)( ) E(Qa‘avmws E)(O)

+2K6/ /Q 0. A(v 5)|2+2€/OT /Q 0o DV =RV — Vo) — VR(w* — W))?

+2mf/ / '(0:)V log oe —p'(r)Vlogr} . [Vlog 0O —Vlogr]

< [ [ e(BiG0): 0w+ B - (W = )

[ [ (etF e = o) = oz = ) F (1) = Fladn))) vy (29)

(>8] ) (>8]

o D/ = RVe) - V(VAI)) (DA m(Vz — ve)) ~ VVAE(W: - w2)))

/ / e
+2ke / /Q 0 A(VL) : A(V: —v.)

Now we use as in [1] that
0:(F'(ee) = F'(r)) —r(0- — r)F"(r)) = F(o:|r)

thus after some Cauchy-Schwarz inequalities, we get
E(pe, Ver Welr, Ve, Wo) () = Bpe, ve, welr, Ve, W) (0)
s [0 plaw = voP e [ ] 0D/ R = Vo) - VRGw. - W)
+2I€E/O /Qgs p/(gs)VIOg 0 —p’(r)V]ogr} : [ng 0. — Vlogr]
< [ [ e(BiG0): 0= v+ B (- )
<[ [c(r)HdivUan(mF(gEM (30)
w2 [0 [ o (DOV/I=0V) = V(vAWD) ) (DVIT= RV = v)) = VROV - ) )

+2ne / / 0-A(V2) : A(V. = v.)

It remains now to deals with the pressure term in the left-hand side
I = /OT /Q 0: {p/(Qa)VIOg 0e —p/(T)Vlogr} : {v log 0. — Vlogr}
which as a-priori no sign. We can recall what as been done in the weak-strong uniqueness part namely
I= /OT /Q 00 (0)|Vlog - — Vlogr|* + /OT /Q 0.(0'(0.) — P (1) Vlogr- (Viogo. — Viogr) = I + I

The first term I; is positive, there it remains to bound the second term I5. Everything work as for the weak-
strong uniqueness for p(o) = ap” and u(g) = po, M) = 0 to control the term linked to the pressure namely I
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. More precisely we can prove that

E(QE,VE,W5|T', Ve, We)(7)
SE(Qeavfawf E)( )

o (otr) [ 10 ()0 + 25517 10870 e o)+ 1 g )0 (3)

€

+ / exp(c(r) [ (Iiv0 (D)l e+ 26T og (1) + [ A Tog (7)) ) )
/Q (¢ (BE(rU) - (Ve = vo) 4+ B5(r,U) - (We = W) ) + Coce- | VU P

This ends the proof letting € tend to zero.

6. CONVERGENCE TO THE STRONG SOLUTION OF INCOMPRESSIBLE EULER EQUATIONS IN
THE WELL-PREPARED CASE.

In this part, we want to prove that our augmented formulation is well adapted to the low Mach number
and inviscid limit together. This will help in a forthcoming paper, see [6], to justify the intuitive scheme for
incompressible Euler System already defined in [13]: Remark that « may play the role of & in [13] which is the
mesh size. We will choose as pressure state p(p) = ap”. This extends to the density dependent case, the method
and result obtained by E. FEIREISL et. al. in the constant viscosity case, see [9] and [18] and references cited
therein. It would remain to consider the ill prepared case to end up the complete asymptotic analysis but it is
not the objective of this proceeding. We also assume that the initial density converge to a constant taken as 1
namely (p§ —1)/e? — 0 in L*(Q), the initial velocity converging to an incompressible velocity Uy in L?(2). We
start with the augmented system

Oro + div (o (v — 26uVlog ) =0,
O (ov) + div(pv ® (v — 2kuVlog o)) + 5—12Vp(p) =div(2up(1 — k)D(v)) + div(2kpupA(v))
—div (2\/,%(1 — /f)upr) ,

0 (ow) + div(ow @ (v — 26uV log 0)) = div(2kupVw) — div(2y/k(1 — k) upVvT)

(32)

We want to pass to the limit with respect to ¢ and u for some relation between the two. The entropy reads

sl ) oues
T2 / | 2 (AW + ID/T=v) = V(aw)P) (33)

2 2
—|—2—// |Vg2dxdx</g<v2|+|w> ) dz +/F
Q

Let us choose 7 =1, V = U the strong solution of the incompressible Euler Equation

QU +U-VU+VII=0, divU=0
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and W = 0. Recalling that

E(PaVaW|1,U70):%/QQ(|W|2+|V_U|2)+ﬁ/ﬂ(97—1—%9—1))

the relative entropy reads

E(ﬂ)”aw‘LUa 0)(7) - E(p,v,w|1, U7 O)(O)

s [ [ - 0)f v [ [ DT - 0) - V)P
+2z—§ /OT/QQp’(@)IWOgQI2
<[ [ (=0 [ w v )

+/OT/Qg(atU~<U—v>)
s [ [ o(DV/T=00) + (DW= =) + (iw))

+2/~€,u/OT/QQA(U) AU —wv).

Playing with the regularity of (U, II) solution of the incompressible Euler equations, we can get as in the other
parts a differential inequality allowing to conclude of the convergence when ¢ — 0. Note that if we choose

K

(1]
2]
(3]
(4]

(5]

[6]

[7]

= O(e?), we get through the pressure term a convergence in L?(0,7; H(2)) norm of \/pp/(p)Vp* to 1.
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