
HAL Id: hal-01870621
https://hal.science/hal-01870621v1

Submitted on 8 Sep 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Free-walking 3D pedestrian large trajectory
reconstruction from IMU sensors

Haoyu Li, Stéphane Derrode, Lamia Benyoussef, Wojciech Pieczynski

To cite this version:
Haoyu Li, Stéphane Derrode, Lamia Benyoussef, Wojciech Pieczynski. Free-walking 3D pedestrian
large trajectory reconstruction from IMU sensors. EUSIPCO 2018: 26th European Signal Processing
Conference, Sep 2018, Rome, Italy. pp.657-661, �10.23919/EUSIPCO.2018.8553462�. �hal-01870621�

https://hal.science/hal-01870621v1
https://hal.archives-ouvertes.fr


Free-walking 3D Pedestrian Large Trajectory
Reconstruction from IMU Sensors

Haoyu Li, Stéphane Derrode
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Abstract—This paper presents a pedestrian navigation algo-
rithm based on a foot-mounted 9-DOF Inertial Measurement
Unit (IMU), which provides tri-axial accelerations, angular rates
and magnetics. Most of algorithms used worldwide employ Zero
Velocity Update (ZUPT) to reduce the tremendous error of
integration from acceleration to displacement. The crucial part
in ZUPT is to detect stance phase precisely, a cyclic left-to-right
style Hidden Markov Model is introduced in this work which
is able to appropriately model the periodic nature of signals.
Stance detection is then made unsupervised by using a suited
learning algorithm. Then orientation estimation is performed
independently by a quaternion-based method, a simplified error-
state Extended Kalman Filter (EKF) assists trajectory recon-
struction in 3D space, neither extra method nor prior knowledge
is needed to estimate the height. Experimental results on large
free-walking trajectories show that the proposed algorithm can
provide more accurate locations, especially in z-axis compared
to competitive algorithms, w.r.t. to a ground-truth obtained using
OpenStreetMap.

Index Terms—Pedestrian navigation, Inertial sensor, Hidden
Markov model, Kalman filter, Stance detection.

I. INTRODUCTION

In recent years, Pedestrian Navigation System (PNS) using
a foot-mounted IMU sensor has been investigated extensively.
IMUs have great advantages as they are small and can be
worn on the body. It measures motion kinematic information
such as acceleration, angular rate and magnetics, so that it is
theoretically possible to transfer the signals from the sensor
frame to the earth frame, also called “global frame”, based
on the sensor orientation, and then to compute the velocity
and displacement of motion. Unfortunately, a simple numer-
ical integration of acceleration to obtain the displacement
suffers from a tremendous error, which is mainly caused
by accelerometer noise and numerical integration. Therefore,
ZUPT was then developed and showed great performances in
reducing the cumulative double integration errors. The idea
behind ZUPT is the following: when a person is walking, his
feet alternatively swing in the air and step on the ground,
so that his foot velocity is zero when it is attached to the
ground. The period during which the velocity is zero is called
“stance phase”. Foxlin [1] firstly proposed an error-state EKF-
aided ZUPT algorithm for PNS, which exploits the periodical
stance phases to reduce both velocity and displacement errors
for a much better precision of position. From this work,
numerous strategies were then proposed that mainly enrich the

measurement vector of EKF, by using for examples angular
rate [2] or digital compass [3].

State-of-the-art algorithms on using an EKF-aided ZUPT
algorithm allow to precisely reconstruct the trajectory in X-Y
plane, also called horizontal plane, but fail in reconstructing
the z-axis as they have huge bias in estimating the height.
So getting reliable reconstructed trajectory in 3D space re-
quires extra method for robust height estimation. Y. Hsu et
al. [4] used a Probabilistic Neural Network (PNN) classifier
to identify and count the number of steps climbed. The height
can then be estimated assuming that the height of each stair
is known, which is limited. Y. Liu et al. [5] proposed a floor
identification method for height estimation, based on a prior
knowledge of buildings. SK Park et al. [6] proposed a height
compensation algorithm by estimating road inclination angle.
Also, we can also cite fusion algorithms of inertial sensor data
with extra sensors (barometer: [7], [8], and WI-FI: [9]). Hence,
a large majority of works depend on some prior knowledge of
the environment or on some additional sensors to assist height
estimation.

