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ABSTRACT 
 

A critical task for tutors is to provide learners with suitable reading materials in 
terms of difficulty. The challenge of this endeavor is increased by students’ individual 
variability and the multiple levels in which complexity can vary, thus arguing for the 
necessity of automated systems to support teachers. This chapter describes ReaderBench, 
an open-source multi-dimensional and multi-lingual system that uses advanced Natural 
Language Processing techniques to assess textual complexity at multiple levels including 
surface-based, syntax, semantics and discourse structure. In contrast to other existing 
approaches, ReaderBench is centered on cohesion and makes extensive usage of two 
complementary models, i.e., Cohesion Network Analysis and the polyphonic model 
inspired from dialogism. The first model provides an in-depth view of discourse in terms 
of cohesive links, whereas the second one highlights interactions between points of view 
spanning throughout the discourse. In order to argue for its wide applicability and 
extensibility, two studies are introduced. The first study investigates the degree to which 
ReaderBench textual complexity indices differentiate between high and low cohesion 
texts. The ReaderBench indices led to a higher classification accuracy than those 
included in prior studies using Coh-Metrix and TAACO. In the second study, 
ReaderBench indices are used to predict the difficulty of a set of various texts. Although 
the high number of predictive indices (50 plus) accounted for less variance than previous 
studies, they make valuable contributions to our understanding of text due to their wide 
coverage. 
 

Keywords: comprehension modeling, learning analytics, automated essay scoring, data 
analytics, Natural Language Processing 
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INTRODUCTION 
 
Intelligent Tutoring Systems have been developed to support learners and human 

tutors by providing customized instructions and feedback. Measuring text difficulty is of 
particular interest in learning activities in order to best match resources to reader's 
comprehension level. However, the automated assessment of text difficulty is a difficult 
endeavor because multiple text features and learner characteristics (e.g., prior knowledge, 
language familiarity, reading performance, cognitive capabilities) need to be taken into 
account in order to provide tailored feedback. Thus, automated systems need to be 
adaptive to the audience, ensuring that learners are challenged, but are not excessively 
frustrated or demotivated.  

Several automated systems have been developed and adopted in a wide range of 
educational scenarios. E-Rater (Powers, Burstein, Chodorow, Fowles, & Kukich, 2001) is 
one of the first systems to automatically evaluate essays in which the quality of writing 
was measured by extracting a set of text indices such as: lexical complexity, spelling 
mistakes, lexical diction, text organization, as well as basic content analyses based on 
vocabularies. E-Rater supports a multi-layered textual complexity evaluation and 
subsequent software releases of the system added new features, including a model for 
evaluating the complexity of inferences in the discourse (Grosz, Weinstein, & Joshi, 
1995). Newer tools such as TAALES (Kyle, Crossley, & Berger, in press), TAACO 
(Crossley, Kyle, & McNamara, 2016), TAASC (Kyle & Crossley, 2018), or Coh-Metrix 
(Graesser, McNamara, Louwerse, & Cai, 2004) provide comprehensive lists of scores for 
specific textual complexity indices that can be used for a wide range of text analyses on 
cohesion (i.e., semantic relations that exist and define a text) and language. Starting from 
automated essay scoring, the aim has transcended towards building Intelligent Tutoring 
Systems that provide detailed feedback besides singular evaluation scores. Automated 
Writing Evaluation systems such as the Writing Pal (Roscoe, Varner, Weston, Crossley, 
& McNamara, 2014) take the assessment component one step further and provide 
feedback to learners, thus supporting them to improve their writing skill. 

Our implemented framework, ReaderBench (Dascalu, 2014; Dascalu, Dessus, 
Bianco, Trausan-Matu, & Nardy, 2014; Dascalu et al., 2017) integrates an extensive list 
of textual complexity indices centered on cohesion and discourse structure. ReaderBench 
is built on top of Cohesion Network Analysis (CNA; Dascalu, McNamara, Trausan-Matu, 
& Allen, 2018) which provides an in-depth longitudinal perspective over the cohesive 
links across the text. Moreover, ReaderBench also integrates a complementary transversal 
perspective (Dascalu, Trausan-Matu, McNamara, & Dessus, 2015), namely the 
polyphonic model of discourse (Trausan-Matu, Stahl, & Sarmiento, 2007), which 
highlights interactions between points of view (i.e., “voices”). Thus, ReaderBench 
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introduces in-depth textual complexity indices that account for certain specificities of the 
comprehension process, namely: a) automated word learning curves in our Age of 
Exposure model (Dascalu, McNamara, Crossley, & Trausan-Matu, 2015); b) document 
cohesion flow metrics that model the structure of discourse in terms of global cohesion 
(Crossley, Dascalu, Trausan-Matu, Allen, & McNamara, 2016); c) metrics inspired from 
dialogism (Dascalu, Allen, McNamara, Trausan-Matu, & Crossley, 2017) that consider 
any text as a dialogue in which multiple points of view or voices interact and inter-
animate; and d) rhythm features inspired from prosody (Balint, Dascalu, & Trausan-
Matu, 2016b). 

