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A mixed POD-PGD approach to parametric thermal urban soil modeling:

Application to canyon streets

Abstract

Numerical simulation is a powerful tool for assessing the causes of an Urban Heat Island

(UHI) effect or quantifying the impact of mitigation solutions on local climatic conditions.

However, the numerical cost associated with such a tool, which may seem low for a section of

mesh within the district geometric model, is quite significant at the scale of an entire district.

Today, the main challenge consists of achieving both a proper representation of the physical

phenomena and a critical reduction in the numerical costs of running simulations. This paper

presents a combined parametric urban soil model that accurately reproduces thermal heat

flux exchanges between the soil and the urban environment with a reduced computation

time. For this purpose, the use of a combination of two reduced-order methods is proposed

herein: the Proper Orthogonal Decomposition (POD) method, and the Proper Generalized

Decomposition (PGD) method. The developed model is applied to two case studies in order to

establish a practical evaluation: an open area independent of the influences of the surrounding

surface, namely a parking lot, and a theoretical urban scene with two canyon streets. The

mean surface temperature reduction error remains below 0.52˝C for a cut computational cost

of 80%.

Keyword

POD PGD parametric model Heat transfer Urban soil model SOLENE-microclimat Urban

Heat Island Model Order Reduction

Highlights

• We propose a parametric model dedicated to urban soil thermal modeling.

• A combination of two reduced-order methods, i.e. POD and PGD, is presented.

• Calculated temperatures are evaluated with respect to in situ measurements.

• The parametric soil model is coupled with the SOLENE-microclimat tool.
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• Its accuracy and computational cost are evaluated in an urban setting.
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Nomenclature

α Thermal diffusivity of the soil [m2s´1]

γ Auto-correlation matrix

λi Eigenvalue i

λ Eigenvalues diagonal matrix

N Reduction order of the POD basis

Φ POD Reduced order basis

T̃ px, tq Approximation of the temperature profile

ζ Unknown of the POD reduced model

c Specific Heat Capacity [J.m´3.K´1]

h Convective heat transfer coefficient

[W.m´2.K´1]

k Thermal conductivity [W.m´1.K´1]

Q Snapshots matrix

q ℓ Latent heat flux [W.m´2]

q c Sensible heat flux [W.m´2]

qnet Net radiative heat flux [W.m´2]

qw Runoff convective heat flux [W.m´2]

T px, tq Temperature profile

T8 Temperature of the soil below a meter [K]

Taptq Air temperature [K]

L width of the soil layer

1. Introduction1

Curbing urban sprawl is a key current objective for urban planners. In the context of2

global warming, urban densification has negative consequences on local city climate; specif-3

ically, it leads to intensification of the urban heat island (UHI) phenomenon [1–3]. For this4

reason, cities must now be developed in considering UHI as an environmental challenge since5

it has several consequences on both outdoor comfort and building energy consumption, which6

can lead to serious health issues.7

The storage of solar heat flux by urban materials during the day and its release at night8

is a main cause of UHI. This heat flux is greater in urban areas than in rural parts due to the9

higher inertia of construction materials. Surface temperatures drive the various heat fluxes10

(convection, conduction and long-wave radiative exchanges) at the urban surface. As such,11

it is of major importance to assess these variables of the urban micro-climate.12

In order to mitigate the UHI, its causes must be fully understood and the impact of13

mitigation solutions on the local micro-climate needs to be quantified. For this purpose,14

numerical simulation proves to be a powerful tool. Several models have been developed to15

simulate UHI and its consequences; these include TEB [4] or ARPS-VUC [5], at the city scale,16
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or SOLENE-microclimat [6, 7], Envi-met [8], and EnviBatE [9] at the district scale.17

Most of these micro-climate tools cited combine several one-dimensional models (soil,18

buildings, etc.) using a co-simulation approach. The urban scene is meshed as presented19

in Figure 1; moreover, for each piece of mesh, the thermo-radiative balance of an urban20

scene is derived. This energy balance is composed of both the short- and long-wave radiative21

heat fluxes, as well as the sensible and latent heat fluxes. At each time step tn, all models22

exchange parameters like surface temperature and net radiative heat flux balance with the23

other models. During the interval t P rtn, tn ` 1s, each model computes the field of interest,24

which consists of the temperatures of each surface. Figure 1 displays the co-simulation25

process.26

Model 2

(a) Thermo-radiative balance and mesh represen-

tation

Model 1

Building Model

Model 2

Soil Model

Model 1

Building Model

Model 2

Soil Model

(b) Co-simulation

Figure 1: Thermo-radiative balance of the urban scene with co-simulation

In this context, an initial study has been conducted to improve SOLENE-microclimat27

soil model performance [10]. A previous study had focused on the ability of the model to28

reproduce the particular physical phenomenon. The influence of a large number of parameters29

has been assessed in order to improve the model; these include: material properties, layer size,30

depth boundary conditions, convective heat transfer coefficient, and discretization. These31

improvements however have increased the model computation time. Indeed, at each time32

step, the heat transfer equation in the soil must be solved for each spatial mesh of the urban33

scene. All told, at each time step, thousands of model computations are processed, thus34

7



significantly increasing the computation time. The numerical cost, which may seem small35

for a portion of the mesh, is considerable at the scale of thousands of such portions. Since36

our requirements have been raised to an extent commensurate with improved computational37

resources, the main challenge today remains combining the best representation of the physical38

phenomena with a critical reduction in associated numerical costs.39

In this same aim, Gasparin et al. (2017, [11]) proposed combining an analytical approach40

with a finite difference approach in order to compute the temperature and moisture fields41

in porous soils. The analytical solution is implemented in the deep soil while the numerical42

scheme is used to solve the upper layer, where the variations are more pronounced. The43

two methods are linked through an iterative procedure. For our specific case [11], they were44

able to reduce computational cost by 16% to 12%, respectively. This method however is45

counterproductive since it requires an iterative procedure at each time step.46

Our objective herein is to propose a reduced-order model (ROM) for the soil heat transfer47

equation. This model needs to accurately reproduce the heat flux being exchanged between48

the soil and its environment for several weeks in offering reduced computation times.49

