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Abstract 

The structure of GexTe100-x (x = 14.5, 18.7, 23.6) glasses prepared by twin roller quenching technique 

was investigated by neutron diffraction, X-ray diffraction and Ge-K-edge X-ray absorption 

spectroscopy measurements. Large scale structural models were obtained for each composition by 

fitting the experimental datasets in the framework of the reverse Monte Carlo technique. It was found 

that the majority of Ge and Te atoms satisfy the 8-N rule. Simulation results indicate that Ge-Ge 

bonding is not significant for x = 14.5 and 18.7. The shape and position of the first peak of the Ge-Ge 

partial pair correlation function evidence the presence of corner sharing tetrahedra already in 

compositions (x = 14.5 and 18.7) where ’sharing’ of a Te atom by two Ge atoms could be avoided due 

to the low concentration of Ge.   

 

1. Introduction 

Short range order of amorphous Ge-Te alloys have been investigated for decades by diffraction and 

extended X-ray absorption fine structure (EXAFS) measurements [1-8]. Some early studies suggested 

the so called 3-3 model (both Ge and Te are threefold coordinated) but later the 4-2 model became 

prevailing. However, some recent works raised doubts about the validity of the 8-N rule [9-11]. The 

precise determination of the coordination numbers of Ge and Te in amorphous Ge-Te alloys is a rather 

difficult task. The main problem is the overlap of the first peaks of gGeTe(r) and gTeTe(r) partial pair 
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correlation function, which makes their separation - and the determination of corresponding 

coordination numbers - difficult. This was clearly illustrated by the neutron diffraction study of 

Ichikawa et al. [4] who found that the first peak of neutron diffraction total pair correlation function of 

Ge20Te80 glass could be fitted by a single Gaussian. From this they concluded that there are only Ge-Te 

bonds in the sample and the average number of Te atoms around Ge is 6.3 ± 0.4.  

The situation can be improved by combining neutron diffraction, X-ray diffraction and Ge K-edge 

EXAFS data. According to our experience, the latter gives a very precise estimate of the Ge-Te peak 

position while diffraction datasets reduce the uncertainty of coordination numbers.  

Detailed knowledge of the structure of binary Ge-Te glasses is useful in structural investigations of 

more complex telluride glasses used in infrared optics or information technology. A thorough 

experimental study may also inspire theoreticians by providing them with reliable structural models. 

The aim of the present study is the determination of short range order in Ge-Te glasses prepared by 

twin roller quenching using the above mentioned experimental techniques. The reverse Monte Carlo 

simulation technique (RMC) [12-15] will be used as a framework for combining the information 

content of different experimental datasets. This method is widely used to study the structure of liquids 

and glasses (see e.g. [16, 17]). The uncertainty of short range order parameters is also investigated. 

Though the glass forming region of the Ge-Te system is not too wide, comparison of the structure of 

different compositions helps in assessing the reliability and significance of our results. 

 

2. Experimental 

Bulk GexTe100-x samples (x = 14.5, 18.7, 23.6) were synthesized from a mixture of high-purity starting 

elements (Ge (Aldrich, 99.999%) and Te (5N+, 99.999%)). Four grams of the stoichiometric powders 

were placed in a silica tube and sealed under secondary vacuum (10
-5

 mbar). The powder was melted at 

660ºC with a 9ºC/h heating rate and kept at this temperature for 24 h for homogenization before being 

quenched in a salt-ice-water mixture. The obtained materials were then crushed in small pieces. The 

pieces were put in a quartz tube, having a hole at the bottom. They were further heated using a RF 

induction furnace, which allowed the temperature of the mixture to rise very rapidly. Pressure, induced 

via an Ar gas jet, was applied to the melt forcing small droplets through the hole and in between two 

rotating twin rollers. Quenched flakes (45-85 μm in thickness, a few cm
2
 in area), released by the 

rollers, dropped into an Al collector. The twin roller quenching equipment was put in an Ar-filled glove 

box (for more details see Pradel et al. [18]). 



The chemical composition was estimated by Electron Probe Micro-Analyser (EPMA) using a 

CAMECA SX-100 instrument with an acceleration voltage of 20 kV and a probe current of 1 nA. The 

amorphous nature was checked by X-ray diffraction using a PANalytical XPERT diffractometer. A Cu 

(K) source (λ = 1.5406 Å) was used for the excitation with operating voltage of 40 kV and a beam 

current of 30-40 mA. 