The multi-layered textual complexity model behind ReaderBench is highly extensible 
and supports different languages, such as: English (Allen, Dascalu, McNamara, Crossley, 
& Trausan-Matu, 2016; Crossley, Paquette, Dascalu, McNamara, & Baker, 2016; 
Dascalu, Popescu, Becheru, Crossley, & Trausan-Matu, 2016), French (Dascalu, Dessus, 
Bianco, & Trausan-Matu, 2014; Dascalu, Stavarache, Trausan-Matu, Dessus, & Bianco, 
2014), Romanian (Dascalu, Gifu, & Trausan-Matu, 2016; Gifu, Dascalu, Trausan-Matu, 
& Allen, 2016), and Dutch (Dascalu, Westera, Ruseti, Trausan-Matu, & Kurvers, 2017). 
In addition, several languages including Spanish, Italian, and Latin are partially covered. 

At present, ReaderBench has more than a thousand textual indices for English 
language that cover: classic readability formulas that serve as baseline measures, surface 
indices (e.g., character, word, sentence and paragraph counts), syntax measures, and, 
more importantly, semantics and discourse structure indices to highlight in-depth 
comprehension processes. All the previous categories of indices are included in a multi-
layered and multi-lingual textual complexity model, and are described in detail in the 
following section. Thus, the aim of ReaderBench is to ensure a high degree of flexibility 
to adapt to different learning scenarios, playing the role of an artificial tutor that can, 
upon request at any moment, gauge multiple features of a text. To this purpose, our 
framework has been subject to extensive validations and this book chapter is focused on 
two specific studies, each centered on a different task. The first study considers perceived 
text difficulty as a function of cohesion in multi-paragraph texts. The second study is 
centered on predicting text difficulty by replicating the findings for the readability scores 
from previous studies (Crossley, Skalicky, Dascalu, Kyle, & McNamara, 2017) which 
used different tools. 

 
 

READERBENCH – A COMPREHENSIVE MULTI-LAYERED  
AND MULTI-LINGUAL TEXTUAL COMPLEXITY MODEL 

 
Figure 1 depicts an overview of our multi-layered textual complexity model which 

includes: a) the simplest surface measures that account only for the form of the text;  
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b) syntactic indices computed at sentence level which consider the distribution of 
different parts of speech or of syntactic dependencies; c) semantics and complex 
discourse structure which are mostly derived from our CNA model; and d) word 
complexity focused on individual tokens and spanning across all the previous levels by 
including different facets of the difficulty of each word taken individually, or within its 
semantic context. 

The vast majority of the aforementioned indices are language independent, and thus 
only specific semantic models need to be trained once the Natural Language Processing 
(NLP) pipeline (Manning & Schütze, 1999) is in place, whereas some indices are 
language-specific and require additional NLP techniques to be set up. ReaderBench 
includes a comprehensive NLP pipeline (Manning & Schütze, 1999) that considers:  
a) stop-word elimination, b) the reduction of inflected forms to their corresponding 
lemmas, c) named entity recognition, d) the annotation of each word with its 
corresponding part of speech (POS) tag, e) dependency parsing, and f) co-reference 
resolution. This chapter is focused on providing an overview of the English indices, 
which represent the largest subset of available textual complexity indices and are used in 
the current studies. 

 

 

Figure 1. ReaderBench multi-layered textual complexity model. 

Surface Analysis 
 
Surface analysis considers basic traits of texts derived from the initial studies of Page 

(1966, 1968) and Wresch (1993) that include statistically and easily computable proxes 
(i.e., computer automated approximations of interest) like: a) paragraph and sentence 
lengths (average values and standard deviations) in terms of characters, words or unique 
words; b) commas per sentence or paragraph; c) entropy measures (Shannon, 1948, 1951) 
at character and word levels. Character entropy is in general a language feature, i.e., it has 
similar values between texts written in the same language based on the distribution of 
individual letter. In contrast, higher entropy computed on the distribution of word stems 
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that capture the common root of related concepts, reflects a more complex text because 
more varied concepts are introduced. 