As described above, the thermal modeling of the specific urban soil depends on several50

parameters, i.e. the thermal characteristics of the soil, the initial temperature profile, the51

surface energy balance, and the temperature deep in the soil. The thermal characteristics52

could be considered as a constant over time, though the other parameters evolve at each time53

step. The transient heat equation thus needs to be solved at each time step. In order to54

reduce computation time, a parametric model is being proposed. For this purpose, the Proper55

Generalized Decomposition (PGD) method has been selected. The PGD is an a priori model56

order-reduction method based on distinct variables representing multidimensional problems.57

This property allows us to circumvent the ”curse of dimensionality”. Any variable (i.e. initial58

or boundary condition) can then be defined as an extra-parameter of a model. Hence, the59

model solution is given as a direct function of x and t coordinates, along with the extra-60

parameter of the problem. Various examples using the PGD parametric model can be found61

in applications to heat transfer [12–14] with an emphasis on building energy simulation [14–62

17].63

As presented in several references [18, 19] devoted to parametric PGD models, when a64
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dynamic problem needs to be parameterized, the initial conditions must be taken as a prob-65

lem parameter; this step increases the number of required model parameters. In order to66

reduce this overall number of parameters, the initial condition should be parameterized. As67

proposed by Gonzalez et al. (2014, [20]) and Cueto et al. (2016, [18]), the Proper Orthog-68

onal Decomposition (POD) method is used to parameterize the initial condition, making it69

an a posteriori model order-reduction method. Consequently, a mixed reduction method ap-70

proach, based on both POD and PGD, is being proposed to generate a combined parametric71

soil model in the context of a micro-climate simulation.72

The remainder of this paper is organized as follows. The mixed approach is presented73

step-by-step in Section 2 and then validated using an analytical solution in Section 3.1. The74

combined parametric soil model is applied to a case study involving a parking lot in Section75

3.2. Next, the thermal response of this soil model is compared to in situ measurements in76

order to evaluate its performance. Once validated under actual boundary conditions, the77

combined parametric model is applied to an urban scene in Section 3.3. For this purpose, it78

is coupled with the SOLENE-microclimat tool. Lastly, since the main goal of our work is to79

reduce computation time, the CPU times of the combined POD+PGD and finite difference80

models, in conjunction with the SOLENE-microclimat tool, are compared.81

2. Methods82

2.1. Physical problem and Large Original Model (LOM)83

This model is being dedicated to urban pavement surfaces, such as parking lots and84

sidewalks. Since such surfaces are considered to be impervious, only heat transfer will be85

taken into account (i.e. water transfer will be neglected). The physical problem thus involves86

transient one-dimensional heat conduction through a soil column (Eq. 1) for time interval87

Ω t “
“

0 , τ
‰

and space interval Ωx “
“

0 , L
‰

:88

c
BT

Bt
“

B

Bx

ˆ

k
BT

Bx

˙

, (1)

89

where k is the thermal conductivity and c the specific heat capacity. Both these variables90
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depend on the space variable x since the domain, i.e. the soil, is composed of several layers.91

These thermal properties are assumed to remain constant over time. At the surface x “ 0 ,92

a Robin boundary condition is assumed:93

´ k
BT

Bx
“ qnet ´ q ℓ ´ qw ´ h

´

T px “ 0q ´ Ta

¯

,

where qnet is the net radiative heat flux, q ℓ the latent heat flux and qw the runoff convective94

heat flux. The two last heat fluxes are only computed under rainfall or watering events.95

The sensible heat flux is calculated from air temperature Ta varying over time and from a96

convective heat transfer coefficient h. At the bottom x “ L , the soil temperature is imposed97

through Dirichlet boundary conditions:98

T “ T8 ,

where T8 is a constant daily temperature [10]. At t “ 0 , the initial temperature is set99

using a space temperature profile:100

T “ T 0 px q

The problem in Equation (1) can be solved using any classical numerical method. The101

so-called Large Original Model (LOM) is defined as the solution to the previous problem with102

the finite difference method. The spatial domain Ωx is discretized into a grid composed of103

Nx nodes, while the time domain Ω t is discretized into Nt time steps. An implicit scheme is104

employed, with backward first-order derivatives for the time derivation and a center second-105

order derivative scheme for the spatial derivation. In the following sections, the construction106

of this combined parametric reduced-order models (ROM) for Eq. (1) will be detailed.107

2.2. Building the combined parametric model108

The PGD method is used in order to propose an accurate parametric solution of the109

formulated soil problem with a shorter computation time, in anticipation of coupling with a110

micro-climate tool.111
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PGD Parametric 
Soil Model

Boundary conditions

Initial condition

Temperature profile

Figure 2: PGD Parametric soil model with the initial condition as a parameter

To achieve a universal solution to this problem, the model boundary conditions need to112

be defined as parameters. This means that the PGD parametric reduced-order model must113

be calculated for any boundary conditions over a predefined interval. Given the temperature114

profile at time step tn and the boundary conditions at time step tn ` 1 as parameters, the115

model outputs the temperature profile at time step tn ` 1 (Figure 2). This previous temper-116

ature profile can be seen as an initial condition of the problem solved between tn and tn ` 1.117

The model can be developed as a space (x) - boundary conditions (BC) - initial condition118

(IC) compartmentalization of the solution.119

The implicit semi-discretization in time of Eq. (1) yields:120

T n ` 1 “ T n `
∆t

c

B

Bx

ˆ

k
BT n ` 1

Bx

˙

, (2)

with the following boundary conditions at x “ 0 :

´ k
BT n ` 1

Bx
“ ψ n ` 1 .