Neutron diffraction (ND) data were collected at the 7C2 liquid and amorphous diffractometer [19] of 

LLB (Saclay, France). Powdered samples were filled into vanadium sample holders with 5 mm 

diameter and 0.1 mm wall thickness. Wavelength, detector position and efficiency was determined by 

auxiliary measurements of Ni and V powders, respectively. The wavelength of incident neutrons was 

0.724 Å. Raw data were corrected for background scattering, multiple scattering and absorption using 

standard procedures. 

The X-ray diffraction experiment was carried out at the Joint Engineering, Environmental and 

Processing (I12-JEEP) beamline [20] at Diamond Light Source Ltd (UK). The size of the 

monochromatic beam was 0.3 × 0.3 mm
2
. The energy of the incident beam, the sample-to-detector 

distance, the position of the beam centre and the tilt of the detector were determined by measuring a 

CeO2 standard sample (NIST Standard Reference Material 674b) at different distances [21] The 

wavelength of the incident beam and the sample-to detector distance were 0.1255 Å (98.768 eV) and 

336 mm, respectively.  

Powder samples were filled into quartz capillaries with diameter of 1 mm and wall thickness of 0.01 

mm. X-ray data were measured in transmission geometry by a large area 2D detector (Thales Pixium 

RF4343). The illumination time for a single diffraction pattern was 20 s, and 45 images were collected 

for each sample to improve statistics at high k-values. An empty quartz capillary was also measured at 

the same conditions and the resulting 2D image was subtracted from the sample images. Background 

corrected images were integrated into the k-space using the DAWN software [22]. Structure factors 

were obtained by correcting the integrated data for self-absorption, Compton scattering, fluorescence 

and multiple scattering using the PDFGetX2 program [23].  

Corrected neutron- and X-ray diffraction structure factors are shown in Figure 1. 

Ge K-edge EXAFS data were collected at beamline P65 of Petra III synchrotron storage ring 

(Hamburg, Germany). Experiments were carried out in transmission mode. The monochromatic beam 

was obtained by a Si(111) double crystal monochromator. Powdered samples were mixed with 

cellulose and pressed into tablets. The amount of sample was chosen to get an absorption t≈1.5 above 



the absorption edge. Intensities before and after the samples were measured with ionization chambers 

filled with Ar/Kr mixture and Kr, respectively. 

The raw absorption spectra were converted to χ(k) curves using the VIPER program [24]. Raw, k
3
-

weighted χ(k) data signals were forward Fourier-transformed first into r-space using a Kaiser-Bessel 

window (α=1.5). The k-range of transformation was 2 Å
-1

 -15 Å
-1

. The r-space data were back-

transformed using a rectangular window over 1.1 Å-2.8 Å (see Figure 2).  

 

3. Simulation 

Calculations were carried out by the rmcpp programme [13]. Simulation boxes contained 32000 atoms. 

Densities were determined by interpolating the molar volumes of amorphous Ge15Te85 [25] and 

Ge50Te50 [26]. Minimum interatomic distances (cut offs) were 2.35 Å and 2.55 Å for Ge-Te and Te-Te 

pairs, respectively. For Ge-Ge pairs 3.5 Å was used when Ge-Ge bonding was forbidden and 2.35 Å 

was applied when it was allowed. In these simulations only unphysically low coordination numbers 

were forbidden (0 for Te, 0 and 1 for Ge) but the total coordination number of atoms was not 

constrained otherwise.  

Fits of the ‘final’ model of Ge18.7Te81.3 are shown in Figure 3. 

 

4. Results and discussion 

 

4.1. Ge-Ge bonds in Ge-Te glasses 

To see whether Ge-Te glasses are chemically ordered, the occurrence of Ge-Ge bonds was tested first. 

It was found that for Ge14.5Te85.5 and Ge18.7Te81.3 the Ge-Ge cut off could be raised to 3.5 Å without 

changing the quality of fits. Therefore, in these compositions NGeGe, the Ge-Ge coordination number, is 

below the estimated sensitivity of our approach (~0.3). In case of Ge23.6Te76.4 fits were improved by 

allowing Ge-Ge bonds in model configurations. Here the estimated value of NGeGe is 0.44 ± 0.3 (see 

Table 1). For a completely random 4-2 glass the Ge-Ge coordination number is given by the following 

equation [27]:  

                                                                         
  

     
                                                 (1) 



 

For x=23.6 NGeGe would be 1.53 according to the above equation. Our result therefore clearly indicates 

that twin roller quenched Ge-Te glasses cannot be described as random covalent networks.  

