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Introduction

Our purpose in this short communication is to illustrate the equilibrium response of 2nd grade elastic cylinders in axial tension and compression. The cylinder is regarded as a surface composed of intersecting fibers that offer elastic resistance to stretching, flexure and twist.

Conventional plate and shell theories account for elastic resistance of the surface to strain, twist and normal bending. In the present model, discussed comprehensively in [START_REF] Giorgio | Pattern formation in the threedimensional deformations of fibered sheets[END_REF], a non-standard elastic resistance to geodesic bending is also taken into account (see also [START_REF] Misra | Isola, Pantographic metamaterials show atypical Poynting effect reversal[END_REF]). This latter mode of bending is the source of a strain-gradient effect, which is not present in the constitutive equations of conventional theories of plates and shells but which is nevertheless non-negligible in fiber sheets. The general topic is the subject of extensive current research on pantographic sheets. We refer to [START_REF] Dell'isola | Pantographic metamaterials: an example of mathematically driven design and of its technological challenges[END_REF] for a comprehensive review and bibliography.

We assume the surface to be in a natural, relaxed state in a plane configuration wherein the fibers are orthogonal, straight and untwisted. The surface is then mapped to a right circular cylinder capped by rigid rings at its ends, and subsequently extended or compressed in the presence of various boundary conditions. The predicted deformations are obtained using the commercial software package COMSOL Multiphysics T M . This code furnishes a particularly convenient platform for our purpose. In particular, it requires as input only the explicit expression for the strain-energy function.

The program then constructs an associated weak form of the relevant equilibrium equations together with its finite-element implementation. Applications of the finite element method specific to second-gradient or micromorphic elasticity [START_REF] Barchiesi | Mechanical metamaterials: a state of the art[END_REF][START_REF] Kim | Gradient elasticity theory for fiber composites with fibers resistant to extension and flexure[END_REF][START_REF] Altenbach | On generalized Cosserat-type theories of plates and shells: a short review and bibliography[END_REF][START_REF] Khakalo | Modelling size-dependent bending, buckling and vibrations of 2d triangular lattices by strain gradient elasticity models: applications to sandwich beams and auxetics[END_REF][START_REF] Abali | Three-dimensional elastic deformation of functionally graded isotropic plates under point loading[END_REF][START_REF] Khludnev | Delaminated thin elastic inclusions inside elastic bodies[END_REF] are discussed in [START_REF] Maurin | Isogeometric analysis for nonlinear planar pantographic lattice: discrete and continuum models[END_REF][START_REF] Greco | A reconstructed local B formulation for isogeometric Kirchhoff-Love shells[END_REF][START_REF] Greco | An efficient blended mixed B-spline formulation for removing membrane locking in plane curved Kirchhoff rods[END_REF][START_REF] Balobanov | Locking-free variational formulations and isogeometric analysis for the Timoshenko beam models of strain gradient and classical elasticity[END_REF][START_REF] Cazzani | Constitutive models for strongly curved beams in the frame of isogeometric analysis[END_REF][START_REF] Niiranen | Variational formulations, model comparisons and numerical methods for Euler-Bernoulli microand nano-beam models[END_REF][START_REF] Khakalo | Isogeometric analysis of higher-order gradient elasticity by user elements of a commercial finite element software[END_REF].

In Section 2 we recall the formulation introduced in [START_REF] Giorgio | Pattern formation in the threedimensional deformations of fibered sheets[END_REF] for the strain-energy function together with the underlying kinematical framework. This is reduced, in Section 3, to a one-dimensional model for axisymmetric deformations, with the axial coordinate along the reference cylinder playing the role of the single space dimension. Section 4 concludes with a presentation and discussion of numerical examples.

Strain-energy function, axisymmetry

Our objective is to determine the position field r(u 1 , u 2 ) of the surface in equilibrium, where u α are the Cartesian coordinates of a material point on a plane.

These are taken to be u 1 = z and u 2 = R θ, where z ∈ [-L, L] is the axial coordinate on the right circular cylinder, of radius R, onto which the plane is mapped, and θ ∈ [-π, π] is the azimuthal angle on the cylinder.

Thus the plane configuration of the sheet is a rectangle of length 2L and width 2πR.

The model is based on the strain-energy function [START_REF] Giorgio | Pattern formation in the threedimensional deformations of fibered sheets[END_REF][START_REF] Giorgio | Buckling modes in pantographic lattices[END_REF] 

W =w( L , M , J) + 1 2 A L |L α L β r ,αβ | 2 + 1 2 A M |M α M β r ,αβ | 2 + 1 2 A Γ |L α M β r ,αβ | 2 , (1) 
where A L , A M , A Γ are material constants, L α and M α (α = 1, 2) are the Cartesian components of the unit tangent vectors to the orthogonal fibers on the plane; and

L =E αβ L α L β , M = E αβ M α M β , J = |L α M β r ,α × r ,β | (2) 
are the extensional fiber strains and the areal dilation, where

E αβ = 1 2 (r ,α • r ,β -δ αβ ), (3) 
in which δ αβ is the Kronecker delta, is the Lagrange strain. Here and elsewhere, r ,α = ∂r/∂u α and r ,αβ =

∂ 2 r/∂u α ∂u β .
The second and third terms in Eq. ( 1) attribute energy to the fiber stretches and their gradients in the directions of the fibers, and to the normal and geodesic bending of the fibers. The fourth term accounts for twist of the fibers as the surface deforms, and for the cross derivatives of the fiber stretches in directions orthogonal to the fibers. The latter derivatives induce stretch along parallel fibers in a small neighborhood of a material point. We refer the interested reader to [START_REF] Giorgio | Pattern formation in the threedimensional deformations of fibered sheets[END_REF][START_REF] Giorgio | Buckling modes in pantographic lattices[END_REF] for a full discussion of the physical significance of the various terms represented in Eq. ( 1).