The challenge therefore is to compute a parametric model for the field T n ` 1 by solv-121

ing problem (2) in searching for a separate solution that depends on space (x) - boundary122

conditions (BC) - initial condition (IC) as follows:123

T n ` 1 “
M
ÿ

i “ 1

X i

`

x
˘

G i

´

ψ n ` 1

¯

F i

´

T n
¯

It may speculated why a space-time-BC separation of the solution would not suffice. In124

our specific case, the BC are not constant over time. The surface energy balance is not the125
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same between time steps tn and tn ` 1. With a parametric space-time-BC, the model would126

compute the solution at tn ` 1 with the BC at time tn ` 1, from the temperature profile at127

tn. However, the previous temperature profile (at tn) is calculated with different boundary128

conditions (at tn ` 1 and not at tn). The parametric formulation of the problem thus needs129

to take into account the previous temperature profile as a parameter.130

2.2.1. Use of the POD to parameterize the initial condition131

As presented above, the parametric formulation of the soil problem requires taking the132

previous temperature profile into account as a parameter. Once discretized in space however,133

the temperature profile of the initial condition is no longer of infinite dimension: the descrip-134

tion of the previous temperature profile provides one piece of information per node, which135

implies inputting as many parameters in the PGD parametric model as the number of nodes136

in the grid, plus the boundary conditions and spatial coordinates. To avoid this tremen-137

dous number of parameters, the initial condition needs to be parameterized. Gonzalez et138

al. (2014, [20]) and Cueto et al. (2016, [18]) proposed implementing the Proper Orthogonal139

Decomposition (POD) method to parametrize the initial condition with a minimum number140

of parameters. The POD method extracts the relevant information from a set of snapshots141

by means of its projection into a smaller subspace. As a result, from a set of random data,142

the POD builds a deterministic representation of a dataset. This representation is built from143

the basis Φ. The ultimate goal is to retain a detailed representation of the dataset with a144

minimum or optimal number of modes in Φ. For these properties, the POD method param-145

eterizes the initial temperature profile. More details on the procedure for building the basis146

Φ can be found in Appendix B.147

This method consists of seeking a set of basis functions Φ that approximate the tem-148

perature profile T px, tq from the eigenvalues and eigenmodes. The basis Φ is then used149

to parameterize the initial condition. For this purpose, the initial system of equations is150

projected into the reduced-order basis by simply performing the following change of variable:151

T npxq » T̃ npxq “
N
ÿ

j “ 1

Φjpxqζj (3)

152
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Combine Parametric 
Soil Model

Boundary conditions

Initial condition Temperature profile

Figure 3: PGD Parametric soil model with the use of POD to configure the initial condition

In this manner, the temperature profile can be optimally parameterized with a minimum153

number of modes. The previous parametric problem is thus modified as follows:154

T n ` 1 “
M
ÿ

i “ 1

X i

`

x
˘

G i

´

ψ n ` 1

¯

F 1

i

´

ζ1

¯

F 2

i

´

ζ2

¯

... FN
i

´

ζN

¯

in which ζj are the new parameters of the PGD model, as presented in Figure 3.155

2.2.2. Building the PGD parametric solution156

The PGD method approximates the solution to a problem as a finite sum of separable157

functions. Such functions are determined by means of an iterative procedure. The PGD can158

be described according to three main steps, i.e.:159

1. initialization of the function basis,160

2. enrichment of the basis functions through an iterative process,161

3. solution convergence test.162

The PGD parametric method will be described hereafter. For further details on the163

method and its developments, the interested reader may refer to [18, 19]. The model is164

developed as a space - BC - IC separation of the solution. The boundary condition is defined165

as a universal function ψ and could be:166

• the Dirichlet boundary condition in the ground,167
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• the Robin boundary condition at the surface.168

We are now searching for the temperature profile:

T n ` 1px, T n, ψq “
M
ÿ

i “ 1

Xipxq b FipT
nq b Gipψq

where T P Ωxˆs0,∆ts ˆ ΩT n ˆ Ωψ with ΩT n “ rT n´, T n ` s and Ωψ “ rψ´, ψ ` s.169

The PGD approximation is the sum of M functional products b involving each function,170

hereafter denoted by a point in the equations. First, the initial condition T n needs to be171

introduced explicitly into the weak form of the problem (Eq. (4)), yielding Eq. (5), for172

an implicit scheme with the test function u˚ (Eq. (6)). This test function formulation (i.e.173

Galerkin formulation) is most frequently used in the literature:174

ż

ΩxˆΩT nˆΩψ

u˚.

ˆ

c
BT

Bt
´

B

Bx

ˆ

k
BT

Bx

˙ ˙

dx. dT n. dψ “ 0 (4)

175
ż

ΩxˆΩT nˆΩψ

u˚.