 
 

Syntax 
 
Word- and sentence-based analyses, including part of speech tagging and dependency 

parsing, play important roles by providing two different complexity assessment schemes: 
a) normalized frequencies of each part of speech and b) structural indices derived from 
the parsing tree. Although nouns and verbs are the most common POSs, our analysis is 
particularly aimed at prepositions, adjectives, and adverbs that are potentially indicative 
of a more elaborate and complex text structure. Moreover, pronouns are indicative of a 
more inter-twined and linked structure of the discourse by revealing potential pronominal 
co-references. In addition, multiple indices can be derived using the structure of the 
parsing tree (e.g., an increased number of specific semantic dependencies or a higher 
maximum depth indicate a more complex discourse structure, yielding increased textual 
complexity) (Gervasi & Ambriola, 2002).  

Entity-density features are included because the number of entities within a text 
impacts the cognitive resources needed for their understanding, which impacts text 
readability. In general, named entities introduce conceptual information required for 
contextualizing the text; thus, in order to quantify the difficulty of a text with regard to 
newly introduced concepts in a text, we compute counts of entities (unique or not) per 
paragraph or sentence, as well as the percentages of named entities that are also nouns. 

 
 

Semantics, Cohesion Network Analysis, and Discourse Structure 
 
Text cohesion relates to explicit lexical, grammatical, or semantic text cues that 

support readers in making connections among text segments and the underlying ideas. 
Cohesion characterizes a unified and connected text, with sentences and paragraphs 
related to one another using explicit cues in the text (McNamara, Graesser, & Louwerse, 
2012). Cohesion relates to humans’ perception of that text’s overall quality and 
coherence, and may be present at both local (i.e., sequential relations between 
neighboring sentences) and global (i.e., relations between paragraphs) levels (Crossley, 
Roscoe, McNamara, & Graesser, 2011; McNamara, Crossley, & McCarthy, 2010). 

ReaderBench makes extensive use of Cohesion Network Analysis (Dascalu, 
McNamara, Trausan-Matu, & Allen, 2018), which provides an in-depth view of the 
cohesive links that connect the discourse. Cohesion is viewed from a computational 
perspective as a relatedness measure between text chunks computed using multiple 
semantic models that complement one another (Dascalu, 2014). Within ReaderBench, 
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cohesion is the average score between the Wu-Palmer semantic distance in WordNet (Wu 
& Palmer, 1994) and semantic similarities measured using the following models: Latent 
Semantic Analysis (LSA; Landauer & Dumais, 1997), Latent Dirichlet Allocation (LDA; 
Blei, Ng, & Jordan, 2003), and word2vec (Mikolov, Chen, Corrado, & Dean, 2013). 
Therefore, local and global cohesion are reflected within CNA as the strength of intra- 
and inter-paragraph links extracted from the cohesion graph. 

Crossley, Dascalu, Trausan-Matu, Allen, and McNamara (2016) developed 
automated measures of global document cohesion flow based on a CNA that considers 
the adequacy of paragraph sequences – i.e., the degree to which one paragraph succeeds 
the previous one in a cohesive manner. Our cohesion flow measures consider the order of 
different paragraphs and the manner in which they are combined to hold the document 
together. A text that exhibits a high cohesion flow by linking ideas between adjacent 
paragraphs tends to be easier to comprehend. 

In addition, ReaderBench also implements the polyphonic model (Trausan-Matu, 
Stahl, & Sarmiento, 2007) inspired from dialogism in which the discourse is perceived as 
an inter-animation of different points of view (i.e., “voices”) that interact with each other. 
After identifying voices as semantic chains of related words spanning throughout the text 
(Dascalu, 2014), several textual complexity indices are computed in order to quantify the 
impact of each voice and to establish the degree of overlap between voices (Dascalu, 
Allen, McNamara, Trausan-Matu, & Crossley, 2017): a) distribution per sentence or 
paragraph, including span (distance between the last and the first occurrence of words 
from the same voice), b) recurrence (average and standard deviation of the distance 
between subsequent words pertaining to the same voice), and c) overlap measures (e.g., 
co-occurrences or mutual information). 

Related to discourse, ReaderBench accounts for three additional dimensions. First, 
pronominal resolutions are performed (Lee et al., 2011; Manning et al., 2014) and several 
complexity indices are computed including: a) the average number of co-references per 
chain, their span and inference distance, b) the average number of active co-reference 
chains per word (if more words are included in co-reference chains, the text becomes 
harder to comprehend as it is more inter-twined and more inferences need to be resolved), 
and c) the number of co-reference chains with a large span (experimentally set at 30% of 
the document length). 

Second, rhythm is an important feature of discourse (Trausan-Matu, Dascalu, & 
Rebedea, 2014). Rhythm in a text is related to its communicative purposes and genre 
(Balint, Dascalu, & Trausan-Matu, 2016a, 2016b). Similar to previous dimensions, 
multiple indices are integrated into ReaderBench, namely: a) the average number of 
stressed syllables and of rhythmic units in each sentence, b) the number of deviations 
from dominant structures divided by total number of syllabic segments, c) the rhythmic 
index (Marcus, 1970), d) the frequency of the maximum rhythmic index, e) the maximum 
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number of consecutive unstressed syllables, and f) the number of alliterations and 
assonances in a text searching sentence by sentence. 