4.2. Short range order parameters 

Partial pair correlation functions gij(r) (with i, j=Ge and Te) obtained by unconstrained simulation runs 

can be found in Figure 4, while coordination numbers and bond lengths are shown in Tables 1 and 2. 

Deviations of the total coordination numbers of Ge and Te from 4 and 2 are within the ± 4% range for 

all  

compositions. Again, it is to be emphasized that these values were obtained by unconstrained 

simulations, in which the total coordination number of Ge and Te were not forced to be 2 and 4. The 

uncertainty (range of deviation compatible with experimental datasets) of the coordination numbers 

was estimated by dedicated simulation runs, in which values given in Table 1 were forced to increase 

or decrease in steps of 5-10% and the quality of fits was monitored. The errors of NTeGe and NTeTe are 

usually not higher than 0.15 while the uncertainty of NTe is around 0.1 showing that changes of NTeTe 

and NTeGe at least partly compensate each other. The uncertainty of NGe (and NGeTe) is not symmetric: 

while fit qualities are significantly weaker upon decreasing coordination numbers by ~5%, the error is 

around 10% in the other direction. 

The Ge-Te distance in Ge-Te glasses is 2.61 Å, which agrees with the value found in most telluride 

glasses (e.g. Ge20I7Te73, Ge11Ga11Te78 [8], Ge-As-Te [28], Ge-Te [29], Ge-Te-M (M: Cu, Ag, In) [6]). 

The peak is symmetric, without shoulder or secondary peak as in amorphous Ge2Sb2Te5 [30, 31] or 

0.75GeTe4-0.25AgI [32].  

The Te-Te distance is around 2.75 Å and does not depend significantly on the composition. The first 

peak of gTeTe(r) is well defined and followed by a deep, pronounced minimum.  

 

4.3 Comparison with theoretical results 

 

Short range order in Te-rich Ge-Te glasses has also been investigated by simulations based on density 

functional theory (DFT) [7, 33, 34]. Kalikka et al. used DFT with PBEsol exchange-correlation (XC) 

functional to optimize energetically model configurations obtained by fitting diffraction measurements 

with reverse Monte Carlo simulation [7].They found that Ge atoms are both in tetrahedral and defective 

octahedral configurations, in which Ge atoms have 3 nearest neighbors. The average total coordination 



number of Ge is 3.53 and the Ge-Te distance is 2.65 Å. Te atoms are mostly twofold coordinated 

(NTe = 2.13) and the Te-Te bond length is 2.84 Å. 

The effect of XC functionals on the short range order in DFT models of glassy GeTe4 was investigated 

by Bouzid et al [33]. It was concluded that structures obtained using BLYP functionals give a better 

agreement with X-ray diffraction data than those calculated with PBE functionals. It was also pointed 

out that van der Waals interactions should be taken into account to get reliable structural models with 

DFT. 

The total coordination number of Ge is 3.97 and the Ge-Te distance is 2.59 Å in ref. 33. Ge-Ge 

bonding was also found with a distance close to the value in Ge23.6Te76.4 and a coordination number 

around the experimentally detectable limit (rGeGe = 2.43 Å, NGeGe = 0.37]). The Te-Te distance is 2.84 Å 

while the total coordination number of Te atoms is 2.31.  

It can thus be observed that by using BLYP functionals and taking into account van der Waals 

interactions the vast majority of Ge atoms is fourfold coordinated and the Ge-Ge and Ge-Te bond 

lengths are also close to the values of the present study and other experimental works combining 

diffraction and Ge EXAFS measurements [27, 28].  