This paper proposes a new EKF-aided ZUPT based 3D PNS
algorithm with only one 9-DOF IMU sensor. By introducing a
decomposed Gradient Descent Algorithm (GDA) based quater-
nion estimation method, the walking orientation of sensor is
computed independently from the displacement. Stance phases
are then detected by a cyclic Left-to-Right Hidden Markov
Model (LR-HMM), so that the EKF-aided ZUPT allows to
compensate for the integration error. The precision of the
algorithm has been evaluated through long walks down the
valley. The remaining of the paper is organized as follows.
Section II describes the sensor used and the structure of the
proposed PNS algorithm. Section III then explains how the
independent quaternion estimation method is developed and
works within the PNS. Section IV describes the LR-HMM
based stance detection method, and a simplified error-state
EFK is introduced. Results of experiments are proposed in
Section V.

II. PEDESTRIAN NAVIGATION SYSTEM

The PNS is based on one 9-DOF IMU sensor from Shim-
mer Sensing 1 with 100Hz sampling rate. The scale of ac-

1. more details in manufacturer’s site http://www.shimmersensing.com/
images/uploads/docs/ConsensysPRO Spec Sheet v1.1.0.pdf



Figure 1: Up: Shimmer3 sensor and its placement on a shoe.
Down: Structure of PNS algorithm.

celerometers, gyroscopes and magnetometers are set to ±8g,
1000deg/s and 2.5Ga respectively. The data is stored in the
embedded SD card and retrieved after experiments. The sensor
is placed on a foot as shown in Fig. 1. The trajectory is
represented in the North-West-Up (NWU) earth frame, and
the original point of the earth frame is set to the starting point
of walking.

The entire PNS algorithm follows the framework of
Foxlin [1], see Fig. 1. It is mainly composed of two modules,
the ZUPT and INS (Inertial Navigation System):

— The ZUPT module takes data collected from the ac-
celerometers and gyroscopes. Stance detection is firstly
operated. Then the error-state EKF updates the velocity
error δv and displacement error δr according to the
result from stance detection.

— The INS module has two main steps. First, it computes
orientation by a quaternion method, which is based on
a decomposed GDA. Second, it transfers the measured
acceleration from the sensor frame (s) to the earth frame
(e), for the use of integration to obtain velocity and
displacement.

At last, velocity and displacement are compensated by δv and
δr from ZUPT module. Compared to many works of PNS

[1] [4] [10], the main difference comes from the separation
of orientation estimation with the error-state EKF, which will
provide more precision to the trajectory reconstruction, as
explained in Section III.

III. INERTIAL NAVIGATION SYSTEM

Let us detail some aspects of the INS.

A. Magnetic Disturbance Detect

The magnetic field can be easily affected by other mag-
netic sources. Therefore, it is necessary to detect mag-
netic disturbance before estimating orientation. If em =
[emx,

emy,
emz]ᵀ, the measured magnetic field in the earth

frame coordinates, satisfies the two criterions below, then the
magnetic measurement cannot be used directly (see below).

| em− eb |
| eb |

≥ ε (1)∣∣∣∣arctan (emx/
emz)− arctan (ebx/

ebz)

arctan (ebx/ebz)

∣∣∣∣ ≥ ε, (2)

in which the earth magnetic field eb = [ebx, 0,
e bz]ᵀ is

supposed to be known. The threshold ε is set to 0.2 in this
work.

B. Orientation Estimation

Let s
eq̂ = [q̂0, q̂1, q̂2, q̂3]ᵀ, | seq̂ |= 1, denotes an estimated

quaternion used to transfer coordinates from the earth frame
to the sensor frame. A simple way to compute quaternion
is integrating from its differential s

eq̇, which is computed
from angular rate. In this work, quaternion from the simple
integration is denoted as s

eqω,n, ω and n respectively indicate
the angular rate and time epoch. Quaternion is related to Euler
angles, ie. yaw ψ, pitch θ and roll φ, [11] introduced the con-
version from quaternion to Euler angles, (ψ̂, θ̂, φ̂) = h (seq̂).