ˆ

c
T n ` 1 ´ T n

∆t
´

B

Bx

ˆ

k
BT n ` 1

Bx

˙ ˙

dx. dT n. dψ “ 0 (5)

176

u˚px, T n, ψq “ X˚pxq.F pT nq.Gpψq ` Xpxq.F ˚pT nq.Gpψq ` Xpxq.F pT nq.G˚pψq (6)

The separated representation is built with an iterative procedure that features two nested177

loops: the alternating direction strategy, and the enrichment process. At enrichment step m,178

the first m´ 1 terms have been computed. The new functions Xm, Fm and Gm must now be179

calculated according to:180

T n ` 1

m px, T n, ψq “
m´1
ÿ

i “ 1

Xipxq.FipT
nq.Gipψq ` Xmpxq.FmpT nq.Gmpψq (7)

A nonlinear problem must now be solved where the unknowns are the functions Xm, Fm181

and Gm. In this aim, an alternating direction, also called a fixed-point algorithm, will be182

used. Each function is randomly initialized and then solved by iteration. At enrichment step183

m and at iteration p of the fixed-point algorithm, we obtain the following temperature profile184

approximation:185

T n ` 1,p
m px, T n, ψq “ T n ` 1

m´1 px, T n, ψq ` Xp
mpxq.F p

mpT nq.Gp
mpψq (8)

14



As mentioned above, the PGD algorithm is composed of two enrichment loops. Each step is186

summarized in Algorithm 1 and detailed thereafter.187

Algorithm 1 Compute the PGD basis T̃ n ` 1px, T n, ψq

while m ă mmax and }Xmpxq.FmpT nq.Gmpψq}
}X1pxq.F1pT nq.G1pψq}

ă ǫ do

First guess: X0

mpxq, F 0

mpT nq and G0

mpψq

while p ă pmax and }Xp
mpxq.F

p
mpT

nq.Gpmpψq´X
p´1

m pxq.F p´1

m pT nq.Gp´1

m pψq}

}Xp´1

m pxq.F p´1

m pT nq.Gp´1

m pψq}
ă ǫ̃ do

Compute X Using Eq. (11)

Compute F Using Eq. (12)

Compute G Using Eq. (13)

end while

Add functions to the basis: Xmpxq “ Xp
mpxq, FmpT nq “ F p

mpT nq, Gmpψq “ Gp
mpψq

end while

T̃ n ` 1px, T n, ψq “
řM

i “ 1
Xipxq.FipT

nq.Gipψq

First, the fixed-point algorithm is randomly initialized, then each term is calculated one188

after the other:189

• Xp
mpxq with F p´1

m pT nq and Gp´1
m pψq assumed to be known;190

• F p
mpT nq with Xp

mpxq and Gp´1
m pψq assumed to be known;191

• Gp
mpψq with Xp

mpxq and F p
mpT nq assumed to be known.192

The alternating direction process stops once a fixed point has been reached. The criterion193

used to make this determination is defined in Eq. (9) with ǫ̃ being a criterion defined by the194

user [19].195

}Xp
mpxq.F p

mpT nq.Gp
mpψq ´ Xp´1

m pxq.F p´1
m pT nq.Gp´1

m pψq}

}Xp´1
m pxq.F p´1

m pT nq.Gp´1
m pψq}

ă ǫ̃ (9)

Upon completion of the fixed-point algorithm, the functions are added to the basis:196

Xmpxq “ Xp
mpxq, FmpT nq “ F p

mpT nq, Gmpψq “ Gp
mpψq. The enrichment process of197

the PGD basis stops when the following criterion ǫ, defined by the user, has been reached198

(Eq. (10)) [19].199
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}Xmpxq.FmpT nq.Gmpψq}

}X1pxq.F1pT nq.G1pψq}
ă ǫ (10)

Alternation direction strategy200

The first step of the fixed-point algorithm has now been described; it consists of computing201

Xp
mpxq. Since the methodology is the same for computing F p

mpT nq and Gp
mpψq, the two202

following steps will be developed in the Appendix.203

Computation of Xp
mpxq from F p´1

m pT nq and Gp´1
m pψq204

205

Eq. (7) is introduced into Eq. (5), along with the following test function:

u˚px, T n, ψq “ X˚
mpxq.F p´1

m pT nq.Gp´1
m pψq “ X˚.F.G

We then obtain the following equation:206

ż

ΩxˆΩT nˆΩψ

X˚ . F .G

ˆ

c
X . F .G

∆t
´

B

Bx

ˆ

k
BX

Bx

˙

. F .G

˙

dx. dT n. dψ

´

ż

ΩxˆΩT nˆΩψ

X˚ . F .G . c
T n

∆t
dx. dT n. dψ

“ ´

ż

ΩxˆΩT nˆΩψ

X˚ . F .G

m´1
ÿ

i “ 1

ˆ

c
X i.F i.G i

∆t
´

B

Bx

ˆ

k
BX i

Bx

˙

. F i . G i

˙

dx. dT n. dψ

Since all the functions depending on the parametric coordinate ψ and T n are known, they207

can be integrated over their domain: ΩT n and Ωψ.208
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f1 “
ş

ΩT n
pF q dT n

f2 “
ş

ΩT n
pF q2 dT n

g1 “
ş

Ωψ
pGq dψ

g2 “
ş

Ωψ
pGq2 dψ

fi “
ş

ΩT n
pF . Fiq dT n

gi “
ş

Ωψ
pG .Giq dψ

We derive the following simplified equation (11), which can be solved by any discretization209

technique. The finite difference method has been used herein, with a center second-order210

derivative scheme.211
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c
X

∆t
. f2 . g2´

B

Bx

ˆ

k
BX

Bx

˙

. f2 . g2 “ ´
m´1
ÿ

i “ 1

ˆ

c
Xi

∆t
. fi . gi ´

B

Bx

ˆ

k
BXi

Bx

˙

. fi . gi

˙

` f1 . g1 . c
T n

∆t

(11)