According to a recent ab initio molecular dynamics (AIMD) simulation using BLYP functionals [35] 

Ge atoms are mostly tetrahedrally coordinated in amorphous Ge2Sb2Te5 but a significant fraction can 

be found in defective octahedral environment, which is characterized by longer Ge-Te bonds and 

smaller Te-Ge-Te angles. Longer Ge-Te bonds were also found in amorphous Ge2Sb2Te5 using neutron 

diffraction, X-ray diffraction, EXAFS and reverse Monte Carlo simulation [30, 31]. The partly 

different nature of Ge-Te bonding in Ge-Te glasses and amorphous Ge2Sb2Te5 is illustrated by Figure 5 

where the first peaks of the Ge-Te partial pair correlation functions of amorphous Ge2Sb2Te5 and 

Ge18.7Te81.3 are compared. The first peak of Ge18.7Te81.3 is well defined and symmetric while the 

shoulder clearly indicates the presence of longer Ge-Te bonds in Ge2Sb2Te5.  

These results show that under certain conditions AIMD simulations and experiment-based RMC 

modeling give a congruent description of the environment of Ge atoms. For AIMD the usage of BLYP 

functionals seems to be important while in case of RMC the moot point is the separation of the first 

peaks of Ge-Te and Te-Te partial pair correlation functions. Due to the strong overlap of these peaks 

X-ray and neutron diffraction data may not give sufficient information to avoid the admixture of Te-Te 

and Ge-Te peaks that may result in higher Ge-Te distance, decrease of Ge-Te coordination number 

and/or increase of the total coordination number of Te. These symptoms can be avoided by adding Ge 

EXAFS data that pinpoint the position of the Ge-Te peak and also help to decrease the uncertainty of 

coordination numbers. 



The total coordination number of Te obtained by DFT studies is significantly higher than 2, regardless 

the type of XC functionals. The increased value is most likely due to the shallow first minimum of 

gTeTe(r) which suggests that the first and second coordination spheres of Te are not properly separated. 

 

4.4. Corner sharing tetrahedra in Ge-Te glasses 

For x = 14.5 and 18.7 the first peak of the Ge-Ge partial pair correlation function is around 3.8 Å. It 

may be asked whether this well defined peak is due to the high Ge-Ge cut off (3.5 Å) or it originates 

from the information content of the experimental data. To decide this question we carried out a 

simulation of Ge18.7Te81.3 with lower cut off (3.0 Å) and another one in which neutron diffraction data 

were not fitted. The effect of these conditions on the first peak of gGeGe(r) is shown in Figure 6. The 

lower cut off has practically no influence on the peak position or area. On the other hand, the ‘peak’ 

obtained without neutron diffraction data is very flat and broad indicating that well defined peak shape 

is not a simulation artefact but follows directly from the neutron diffraction structure factor. Due to the 

higher neutron scattering length of Ge (bGe=8.185 fm, bTe=5.80 fm [36]) neutron diffraction data are 

more sensitive to Ge-Ge correlations than X-ray diffraction, where the scattering power is determined 

essentially by the number of electrons (ZGe=32, ZTe=52).   

The above discussed Ge-Ge peak is due to correlations between second neighbors, still it is well 

defined and highly symmetric. The sharpness of the peak is especially striking in comparison with the 

second peak of gTeTe(r). The latter describes correlations of Te atoms sharing a common Ge or Te 

neighbor. Contribution from topologically distant (non-second neighbor) Te-Te pairs may also be 

significant. The small width of the Ge-Ge peak (~0.45 Å full width at half maximum) indicates that it is 

not composite in the above sense but rather corresponds to a single type correlation. The only 

reasonable choice is that the peak is due to Ge atoms sharing a common Te neighbor. As Ge is 

predominantly fourfold coordinated it means most likely the presence of corner sharing GeTe4 

tetrahedra. We note that with rGeTe=2.60 Å and rGeGe=3.80 Å one gets ~93° for the Ge-Te-Ge bond 

angle, which is an absolutely realistic value [7]. This assumption is supported by a constrained 

simulation run of Ge18.7Te81.3 in which each Ge atom was forced to have 4 Te neighbors while each Te 

was constrained to bind to 2 Ge or Te atoms. In addition, the Te-Ge-Te bond angle was constrained to 

be effectively in the 109.5° ± 15° range while the Ge-Te-Ge bond angle distribution was centered at 

93°, with a similar spread. Detailed analysis of the resulting configuration revealed that the dominant 

contribution to the first peak of gGeGe(r) comes from Ge-Ge pairs centering corner sharing tetrahedra 

and there is a small fraction of edge sharing tetrahedra and pairs of topologically distant Ge atoms that 



do not bind to a common neighbor (Figure 7). The necessity of corner sharing was confirmed by a 

dedicated simulation run in which the above coordination and bond angle constraints were used but Ge-

Te-Ge motifs were also forbidden in addition. It was found that neutron diffraction and Ge EXAFS fit 

residuals increased by ~100% and 65%, respectively upon eliminating Te atoms with two Ge 

neighbors.  