For the strain-dependent term in Eq. ( 1) we assume [START_REF] Giorgio | Pattern formation in the threedimensional deformations of fibered sheets[END_REF][START_REF] Giorgio | Buckling modes in pantographic lattices[END_REF] 

w( L , M , J) = 1 2 (E L 2 L + E M 2 M ) -G(ln J + 1 -J), (4) 
where E L,M and G are positive constants. This energy does not include a term proportional to L M and therefore does not exhibit a Poisson effect with respect to the fiber axes. The term involving J penalizes fiber collapse (J → 0) by imposing unbounded growth of the energy, whereas the remaining terms are appropriate for smallto-moderate fiber strains.

In this work we assume the fibers to be straight on the reference plane and oriented at ±45 • to the edges of the rectangle, with

L 1 = L 2 = √ 2 2 and M 1 = -M 2 = - √ 2 2 . (5) 
We seek axisymmetric deformations that map the cylinder to the surface of revolution described by

r = r(z)e r (θ) + ξ(z)k, (6) 
where r and ξ are the radial and axial coordinates of the circle z = const. of material points on the cylinder, k is a unit vector aligned with the axis of the cylinder and e r (θ) is the radial unit vector in the cross section of the cylinder at azimuth θ.

One-dimensional formulation

A straightforward calculation furnishes

r ,1 = r e r + ξ k, r ,2 = r R e θ (7) 
and

r ,11 = r e r + ξ k, r ,22 = - r R 2 e r , r ,12 = r ,21 = r R e θ , (8) 
where (•) = d(•)/dz and e θ = k × e r is the azimuthal unit vector in a cross-sectional plane.

From these we obtain the fiber strains

L = M = 1 2 (E 11 + E 22 ), (9) 
where

E 11 = 1 2 (r ) 2 + (ξ ) 2 -1 and E 22 = 1 2 r R 2 -1 , (10) 
whereas E 12 = 0, and the surface dilation

J = r R (r ) 2 + (ξ ) 2 1/2 , (11) 
together with

|L α L β r ,αβ | 2 = |M α M β r ,αβ | 2 = 1 4 r - r R 2 2 + 4 r R 2 + (ξ ) 2 (12) 
and

|L α M β r ,αβ | 2 = 1 4 r + r R 2 2 + (ξ ) 2 . (13) 
Substitution into Eq. ( 1) yields a strain-energy function of the form W = W (r, r , r , ξ , ξ ). ( 14)

Examples

All examples pertain to a cylinder of radius R = 1 cm and length L = 10 cm. We assume the function ξ(z) 

to
ξ(L + h) -ξ(L) = hξ (L) + o(h), (15) 
whereas the rigidity of the collar implies that ξ(L + h)ξ(L) = h. Our boundary condition provides the leadingorder approximation to this condition for small h. Similar reasoning justifies the boundary condition r (L) = 0.

This ensures that r(L + h) = r(L) at leading order.

Figures 1 and2 depict the deformed meridians in equilibrium; i.e., plots of normalized r vs. ξ, corresponding to imposed axial extension or compression.

These exhibit a local effect associated with the boundary conditions, while in the interior of the sheet the radius approaches a nearly uniform value. This stands in contrast to the classical necking response of a pure membrane model in tension, in which the membrane radius decreases monotonically as the symmetry plane z = 0 is approached. However, pure membrane theory is not appropriate in the present circumstances as it does not account for the higher-gradient effects associated with fiber bending and twisting resistance. For small compressive axial displacement, we predict a reduction in radius relative to its reference value. The radius is seen to increase as the axial displacement is increased. Presumably this transition to a deformation mode in which the radius is larger and the fiber curvatures are smaller serves to lower the overall energy and may be associated with post-buckling response. This conclusion is not definitive, however, as we have not conducted an analysis of potential bifurcation.

A perspective view of the compressed cylinder, showing the deformed fiber trajectories, is provided in Fig- 
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 712 Figure 1: Tension test with fully clamped boundary conditions.Each color refers to a different imposed axial displacement.

ure 3 .Figure 3 :Figure 4 :Figure 5 :

 3345 Figure 3: Perspective view of the compressed cylinder. Lengths are normalized with respect to L.

Figures 4 and 5

 5 Figures 4 and 5 depict the deformed surface under tension and compression with zero double force. The response is very similar to that of the fully clamped cylinder, but minor quantitative differences are observable.In general the double force is a vector µ[START_REF] Steigmann | Equilibrium of elastic lattice shells[END_REF] which is given, in the present circumstances, by
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