Third, cue phrases are used to quantify the usage of different types of pronouns (e.g., 
first, second, third, interrogative, or indefinite) and connectives (e.g., conjuctions, 
contrasts, sentece linking, or conditions), thus providing insights to the structure of each 
sentence or paragraph, and its corresponding degree of complexity. Finally, specific word 
lists that capture particular semantic valences are integrated into ReaderBench, namely: 
General Inquirer (GI, http://www.wjh.harvard.edu/~inquirer/homecat.htm) (Stone, 
Dunphy, Smith, Ogilvie, & associates, 1966), Lasswell (Lasswell & Namenwirth, 1969) 
dictionary, SenticNet (Cambria, Grassi, Poria, & Hussain, 2013), Affective Norms for 
English Words (ANEW) (M. M. Bradley & Lang, 1999), Geneva Affect Label Coder 
(GALC) (Scherer, 2005), Linguistic Inquiry and Word Count (LIWC) (Pennebaker, 
Booth, & Francis, 2007), and EmoLex or NRC Word-Emotion Association Lexicon 
(Mohammad & Turney, 2013). The cue phrases and taxanomies represent a solid 
background for covering the most representative linguistic approaches relying on word 
counts. 

 
 

Word Complexity and Age of Exposure 
 
Word complexity is computed as a mix of multiple word indices, such as: a) syllable 

count, b) length of suffices and prefixes expressed in number of characters between a 
word's inflected form and its lemma or stem, c) specificity computed as the inverse 
document frequency from the training corpora, d) word polysemy count and 
average/maximum hypernym tree depth computed using WordNet, and e) our metric of 
word difficulty that considers contextualization – Age of Exposure (AoE) (Dascalu, 
McNamara, Crossley, & Trausan-Matu, 2015). Similar to Landauer, Kireyev, and 
Panaccione (2011), our goal was to create a word learning model (AoE) using LDA, an 
automated alternative for Age of Acquisition (AoA) scores – e.g., Kuperman, 
Stadthagen-Gonzalez, and Brysbaert (2012), Bird, Franklin, and Howard (2001) or 
Schock, Cortese, Khanna, and Toppi (2012) that estimate a learner's age at which a 
certain word is correctly understood. 

In addition, ReaderBench considers the following individual word complexity 
measures: a) mean syllable count per word: longer, more complex words tend to be 
perceived as being more difficult; b) mean polysemy count per word: words with multiple 
senses are more difficult and require more contextual information for disambiguation;  
c) average and maximum distance within the hypernym tree to the ontology root: more 
general words are closer to the root, whereas more specific words tend to have a longer 
path; and d) differences between the inflected form, the lemma and the stem: words with 
longer prefixes and suffixes tend to be more complex. All word indices are averaged at 
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document, paragraph and sentence levels by considering only the lemmas of content 
words (i.e., dictionary words, not included in the stop-words lists, and having as part of 
speech one of the following: noun, verb, adverb or adjective). 

 
 

PREDICTING COMPREHENSION THROUGH AUTOMATED  
TEXT ANALYSIS 

 
The following studies represent in-depth comprehension analyses performed using 

the previously presented ReaderBench textual complexity indices for English language, 
and are centered on the following research questions: 

 
1) What automated text complexity indices best capture differences in text 

cohesion? 
2) Are linguistic features predictive of judgments of text comprehension, 

processing, and familiarity? 
 
 

Study 1 – Text Cohesion 
 

Corpus 
We first selected the texts compiled by McNamara, Louwerse, McCarthy, and 

Graesser (2010). These texts were used in experiments that investigated multi-paragraph 
text cohesion. The dataset contains 19 pairs of texts (low and high cohesion texts) from 
12 different studies discourse studies. The texts (n = 38) were selected from textbooks, 
encyclopedia articles, researcher created texts, or text from books. In each case, the 
original text was manipulated by discourse processing experts to make the text more 
cohesive. In this study, we used ReaderBench indices to discriminate between the 
original texts and those texts modified to make them more cohesive. 
Statistical Analyses 