 

Conclusions 

Short range order of GexTe100-x glasses (x = 14.5, 18.7, 23.6) obtained by twin roller quenching 

technique was investigated by neutron diffraction, X-ray diffraction and Ge K-edge EXAFS 

measurements. Structural models were generated by fitting these data simultaneously by the reverse 

Monte Carlo simulation technique. It was obtained by unconstrained simulations that Ge and Te atoms 

follow the 8-N rule. Ge-Ge bonds do not improve fit quality for x = 14.5 and 18.7, indicating that these 

glasses cannot be described as random covalent networks. The presence of corner sharing GeTe4 

tetrahedra was inferred from the shape and position of the first peaks of the Ge-Ge partial pair 

correlation functions.  
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Table 1. Coordination numbers in GexTe100-x glasses obtained by fitting neutron diffraction, X-

ray diffraction and Ge K-edge EXAFS data by unconstrained reverse Monte Carlo simulations 

 

 

 NGeGe NGeTe NTeGe NTeTe NGe NTe 

Ge14.5Te85.5  0 4.16 (-0.2 + 0.6) 0.73(-0.05 +0.1) 1.31±0.15 4.16(-0.2 +0.6)  2.04±0.1  

Ge18.7Te81.3 0 4.10 (-0.2 + 0.6) 0.94(-0.06 +0.1) 1.06±0.15 4.10(-0.2 +0.6) 

 

2.00±0.1 

  

Ge23.6Te76.4 0.44 ±0.3  3.66 (-0.2 + 0.6) 1.13(-0.1 + 0.2) 0.93±0.15 4.06(-0.2 +0.6) 2.06±0.1 

 

 

Table 2. Nearest neighbour distances in GexTe100-x glasses obtained by fitting neutron 

diffraction, X-ray diffraction and Ge K-edge EXAFS data by unconstrained reverse Monte 

Carlo simulations 

 

 rGeGe [Å] rGeTe [Å] rTeTe [Å] 

Ge14.5Te85.5  - 2.61 ± 0.02 2.75 ± 0.02 

Ge18.7Te81.3 - 2.61 ± 0.02 2.76 ± 0.02 

Ge23.6Te76.4 2.45 ± 0.03 2.61 ± 0.02 2.75 ± 0.02 
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Figure 1. Neutron (ND) and X-ray (XRD) diffraction structure factors of the Ge-Te glasses 

investigated. Curves of Ge18.7Te81.3 and Ge14.5Te85.5 are shifted vertically with 1 and 2 units for 

clarity. 
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Figure 2. Filtered and k
3
-weighted Ge K-edge EXAFS curves of the Ge-Te glasses investigated. 

Curves of Ge18.7Te81.3 and Ge14.5Te85.5 are shifted vertically with 7.5 and 15 units for clarity. 
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Figure 3. Comparison of experimental datasets (dotted line) and model curves (solid line) of 

Ge18.7Te81.3 obtained by fitting simultaneously the three measurements with reverse Monte 

Carlo simulation. 
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Figure 4. Partial pair correlation functions of the Ge-Te glasses obtained by reverse Monte 

Carlo simulation 
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Figure 5. Ge-Te partial pair correlation functions of amorphous Ge2Sb2Te5 [31] and glassy 

Ge18.7Te81.3 (this study) 
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Figure 6. The first peak of gGeGe(r) of Ge18.7Te81.3 obtained with and without neutron diffraction 

data. The result of a simulation with neutron diffraction data but lower minimum Ge-Ge 

distance is also shown 
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Figure 7. Decomposition of the first peak of gGeGe(r) of Ge18.7Te81.3 to contributions from corner 

sharing (CS) tetrahedra, edge sharing (ES) tetrahedra and topologically distant Ge-Ge pairs 



-the average coordination numbers of Ge and Te are close to 4 and 2, respectively. 

 

-corner sharing tetrahedra can be found already in Ge14.5Te85.5 

 

-no Ge-Ge bonds are needed to fit diffraction and EXAFS data of Ge14.5Te85.5 and 

Ge18.7Te81.3 

 

*Highlights (for review)