With this same method, F p
mpT nq can be computed from Xp

mpxq and Gp´1
m pψq, producing the212

following algebraic equation (12), whose direct solution yields the function F. Details on this213

development can be found in Appendix C.1.214

F.
´ c

∆t
x2 g2 ´ x3 g2

¯

“ ´
m´1
ÿ

i “ 1

ˆ

c
Fi

∆t
xi,1 gi ´ Fi xi,2 gi

˙

` x1 g1 c
T n

∆t
(12)

Moreover, Xp
mpxq and F p

mpT nq enable computing Gp
mpψq. Equation (13) presents the final215

algebraic equation; its direct solution yields the function G. Details on this development can216

be found in Appendix C.2.217

G
´ c

∆t
x2 f2 ´ x3 f2

¯

“ ´
m´1
ÿ

i “ 1

ˆ

c
Gi

∆t
.xi,1.fi ´ Gi xi,2 fi

˙

` x1 f1 c
T n

∆t
(13)

2.3. Implementation methodology218

The combined parametric soil model developed herein makes use of both POD and PGD219

methods and features an offline/online strategy. All steps are detailed in Figure 4. The POD220

method serves to configure the previous soil temperature profile, as presented in Figure 3. In221

order to perform this configuration, we first need a POD basis, which is built from a set of222

snapshots calculated by the LOM (via the finite difference method). This basis is calculated223

once offline. For each of the equations (11), (12), and (13), the previous temperature profile224

is projected into a POD basis by executing the following change of variable:225

T n «
N
ÿ

i “ 1

ζiΦi “ Φζ

A minimum number of modes in the POD basis, N , is defined to achieve the desired226

accuracy. Note that the number of modes has a direct influence on the number of parameters227

used in the PGD model. The parametric model can then be solved with the PGD Algorithm228

1 for:229
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Model
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Figure 4: Implementation methodology of the model
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• a spatial mesh,230

• a time interval of (T n, tn ` 1),231

• any values of the boundary condition ψ defined within a discretized interval rψ´, ψ`s,232

• each mode of the POD basis: i.e. ζ1 P rζ´
1
, ζ`

1
s, ... ζN P rζ´N , ζ

`
N s.233

Once the PGD parametric model has been built, it can be applied for any value within the234

previously defined intervals. Figure 3 summarizes the utility of the POD+PGD parametric235

model. The initial condition is projected onto the reduced basis Φ so as to identify the236

parameters ζi at time step T n. Afterwards, the PGD modes are computed for the defined237

parameters x, ζi and ψ.238

2.4. Assessment methodology239

The global methodology used to assess this model is presented herein. The combined240

parametric model is applied to several study cases in order to evaluate the numerical method241

and the ability of the model to properly reproduce physical phenomena with or without242

influence of the urban environment. The results of the developed POD+PGD parametric243

soil model Tnumpx, tq are then compared to the results of a reference solution Tref px, tq that244

could be analytical, measurements or the LOM results. For each case study, the indicator245

chosen is the ℓ2 norm (or Root Mean Square Error) noted ε2; it is computed as a spatial or246

time function by the following discrete ℓ2 formulation, where Nx and Nt are the number of247

elements over each axis.248

ε 2p t q “

g

f

f

e

1

Nx

Nx
ÿ

0

rTnumpx, tq ´ Tref px, tqs2

ε 2px q “

g

f

f

e

1

Nt

Nt
ÿ

0

rTnumpx, tq ´ Tref px, tqs2

The global error is given by the maximum of the previous function ε 2p t q and ε 2px q as

described hereafter:

ε8 “ max
t

`

ε 2pxq
˘
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3. Results249

3.1. Evaluation of the numerical method with an analytical solution250

In this part, for validation purposes, the POD+PGD ROM will be applied to a case251

containing an analytical solution. The respective performances of this new model, the fi-252

nite difference model and the POD model on its own will be compared. The previously253

defined problem will be solved for a uniform slab with a thermal diffusivity of 6.10´7 m2.s´1254

and conductivity of 1.5 W.m´1.K´1. The slab body is initially at a constant temperature,255

T px, 0q “ 0. The temperature at x “ L is set at T pL, tq “ 0. At the surface (x “ 0), only256

a convective heat flux is considered, with: a cosine-periodic air temperature whose amplitude257

is 10˝C, a period of 24 hours, and a convective heat transfer coefficient of 10 W.m´2.K´1. No258

source term has been taken into account. The spatial domain Ωx “ r0, 1s is discretized with259

a uniform mesh dx “ 0.01 m. The total simulation time lasts two days, with a time step260

of 15 minutes. Only the last day is studied, while the first day is considered as the period261

necessary to initialize the model. The problem is first solved by running the finite difference262

method. Then, the POD model is built on the previous results with four nodes (N “ 4).263

The PGD parametric model is built with both the initial condition and air temperature as264

parameters (ψ “ Tair):265

T n ` 1px, ζ1, ζ2, ζ3, ζ4, Tairq “
M
ÿ

i “ 1

Xipxq.Cipζ1q.Dipζ2q.Eipζ3q.Fipζ4q.GipTairq.