Since gyroscopes have drift and noise, the quaternion in-
tegration error will inevitably increase as time elapses. So,
[12] propose a GDA-based quaternion estimation method as a
guess to reduce the drift, if the time sampling interval is small
enough. Their method is based on two objective functions
related to acceleration and magnetic, fg and fb respectively,
and on their corresponding Jacobian, Jg and Jb respectively.
fb and Jb use the normalized earth magnetic field as a refer-

ence of north, the x-axis of the earth frame. If no disturbance is
detected, the local earth magnetic field is referred to as the x-
axis of the earth frame. Once a disturbance is confirmed by the
method in section III-A at time epoch n, it regards emn|seq̂n−1

as the reference of the x-axis of the earth frame, emn|seq̂n−1

represents the magnetic measurement at time n that transferred
into the earth frame by s

eq̂n−1. It is because that magnetic
measurement will consist of extra magnetic resources once eb
is interfered, a change in yaw angle is easier to be estimated
if the new combined magnetic field is referred to as the x-axis
of the earth frame. Therefore, transferring disturbed magnetic
measurement back to the earth frame according to s

eq̂n−1 will
be an appropriate option.



The basic GDA-based quaternion estimation method merges
the two objective functions into one. This may provide good
estimation when the sensor is static or moving slowly, but may
have bias when there is a large acceleration. It is because that
the objective function for acceleration regards the normalized
acceleration measurement as a reference of gravity g, different
extents of motions may lead to different gradient values even if
the objective function for magnetic is the same. It means that
fg is influenced by acceleration and angular rate, but fb is only
influenced by angular rate. Therefore, the gradient quaternion
estimation needs to be computed separately:

s
eq̂∇g,n

= s
eq̂n−1 − µn

JT
g fg

‖ JT
g fg ‖

, (3)

s
eq̂∇b,n

= s
eq̂n−1 − µn

JT
b fb

‖ JT
b fb ‖

, (4)

where µn = α ‖ s
eq̇n ‖ ∆t, α > 1 is a ratio for the gradient,

∆t is the sampling interval. s
eq̂∇g,n

and s
eq̂∇b,n

are quaternion
estimations based on GDA, it is reasonable because ∆t is
small and quaternion does not change a lot within a tiny
period. A data fusion method is then used to combine the
estimations from eq. (3) and (4):

s
eq̂g,n = ρg,n · seq̂∇g,n

+ (1− ρg,n)seqω,n (5)

s
eq̂b,n = ρb,n · seq̂∇b,n

+ (1− ρb,n)seqω,n (6)

ρg,n =
βg

µn/∆t+ βg
, ρb,n =

βb
µn/∆t+ βb

, (7)

s
eq̂g,n and s

eq̂b,n are the estimated quaternions w.r.t acceleration
and magnetic, βg and βb represent the divergence rate of s

eqω,n

based on the extent of motion (a larger value means a more
intensive motion). Hence, they are dependent on the value of
acceleration and angular rate. ρg,n and ρb,n are the weights
yield to µn and βg, βb.

Since pitch θ and roll φ depend on the estimation of gravity
and yaw ψ depends on the estimation of north (the direction
of magnetic field), it is possible to extract Euler angles
from (ψ̂g, θ̂g, φ̂g) = h(seq̂g,n) and (ψ̂b, θ̂b, φ̂b) = h(seq̂b,n),
then use the pitch and roll represented by s

eq̂g,n and yaw
represented by s

eq̂b,n to get the final quaternion estimation:

s
eq̂n = h−1

(
ψ̂b, θ̂g, φ̂g

)
. (8)

IV. ZERO-VELOCITY UPDATE

In ZUPT, stance detection is firstly performed for finding
the stance phase, then the error of acceleration, velocity and
displacement is updated by an error-state EKF, and at last
the estimated error is used for compensating integration error
during every stance.

A. Stance Detection

Generally, one walking step is broken down into four
phases [13]: stance, push-up, swing and step-down. The four
phases switch one after one and repeat periodically, thus we
introduce a LR-HMM to represent the walking model, in

which the state can only stay the same or switch to the next
state.

Let’s assume a hidden Markov chain model with observa-
tions Y = {Y1, . . . , YN}, each Yn ∈ R3 , and with unknown
states X = {X1, . . . , XN}, each Xn = k ∈ Ω = {1, . . . , 4}.
Ω represents the stance, push-up, swing and step-down phases
respectively. Assuming a discrete time independent Markov
process, X can be parametrized by an initial probabilities vec-
tor π = p(x1) and a transition matrix A(x1, x2) = p(x2|x1).
In a cyclic LR-HMM, the transition matrix only allows states
to keep the same or to switch to the next:

A(x1, x2) =


1−∆2 ∆2 0 0

0 1−∆3 ∆3 0
0 0 1−∆4 ∆4

∆1 0 0 1−∆1

 , (9)

where ∆k = p(xn = k|xn−1 = k − 1) denotes the transition
probability from state k − 1 to state k.