A number of pre-selection criteria were required for ReaderBench indices to be 
included in the final analysis. First, ReaderBench indices that yielded non-normal 
distributions were removed because they violated statistical assumptions. Of the original 
329 indices, this step removed 117 of the indices. A multivariate analysis of variance 
(MANOVA) was then conducted to examine which ReaderBench variables reported 
meaningful and significant differences between the original texts and the text modified by 
experts to make them more cohesive. The MANOVA was followed by a stepwise 
discriminant function analysis (DFA) using the selected ReaderBench indices that 
demonstrated significant differences between the original and modified texts. Those 
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indices that demonstrated significant differences between the two text groups and did not 
exhibit multicollinearity (r > .70) with other indices in the set were used in the DFA. In 
the case of multicollinearity, the index demonstrating the largest effect size was retained 
in the analysis. The DFA was used to develop an algorithm to predict group membership 
through a discriminant function co-efficient. A DFA model was first developed for all of 
the original and modified texts. This model was then used to predict group membership 
of the original and modified texts using leave-one-out-cross-validation (LOOCV) in order 
to ensure that the model was stable across the dataset. 

 
 

Results 
 

MANOVA 
A MANOVA was conducted using ReaderBench indices as the dependent variables 

and the original and modified texts as the independent variables. The strongest predictors 
that were not multicollinear with other indices were related to local cohesion indices and 
syntactic complexity indices. These 12 indices showed medium to strong effect sizes (see 
Table 1 for the MANOVA results). These indices were used in the subsequent DFA. 

 
Discriminant Function Analysis 

A stepwise DFA using the indices selected through the MANOVA retained two 
variables from the 12 variables selected through the MANOVA as predictors. The 
remaining ReaderBench variables were removed. The two retained variables were related 
to local cohesion and syntactic complexity (see Table 2 for indices and unstandardized 
coefficients). 

The results demonstrate that the DFA using these two indices correctly allocated 30 
of the 38 texts in the total set, χ2(df = 1) = 12.880, p < .001, for an accuracy of 78.9%. 
The leave-one-out cross-validation (LOOCV) results reported the same classification 
accuracy (see the confusion matrix reported in Table 3 for results). The Cohen’s Kappa 
measure of agreement between the predicted and actual completion rate was .79, 
demonstrating substantial agreement. 

 
Table 1. Study 1 – MANOVA results 

 
Index F η2 
Avg. simple subordinating conjunctions per sentence 17.561** .328 
Avg. nominal subject syntactic dependencies per sentence 15.572** .302 
Avg. indefinite pronouns per sentence 9.201* .204 
Avg. marker syntactic dependencies per paragraph 9.002* .200 
Avg. verbs per sentence 7.788* .178 
Avg. nominal subject syntactic dependencies per paragraph 6.692* .157 
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Avg. adverbial clause modifier syntactic dependencies per sentence 6.128* .145 
Avg. sentence voice mutual information (dialogism) 5.746* .138 
Avg. clausal complement syntactic dependencies per paragraph 5.176* .126 
Avg. sentence relevance score 5.063* .123 
Avg. clausal complement syntactic dependencies per sentence 4.937* .121 
Avg. lexical chains per paragraph 4.782* .117 

* p < .050, ** p < .001. 

 
Table 2. Study 1 – Discriminant Function Coefficients 

 
Index Coefficient 
Avg. simple subordinating conjunctions per sentence 4.972 
Avg. nominal subject syntactic dependencies per sentence 2.579 

Constant = -5.578. 

 
Table 3. Study 1 – Confusion matrix for DFA classifying texts 

 
  Predicted 
  Actual Original Modified 
Whole set Original 16 3 

Modified 5 14 
LOOCV Original 16 3 

Modified 5 14 

 
 

Discussion 
 
The results of the DFA indicated that two ReaderBench indices were able to strongly 

distinguish between original texts and texts modified to increase cohesion. The results of 
the study demonstrate that the latter texts include more subordinating conjunctions and 
nominal subject dependencies. The first index is related to local cohesion (i.e., cohesion 
that connects smaller text segments such as sentences and phrases) and replicates findings 
in the original study which found that local cohesion in terms of lexical and semantic  
 
overlap between sentences was a strong predictor of texts with increased cohesion 
(McNamara, Louwerse, McCarthy, & Graesser, 2010). The results also replicated a 
second study that used this dataset (Crossley, Kyle, & McNamara, 2016) which reported 
that texts modified to increase cohesion have an increased number of simple 
subordinators, reason and purpose connectives, and causal connectives. The second index 
that was predictive in this study (nominal subject dependencies) provides new 
information about increased text cohesion that was not evaluated in either McNamara, 
Louwerse, McCarthy, and Graesser (2010), or Crossley, Kyle, and McNamara (2016). 
Similar to McNamara et al., this finding indicates that the process of increasing text 
cohesion may have unintended effects on syntactic complexity. While relating to the 
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ReaderBench indices, increasing connections between sentences and phrases (and 
inherently text cohesion) leads to an increase in the number of syntactic dependencies 
related to the head nouns (i.e., the number of phrases that the head noun controls). As an 
example, if two sentences such as (1) and (2): 

 
1) The woman went to the store. 
2) She needed milk. 
 
are combined using a simple subordinator such as because, this will result in the 

sentence “The woman went to the store because she needed milk.” While the cohesion in 
this sentence may increase, it seems to come at the cost of increased syntactic 
complexity. Nonetheless, added cohesion comes with substantial comprehension benefits 
for all ages, providing some evidence against theories that focus on processing resources 
(e.g., working memory), in contrast to theories of discourse comprehension (McNamara 
et al., 2010, 2014). 