Each computed solution is compared to an analytical solution from the EXACT toolbox [21]266

described in the Appendix A. Figure 5 shows the evolution of temperature calculated by the267

analytical solution as well as by the three developed models. The temperature signal of the268

Finite Difference model and the reduced-order model (POD+PGD parametric) overlap. As269

revealed in these figures, the ROM solutions with 4 modes and the Finite Difference model270

provide similar results with ǫ2 “ 0.03˝C at the surface and 0.01˝C at a depth of 0.5 m. Figure271

6 indicates the ℓ2 error evolution for the various models compared to the analytical solution.272

The quantity ε8 equals 0.045˝C for the combined parametric model. Since the POD basis is273

used under similar conditions to those for the learning process, the results of the combined274

method provide a close fit. The third set of errors given in Figure 6 estimates the error due275
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to the POD parameterization of the initial condition, which remains below 0.016˝C. For276

each model, the ℓ2 error decreases with depth. This first case study illustrates the numerical277

behavior of the POD+PGD parametric model, which can be considered accurate enough for278

application to other situations.279
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3.2. Application to a case study independent of the influence of the urban environment280

The combined parametric model will be applied in this section to an asphalt parking281

lot. This layout was chosen to avoid interactions with other surfaces due to solar and long-282

wave radiative exchanges with surrounding vertical surfaces (building facades). Under these283

conditions, the POD+PGD parametric model can be evaluated before its coupling with284

the micro-climatic model. Results of the combined parametric model will be compared to285

measurements conducted on this lot. The measurement campaign will be presented first,286

then the model will be applied and assessed.287

3.2.1. Presentation of the measurement campaign288

Data from the ROSURE/HydroVille project [22] are used herein. The experimental site is289

located near Nantes (France) and consists of an asphalt parking lot measuring 2500 m2. This290

campaign has entailed surface and air temperatures as well as on heat flux measurements291

during a warm summer period (June 2004). During the experiment, the parking lot was292

watered to simulate artificial rain events. For the observations available during this campaign,293

this paper focuses on all variables measured at the middle of the lot:294

• surface and ground temperatures: vertical profiles at depths of 0, 1, 2, 3, 4, 5, 6, 10,295

15, 24, 34, 50 and 75 cm;296

• wind speed;297

• radiation components.298

The humidity and air temperatures were measured outside the lot. The data were collected299

with a 1-min time step. The final data were averaged over 15-min intervals. More information300

on this campaign can be found in [22].301

3.2.2. Combined parametric model set-up302

The simulation is run for the entire period from June 5th at midnight to June 14th mid-

night, with a 15 ´ minutes time step. A centimetric grid is used. The temperature profile

is initialized from ground temperatures measured on June 4th at 11:45 pm. The boundary

depth condition, which corresponds to the ground temperature at a depth of 75 cm has
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Heat fluxes Input data used to calculate each flux Calculation Method

q c Measured wind speed Correlation method

Measured surface temperature

Measured air temperature

qnet Measured net radiative flux Measurements

q ℓ Water height Mass-transfer method

Water-holding capacity of the surface

Measured air relative humidity

Measured air temperature

qw Measured water temperature Water layer energy balance

Total measured total sprinkled water

Table 1: Detail of each input data required to calculate the upper boundary condition

been set in accordance with the experimental data. At the surface, a Neumann boundary

condition is considered from the surface energy balance detailed below:

´ k
BT

Bx
“ qnet ´ q c ´ q ℓ ´ qw ,

The convective heat flux q c is calculated from the measured air and surface temperature303

plus the wind speed using a correlation method with a characteristic length of 1 m. More304

details on this method can be found in [10]. For the radiative heat fluxes qnet, the net heat305

flux measurement is used. During a watering event, two heat fluxes are to be added to the306

previous ones: a runoff convective heat flux qw, and a latent heat flux q ℓ. The computational307

details of these two fluxes is described in [23]. The runoff convective heat flux is calculated308

from the amount of water sprinkled during each watering event. Data acquired on June309

7th, and 8th were used to calibrate the surface water holding capacity. The latent heat flux310

is calculated from measured air characteristics (temperature, relative humidity). All of the311

input data categories are listed in the Table 1.312

The soil is composed of three different materials: 5 cm of asphalt, 45 cm of ballast, and313

an altered natural mica-schist soil underneath. The soil composition and thermal properties314

were not measured during the campaign; instead, they were calibrated according to the315

observed soil thermal profile, thus reducing the difference between measured and simulated316
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surface temperature on the centimetric grid. The data measured on June 6th were used317

for calibration purposes. From the measured temperature gradient, changes in soil thermal318

properties in the first layer were identified (0–1 cm,1–5 cm). The calibrated soil properties319

are summarized in Table 2.320

Layer depth Material Thermal conductivity Volumetric heat capacity

m Characteristics W.m´1.K´1 106J.m´3.K´1

0.00 - 0.01 Asphalt Concrete 2.5 2.3

0.01 - 0.05 Asphalt Concrete 2.5 2.1

0.05 - 0.50 Old Filled Ballast 1.8 2.3

0.50 - 0.75 Natural Soil 1.3 2.1

Table 2: Calibrated soil characteristics

As presented in Section 2.3, the problem is first solved using the finite difference method.321

Next, the POD model is built on the previous results with four nodes (N “ 4). The PGD322

parametric model is built with the initial condition, the surface heat flux q a and the ground323

temperature T8 all as parameters, whereas the PGD parametric model comprises 16 modes324

(M “ 16). The combined parametric model is thus as follows:325

T̃ n ` 1px, ζ1, ζ2, ζ3, ζ4, q a, T8q “
M
ÿ

i “ 1

Xipxq.Cipζ1q.Dipζ2q.Eipζ3q.Fipζ4q.Gipq aq.HipT8q.