The observation yn = (sωxn,
s ωyn,

s ωzn) comes from the
measurement of gyroscopes, which represents the angular rate
along the three axes of the sensor frame. The distributions of
observations conditional to states are assumed to be Gaussian

p (yn | xn = k) ∼ N (µk,Σk), (10)

where µk (3× 1 vector) and Σk (3× 3 matrix) are the mean
and co-variance of observations corresponding to state k. So
that the LR-HMM model is parametrized by the following
set of parameters Θ = {πk,∆k,µk,Σk}k∈Ω. Then the state
transition probability p (xn|xn−1) and observation probability
conditioned on state p (yn|xn) can be easily derived by eq. (9)
and (10).

Learning of Θ parameters can be done by Baum-
Welch algorithm [14], which is based on the EM principle
(Expectation-Maximization) for finding the maximum likeli-
hood iteratively, starting from an initial guess Θ(0) of param-
eters and stopping after a criterion or a maximum number of
iterations is reached.

B. Error-State Extended Kalman Filter

Once the stance phase is successfully detected in Sec-
tion IV-A, velocity is assumed to be zero and the velocity in-
tegration error can be obtained easily, unlike the displacement
integration error which needs to be estimated appropriately.
Based on the work of [10], an EKF was used for estimating the
integration error of velocity and displacement, so the elements
in the state of EKF are the integration error and the EKF used
here is also called as error-state EKF. In this work, we presents
a simplified error-state EKF, since orientation estimation is
performed independently in Section III-B, the error-state only
takes into account the acceleration error (δsan), velocity error
(δevn) and displacement error (δern):

δηn = δηn|n =
[
δern

ᵀ, δevn
ᵀ, δsan

ᵀ]ᵀ . (11)

The error-state model is the one of [10], δηn = Φnδηn−1+
wn, where wn represents the process noise with covariance



matrix Qn = E (wnw
ᵀ
n) and where the error-state transition

model Φn is a 9× 9 matrix given by

Φn =

I3×3 ∆t · I3×3 03×3

03×3 I3×3 ∆t · esCn

03×3 03×3 I3×3

 . (12)

Φn is time-variant and depends on the value of e
sCn, which

represents the rotation matrix required to convert vectors from
the sensor frame to the earth frame at time n [11].

Now, the measurement equation writes zn = Hδηn|n +
νn, where zn is the measurement, H = [03×3, I3×3, 03×3]
is the measurement model, and νn is the measurement noise,
assumed as Gaussian with covariance Rn = E (νkν

ᵀ
k).

When the stance phase is detected, the error-state measure-
ment in stance phase is zn = evn− [0, 0, 0]ᵀ (zero represents
the real velocity), then the displacement integration error can
be estimated because of the correlation between δevn and
δern described in the error-state model.

The error-state is predicted at every time, while is only
updated during stance phases, since measurements are only
available during stance phases. The prediction and update
computation is illustrated in [15]. Then the velocity and
displacement can be compensated through evn − δevn and
ern − δern respectively, δern and δevn in error-state should
be reset to zero once the compensation is completed.

V. EXPERIMENTAL RESULTS

An experiment was conducted on a road nearby the campus
of École Centrale de Lyon, Écully, France. The ground truth
were obtained using OpenstreetMap, the total travel distance is
1075m with a walking speed of about 4.2km/s. The magnetic
sensor was calibrated manually using the calibration toolbox
proposed by Alex Faustino 2.

Before starting to walk, a short time of standing without mo-
tion is necessary for initializing the quaternion corresponding
to the earth frame, and the local magnetic field was obtained by
transferring the mean value of magnetic measurements to the
earth frame. The magnetic declination at Écully is 1.2◦. The
LR-HMM method is tested and compared to another threshold
based stance detection method detailed in [16]. Parameters of
both algorithms are learned or tuned to get the best results.