In terms of machine learning accuracy, the indices reported by ReaderBench led to a 
slightly higher classification accuracy than those reported by Coh-Metrix in the original 
study (McNamara, Louwerse, McCarthy, & Graesser, 2010) and the Tool for the 
Automatic Analysis of Cohesion (TAACO), which was used in the Crossley, Kyle, and 
McNamara (2016) study. For instance, the accuracy reported in McNamara at el. was 
76% while the ReaderBench analysis was 79%. Lastly, the Coh-Metrix model reported in 
McNamara et al. reported the results for only the training set, which may have increased 
the reported accuracy. The accuracy found in Crossley et al. was lower than both the 
current ReaderBench analysis and Coh-Metrix model at 68%; however, it should be 
noted that Coh-Metrix relied on cohesion and word frequency, Crossley et al. only used 
cohesion indices, while the ReaderBench model included lexical, syntactic, semantic, and 
cohesion-centered indices. 

 
 
 

Study 2 – Pairwise Text Comprehension Comparisons 
 

Corpus 
This study uses 150 news articles from the Guardian Weekly publication which were 

first reported by Crossley, Skalicky, Dascalu, Kyle, and McNamara (2017). The corpus 
included 50 original news articles, 50 that were simplified to the beginning level, and 50 
simplified to the intermediate level. The articles were truncated using original paragraph 
breaks in order to ensure an approximately length of 150 words. Afterwards, these texts 
were ranked in terms of readability using the Mechanical Turk crowdsourcing service 
available through Amazon.com. Overall, 307 participants were recruited, and each 
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evaluator provided approximately 10 pairwise comparisons of two texts with regards to 
text comprehension (which text was easier to understand), text processing (which text 
was quicker to read), and text familiarity (which addressed more familiar or 
knowledgeable topics). Crossley, Skalicky, Dascalu, Kyle, and McNamara (2017) applied 
a Bradley-Terry model (R. A. Bradley & Terry, 1952) to the 3,011 pairwise comparisons, 
for each of the previous three ranking criteria, to generate an evaluation of the text’s 
difficulty in terms of its likelihood to be more difficult than all other texts. The Bradley-
Terry model provides a global ranking of entries based on multiple individual pairwise 
comparisons (which in some cases can reflect opposite considerations of the raters); after 
maximizing the likelihood of the observed data and reaching convergence, texts that take 
longer to process are scored higher. 

 
Statistical Analysis 

Our interest in this ReaderBench analysis is to replicate the findings for the 
readability scores (i.e., the processing scores) reported by Crossley et al. (2017). To this 
end, we developed a regression model to predict text processing ratings derived from the 
Bradley-Terry models. Prior to the analysis, we removed any variables that violated a 
normal distribution to better assure that residuals in the regression model were distributed 
normally. Pearson correlations were then conducted on the remaining variables to 
determine whether they were meaningfully correlated with judgments of text processing. 
Any variables that did not report at least a small effect size (i.e., r ≥ .100) with the text 
processing scores were removed from the analysis. The remaining variables were 
checked for multicollinearity to ensure that the final model consisted only of unique 
indices. For each pair of variables with absolute correlation values of r >= .699, only the 
variable with the highest correlation with text processing scores was retained. These 
variables were entered into a stepwise regression (bidirectional) using the stats package in 
R (R Core Team, 2013). Results were checked for significance multicollinearity using 
variance inflation values (VIF). The final model was checked for normality of residual, 
homoscedasticity, and constant error variance to ensure assumptions of linearity were 
met. The final model was then tested using 10-fold cross-validation through the caret 
package (Kuhn, 2008) available in R. The method for inclusion into the model was also 
stepwise. Values reported for the model were co-efficient strengths and direction, relative 
importance metrics (predictors explained variance as non-negative contributions) using 
the relaimpo package (Grömping, 2006), and t and p values. The cross-validated model 
was also checked for all assumptions of linearity. 

 
 

Results 
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We calculated correlations between the selected linguistic indices and the text 
processing ratings generated by the Bradley-Terry model. After controlling for normal 
distribution, effect sizes, multicollinearity, and multiple comparisons, the text processing 
judgment analysis included 51 linguistic indices. Correlations are presented in Table 4. 