3.2.3. Combined parametric model assessment326

The ROM model is then evaluated by comparing the time series of the measured and327

calculated temperatures at the surface and at several depths within the soil. Since the328

proposed model has combined an a priori method (PGD) with an a posteriori one (POD),329

a learning process is required. This process consists of building the POD basis just once330

and offline. The combined parametric model can then be used online, under different heat331

boundary conditions. To obtain an efficient combined parametric model, this learning period332

should be as short as possible. At first, in order to evaluate model performance under actual333

conditions, the learning and simulation periods will be the same. This initial study is aimed334

at assessing model behavior regardless of the influence from the learning period.335
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In this instance, the ROM model is evaluated over an entire learning period. For both336

models studied, the temporal variations in the surface temperature are well reproduced com-337

pared to the measurement results (Figure 7). The combined parametric model signal is closer338

to the measurement signal than that produced by the finite difference model. In considering339

this observation, the combined parametric model might seem more accurate than the finite340

difference model. If we were to compare the numerical residuals of both methods however,341

the final residual given by the finite difference method would be smaller than that output342

by the ROM (Fig. 8). According to these results, the PGD solution cannot then be more343

accurate than the finite difference solution. Due to the calibration of material properties,344

the finite difference model itself overestimates the surface temperature, whereas the reduced345

order model underestimates it.346

During watering events, the same shape is obtained yet with a time lag. This error is347

independent of the reduced order model behavior itself but depends on the surface energy348

balance. As described in [23], the surface energy balance during a watering event takes into349

account additional heat fluxes: a latent heat flux and a runoff convective heat flux. The350

dynamics of both these heat fluxes are complicated to reproduce during a watering event,351

which explains the observed time lag. This discrepancy is due to an approximation of the352

physical phenomena in the model and not in the numerical solution.353

To determine overall ROM performance, four sets of errors are calculated. The results are354

presented in Figure 9. The first set evaluates the overall accuracy of the combined parametric355

model. The quantity is calculated between the POD+PGD and measured temperatures. For356

the sake of comparison, a second set has been calculated between the finite difference model357

and the measurements. These first two sets provide the total error due to the chosen numerical358

scheme, the numerical method and the physical model. To evaluate the error due solely to359

the numerical scheme and method, a third error set evaluates the loss in accuracy due to the360

reduction in model order; ǫ2pxq is calculated between the POD+PGD parametric model and361

the finite difference model. The last set estimates the error due to POD parameterization of362

the initial condition. These ℓ2 errors have all been calculated from June 8th at 11:45 pm to363

June 13th at the same time, outside the calibration period.364
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Figure 9: Evolution of the ℓ2 error. First set: calculated between the POD+PGD parametric model and the

measurements. Second set: calculated between the finite difference model and the measurements. Third set:

calculated between the parametric model and the finite difference model. Fourth set: estimated error due to

the POD parameterization of the initial condition.

This loss of accuracy due to the model order reduction remains less than 0.30˝C. The365

error is greater within the first few centimeters, close to the surface boundary condition, and366

then decreases with depth. The combined parametric model accuracy depends directly on367

the POD basis accuracy (used to describe the previous temperature profile). The final set in368

Figure 9 shows that a portion of the error is due to the initial condition parameterization;369

this error prevails close to the boundary condition, where variations are steeper.370

The ǫ2pxq error between the POD+PGD parametric model and the measurements equals371

1.24˝C at the surface, while it amounts to 1.32˝C between the finite difference model and372

the measurements. The combined parametric model might appear to be more accurate, but373

as explained before the reduced-order model cannot be more accurate since the numerical374

residual of the POD+PGD method exceeds the finite difference residual. The model order375

reduction has consequences on the reproduction of daily peaks, specifically it underestimates376

the temperature signal amplitude. This same phenomenon could be observed with the finite377

difference model and a coarser grid.378

After evaluating the numerical method with the analytical solution, this case study has379

evaluated both the numerical method and the physical model. Moreover, under actual con-380
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ditions, both models (POD+PGD and FD) are capable of reproducing the dynamics with381

relatively good accuracy. Hence, the combined parametric model can be applied to more382

complex situations, such as an urban scene.383

3.2.4. Influence the learning period384

As mentioned above, the accuracy of the combined parametric model depends on the385

accuracy of the POD basis, which is directly determined by the learning period. In order to386

study the influence of this parameter on model behavior, various learning periods are com-387

pared. Figure 10 provides the evolution of the global error as a function of the number of388

days used for the learning period. The error ε2pxq is calculated between the combined para-389

metric model and the measurements (crosses) as well as between the combined parametric390

model and the finite difference model (points). The first set indicates the evolution of the391

global model error, which pertains to the numerical scheme, plus the methods errors and392

physical model errors. The second set indicates the evolution of the error due specifically to393

the learning period. Both sets are nearly constant over the number of days used to compose394

the learning period. The number of days selected for the learning process has no influence395

on the maximum observable error. The assumption could thus be made that using a longer396

learning period will not improve the maximum model error.397

The previous indicator however does not yield information on the ability of the model398

to reproduce a specific dynamic. As such, we are proposing herein to study the model399

response to various stresses. The dataset examined contains various boundary conditions with400

sudden drops in the temperature signal due to watering events. Three learning conditions401

are assessed: one day with no watering events (June 13th), one day with two watering events402

(June 10th), and the full learning period. June 10th and 13th have been drawn from the403

calibration period.404

Figure 11 displays the ε 2p t q of the different learning periods calculated between the405

parametric model and the finite difference model over time. For these three periods, several406

observation can be drawn. Over the entire period, the combined parametric model is more407

accurate when dry days are considered (i.e. June 5´ 6th and 12´ 13th). Watering events are408

more difficult to represent accurately. When the learning period is June 13th (see Fig. 11),409
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the POD+PGD parametric model is once again accurate under dry conditions (June 5 ´ 6th410

and 12´13th). The learning period however has been reduced to just a single day, compared411

to the previous 9 days with the full learning period. Nonetheless, days with watering events412

still have a higher RMSE value. The combined parametric model is incapable of accurately413

reproducing this type of boundary condition. Moreover, June 10th is used as the learning414

period (green rectangle in Fig. 11) and includes watering events. The model therefore is415

accurate when learning conditions are considered (June 10th). Yet aside from this period,416

the model loses accuracy due either to dry days or a watering event.417

Since the POD basis is sensitive to the learning period, the learning process and, in our418

specific case, the period need to be carefully selected. The previous comparison illustrates419

the difficulty involved in selecting a representative period for all weather conditions extending420

over a longer time scale (season or year). Since it has been validated under actual boundary421

conditions, the POD+PGD parametric model can now be applied to an urban scene in order422

to study the thermal behavior of the model under new constraints.423

3.3. Practical application to an urban environment424

The ROM developed will now be applied to the case of a theoretical urban environment425

consisting of two canyon streets. For this purpose, the ROM has been coupled with the426