The total steps number in experiment is 1458, so the steps
number of one foot is 729. Compared with the threshold based
stance detection method (see Fig. 2), LR-HMM obtains a
more regular stance pattern, detecting rarely a false negative
detection or missing rarely one step. Indeed, the missing and
false negative detection number by LR-HMM are 0 and 6
(0.82% in total) respectively, while the numbers by threshold
method are 17 and 14 (1.92% in total) respectively. Stance
phases detected by LR-HMM have similar durations, which is
not the case for the threshold-based method.

The proposed PNS algorithm involves LR-HMM to detect
stance phase, and the decomposed GDA-based quaternion
estimation (GDAd) and simplified error-state EKF (EKFs)

2. Github repository: https://github.com/alex-faustino/Mag-Cal

(a)

(b)

Figure 2: Step segmentation, jump 1 represents the stance
phase. Stance detection by (a) a threshold method, where false
negative detection and missing ones can be observed. (b) the
proposed LR-HMM method.

to reconstruct trajectory. Comparative algorithms include the
threshold stance detection, basic GDA-based quaternion esti-
mation (GDAb), a full error-state EKF (EKFf) that contains
compass measurement as described in [10], and Zero Angular
Rate Update (ZARU). Various combinations of these algo-
rithms are tested and compared to the proposed algorithm,
denoted here by LR-HMM+GDAd+EKFs+ZUPT.

All the parameters needed in the algorithms are tuned and
learned for the best results, particularly βg and βb are set
to 0.0215 and 0.026 respectively. In Fig. 4 and Table I, the
proposed algorithm reconstructs a travel distance of 1298.9m,
with an end-to-end error of 18.07m, the position error is
1.68%. It can be seen that independent orientation estimation
provides a good accuracy in height, the proposed algorithm
giving a final height error of 11.41m. GDAd-based quaternion
estimation leads to a better result than the GDAb, which means
that the decomposed GDA algorithm proposed in this paper
can provide a much better dynamic performance than the basic

Figure 3: Reconstructed 3D trajectory by different algorithms.



Figure 4: Reconstructed trajectory in X-Y plane by different
algorithms.

Table I: PNS Trajectory Error.

Algorithmsa Ground
1 2 3 4 5 Truth

End-to-End
18.45 16. 11 19.47 25.06 18.07 0

Error (m)
Height

9.81 241.39 145.10 13.84 11.14 0
Error (m)
Total Distance

1376.9 1199.6 1180.8 1303.1 1224.5 1075
in XY Plane (m)
Total Distance

1464.4 1452.3 1346.9 1387.3 1298.9 1097.6
in 3D (m)
DTW Distance 1.149E4 16.36E4 9.514E4 1.348E4 1.279E4 –
a 1 Threshold+GDAd+EKFs+ZUPT,
2 LR-HMM+EKFf+ZUPTCOMPASS(yaw)+ZARU,
3 LR-HMM+EKFf+ZUPTCOMPASS(yaw+inclination)+ZARU,
4 LR-HMM+GDAb+EKFs+ZUPT,
5 LR-HMM+GDAd+EKFs+ZUPT.

GDA algorithm. The threshold-based stance detection has a
good precision at the end point. However the highly enlarged
travel distance (1376.9m in X-Y plane and 1464.4m in 3D
space) is explained by some smaller stance phases duration
than the truth. Thus more displacement compensation are made
because of the unexpected extra integration error, which leads
to an extra travel distance. The huge height error by EKFf
is due to that it only takes the yaw angle into consideration,
estimation for pitch or roll is not involved. At last, the DTW
distance between the reconstructed trajectory and the ground-
truth shows that the proposed algorithm reconstructed the best-
fitted 3D trajectory.

VI. CONCLUSION

This paper presents a new strategy for PNS algorithm that
uses a foot-mounted IMU sensor. Compared to the works
proposed before, the orientation estimation is separated from
the error-state EKF and a decomposed GDA-based quaternion
estimation algorithm is employed for better dynamic perfor-
mance. Due to the orientation is estimated independently, the
error-state EKF can be simplified for reducing the complexity.
Then a LR-HMM is used for stance detection for the use of
ZUPT algorithm. Finally 3D trajectory is reconstructed by this
new PNS algorithm structure.

The experimental results show that LR-HMM detects stance
phase accurately and the proposed PNS algorithm reconstructs
3D trajectory accurately without extra method or prior knowl-
edge. Our future work is to improve the dynamic performance
of orientation estimation and to allow the algorithm to deal
with different walking speeds during the same walking.
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