To analyze which linguistic features predicted the text processing ratings, we 
conducted a stepwise regression analysis using the selected linguistic indices as the 
independent variables. This yielded a significant model, F(9, 140) = 10.440, p < .001, 
R2 = .402. Nine variables were significant predictors of the text comprehension ratings. 
These nine variables, when used in a 10-fold cross-validation model yielded a model with 
an R2 = .301 and RMSE = .005 (see Table 5 for coefficients, t values, and p values for the 
model).  

 
 

DISCUSSION 
 
A unique feature of this analysis and the database is that it focused on text processing 

and not text comprehension (i.e., how well a text is understood). Most readability studies 
focus on comprehension (e.g., Kate et al., 2010) and not processing even though most 
theories of text readability include text processing within their definition (Chall & Dale, 
1995; Newbold & Gillam, 2010). Thus, this study helps to build on the few studies that 
focus on text processing as a function of text readability (cf. Crossley et al., 2017). 

The results of the regression model indicate that ReaderBench variables related to 
sentence length, cohesion, pronoun use, dialogism, and syntactic dependencies were all 
related to text processing speed. The coefficients suggest that news articles that took 
longer to read had longer sentences, had a greater number of referents per paragraph, had 
great paragraph cohesion, and were more syntactically complex. Texts were also more 
quickly read if they had greater paragraph to text cohesion. These findings support 
models of text readability which postulate that syntactic and discourse features are 
important components of readability (Just & Carpenter, 1980; Koda, 2005) and that 
greater complexity in these features will lead to greater difficulty in text processing. 

 
Table 4. Study 2 – Correlations with reading processing scores 

 
Index r p 
Avg. nouns per sentence .429 <.001 
Average sentence length expressed in characters .411 <.001 
Avg. case syntactic dependencies per sentence .357 <.001 
Avg. compound syntactic dependencies per sentence .356 <.001 
Avg. verbs per sentence -.328 <.001 
Avg. rhythmic units per sentence .297 <.001 
Avg. sentence-paragraph cohesion using Wu-Palmer semantic distance in WordNet .289 <.001 
Avg. distance between lemma and word stems (characters) .282 <.001 
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Index r p 
Avg. punctuation syntactic dependencies per sentence .278 <.001 
Avg. distance between words and corresponding stems (characters) .273 <.001 
Avg. word AoA scores (Schock, Cortese, Khanna, & Toppi, 2012) per paragraph -.264 <.001 
Avg. sentences per paragraph .263 <.001 
Avg. copula syntactic dependencies per paragraph -.255 <.010 
Avg. adjectives per sentence .238 <.010 
Avg. word AoE scores using index above threshold (0.3) per paragraph .236 <.010 
Avg. unique pronouns per paragraph .231 <.010 
Avg. word AoA scores (Bird, Franklin, & Howard, 2001) per sentence -.226 <.010 
Avg. sentence-paragraph cohesion using cosine similarity in LSA vector spaces .225 <.010 
Avg. sentence-paragraph cohesion using the inverse Jensen-Shannon dissimilarity between LDA 
probability distributions 

.214 <.010 

Avg. coordination syntactic dependencies per paragraph .213 <.010 
Avg. open clausal complement syntactic dependencies per sentence -.212 <.010 
Avg. commas per sentence .210 <.010 
Avg. coordinating conjunctions per paragraph .185 <.050 
Avg. word AoE scores using the inverse linear regression slope per paragraph .178 <.050 
Avg. word AoA scores (Bird, Franklin, & Howard, 2001) per paragraph -.174 <.050 
Avg. logical connectors per paragraph .168 <.050 
Avg. co-references per chain .164 <.050 
Avg. distribution of voices per sentence (dialogism) -.163 <.050 
Avg. voice entropy per paragraph (dialogism) .163 <.050 
Avg. sentence linking connectors per paragraph .159 <.050 
Avg. word AoE scores using the inverse linear regression slope per sentence -.145 <.050 
Avg. document flow cohesion using cosine similarity in LSA vector spaces and maximum 
criterion 

.143 <.050 

Avg. paragraph-document cohesion using cosine similarity in LSA vector spaces -.141 <.050 
Avg. document flow cohesion using the Jensen-Shannon dissimilarity between LDA probability 
distributions and maximum criterion 

-.141 <.050 

Maximum flow ordered sequence using cosine similarity in word2vec spaces and above mean 
plus standard deviation criterion 

-.140 <.050 

Avg. word polysemy count (only content words) .137 <.050 
Maximum flow ordered sequence using the Wu-Palmer semantic distance in WordNet and above 
mean plus standard deviation criterion 

-.137 <.050 

Maximum flow ordered sequence using the Jensen-Shannon dissimilarity between LDA 
probability distributions and above mean plus standard deviation criterion 

-.131 <.050 

Standard deviation of sentence relevance scores -.129 <.050 
Spearman correlation of flow versus initial ordering using the cosine similarity in LSA vector 
spaces and maximum criterion 

.129 <.050 

Maximum flow ordered sequence using the Jensen-Shannon dissimilarity between LDA 
probability distributions and maximum criterion 

.126 <.050 

Avg. simple subordinating conjunctions per paragraph -.120 <.050 
Avg. stressed syllables in rhythmic unit -.118 <.050 
Avg. sentence-paragraph cohesion using cosine similarity in word2vec spaces .117 <.050 
Avg. syllables in a rhythmic unit .117 <.050 
Absolute position accuracy based on topological sort using cosine similarity in LSA vector 
spaces and above mean plus standard deviation criterion 

-.113 <.050 

Maximum voice span (dialogism) .108 <.050 
Avg. paragraph adjacency cohesion using the Jensen-Shannon dissimilarity between LDA 
probability distributions 

.103 <.050 
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Table 5. Study 2 – Summary of multiple regression model for pairwise  
comparisons (text processing) 

 
 Entry Relative importance Coefficient t p 
1 Average sentence length expressed in characters 0.2455 0.001 3.110 .002 
2 Avg. unique pronouns per paragraph 0.1594 0.011 4.260 <.001 
3 Avg. case syntactic dependencies per sentence 0.1591 0.001 1.790 .076 
4 Avg. punctuation syntactic dependencies per sentence 0.1014 0.004 2.000 .047 
5 Average paragraph adjacency cohesion using the 

Jensen-Shannon dissimilarity between LDA 
probability distributions 

0.0746 0.001 3.150 .002 

6 Avg. paragraph-document cohesion using cosine 
similarity in LSA vector spaces 

0.0706 -0.003 -3.040 .003 

7 Avg. co-references per chain 0.0687 0.001 2.640 .009 
8 Avg. voice entropy per paragraph (dialogism) 0.0656 0.001 2.500 .013 
9 Maximum voice span (dialogism) 0.0552 0.001 2.390 .018 

Note: Constant = -0.062. 

 
In comparison to Crossley et al. (2017), ReaderBench indices alone accounted for 

less variance (i.e., 30% as compared to 47% of the variance) but, again, differences 
between the two studies can explain these disparities. For instance, Crossley et al. used 
NLP tools that reported on phrasal indices, one of which (tri-gram incidence) explained 
20% of the text processing variance in the original study. Such measures are not currently 
included in ReaderBench. 

The ReaderBench indices in this study also make unique contributions to our 
understanding of text processing. For instance, to our knowledge, the number of unique 
pronouns per paragraph, coupled with the number of co-references per chain, has not 
been a significant predictor of text processing in previous studies. This finding suggests 
that texts with a greater number of referents are more difficult to process. While unique, 
the finding does overlap with the model reported in Crossley et al. (2017) which reported 
that a greater number of entities per sentence (e.g., people’s names, venues, 
organizations) leads to slower processing. Moreover, indices derived from dialogism 
sustaining the diversity (i.e., entropy of different points of view) and spread (i.e., span) of 
ideas were also predictive, in tight connection with the indices related to global cohesion. 
Lastly, this ReaderBench analysis provides evidence that syntactic complexity (i.e., 
punctuation and case syntactic dependencies per sentence) in a text can decrease text 
processing speed. While theorized, little evidence has supported this assertion. 

 
 

CONCLUSION 
 
To our knowledge, ReaderBench is a unique open-source, multilingual framework, 

which provides a wide range of textual complexity indices and that can be used to 
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perform various text cohesion and in-depth discourse analyses. It combines several 
semantic and discourse analysis techniques from Natural Language Processing into CNA 
and implements the ideas of the polyphonic model together with its associated ideas, such 
as rhythm and interanimation. The tool and the corresponding web services are available 
both online (http://readerbench.com) and for download as a desktop client that includes 
additional functionalities to the ones published online (http://readerbench.com/ 
deployment). 

The results from the first study indicate that the textual complexity indices from 
ReaderBench can differentiate texts among different levels of cohesion that plays an 
important role in comprehension. The second study provides evidence for ReaderBench's 
wide applicability with respect to the high number of significantly correlated textual 
complexity indices, most of which are centered on semantics and discourse. These 
findings demonstrate ReaderBench’s versatility and generalizability to multiple contexts 
(Botarleanu, Dascalu, Sirbu, Crossley, & Trausan-Matu, 2018). As such, learners and 
educators can potentially use the ReaderBench framework across multiple pedagogical 
scenarios. 
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