SOLENE-microclimat simulation tool [6, 7], through use of the ping-pong method [24], which427

will be discussed in Section 3.3.3. The microclimate tool is used to take into account the428

surrounding surface in the surface energy budget (i.e. short- and long-wave radiative budget).429

The objective here is to study the behavior of the ROMmodel implemented within a complete430

urban heat balance. In this pursuit, the results of the combined parametric model will be431

compared to those of the finite difference model under various conditions. The model covers432

all soil within the urban scene. The study focuses on three zones featuring various radiative433

stresses. The influence of the area chosen to conduct the learning process will be analyzed,434

and the computational cost of the various models will be compared.435

3.3.1. Description of the urban scene436

The urban scene is composed of a square and two canyon streets, with an aspect ratio437

of H{W “ 1 (H: building height; W: street width). The streets are oriented north-south438
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H

W

Figure 12: 3D overview of the urban scene

Parametric 

soil model

Figure 13: Mesh of the urban geometry. Each surface of the geometry is meshed with triangles, behind

which a model has been implemented. In this specific case, the 1D combined parametric soil model is run for

each triangle of the floor. For the other triangles (buildings), the 1D SOLENE-microclimat thermal model is

employed (see [7] for further details)
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Layer Material Depth Thermal conductivity Volumetric heat capacity

Number Characteristics m W.m´1.K´1 106J.m´3.K´1

0 Asphalt 0.07 2.0 2.04

1 Grave 0.25 0.52 1.42

2 Soil 1.00 0.7 1.44

Table 3: Thermal characteristics of the soil for the canyon streets case study

and east-west. Figure 12 shows the scene configuration and Figure 13 the mesh, which is439

built from triangles. The soil represents 32% of the total mesh content in the urban scene,440

which comprises 7, 372 triangles. The soil is considered to be an impervious urban surface;441

its thermal properties are listed in Table 3. The soil albedo is 0.10 and its thermal emissivity442

is 0.95.The buildings are represented by concrete boxes with 20 cm of concrete and 10 cm of443

external insulation (rock wool). No vegetation has been considered in this case study.444

The simulation is run for 6 days in 2010 from April 29th at 7 pm through May 6th at445

6 am, with a one-hour time step. Only the last two days are used to evaluate the model,446

while considering the first four days as the necessary model initialization period. Since the447

SOLENE-microclimat model has been introduced here on a perfectly clear day, a two-day448

period is sufficient to analyze model behavior under various stresses. Weather data acquired449

in 2010 for the city of Nantes are used as input model data. These data were recorded by450

the ONEVU (the IRSTV’s Nantes Metropolitan Environmental Observatory, Mestayer et451

al., 2011 [25]) at the Pin Sec station. Among the observations available, the following data452

are used as model inputs: air temperature, global and IR radiative fluxes. The combined453

parametric soil model has been used for each soil triangle in the scene. Three specific zones454

of this scene, with different net radiative heat flux balances, have been studied:455

• The centre of the square (Zone 1 see Figure 12).456

• The middle of the north-south canyon street (Zone 2 see Figure 12).457

• The middle of the east-west canyon street (Zone 3 see Figure 12).458
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3.3.2. Combined parametric model setup459

In order to model an entire urban scene, the surface heat balance of the combined para-

metric model needs to be adjusted to take the surrounding surfaces into consideration.

For this purpose, the POD+PGD parametric model will be coupled with a microclimate

tool. A Robin boundary condition has been considered; it depends on two heat fluxes:

a convective heat flux between the surface and the atmosphere, and a net radiative heat

flux. The convective flux is calculated with a constant convective heat transfer coefficient:

h “ 10 W.m´2.K´1. The radiative balance between the soil and surrounding surfaces

is calculated by the SOLENE-microclimat tool. As noted previously, the problem is first

solved by the finite difference method, whereby the finite difference model was coupled with

SOLENE-microclimat to simulate a day with a perfectly clear sky. Data from a single day

are then used to calculate the POD basis Φ with five modes (N “ 5). The PGD para-

metric model is built from the initial condition, the net radiative heat flux qnet and the air

temperature T a as parameters. This model can be described by the following equation:

T̃ n ` 1px, ζ1, ζ2, ζ3, ζ4, ζ5, qnet, T aq “
M
ÿ

i “ 1

Xipxq.Cipζ1q.Dipζ2q.Eipζ3q.Fipζ4q.Gipζ5q.Hipqnetq.IipT aq.

In the deep soil (below 1 meter), the temperature is assumed constant over the simulation460

period. Deep in the ground (several meters), the temperature remains constant from one461

season to the next and can be substituted by the average air temperature [1]. According to462

this assumption, the depth boundary condition has been set here at the mean air temperature463

signal over the entire period.464

3.3.3. Coupling method465

As described in the introduction, the SOLENE-microclimat tool is composed of several466

1D models assembled with a strong coupling method (i.e. the onion method). It was de-467

cided to couple the soil model extracted from the SOLENE-microclimat co-simulation loop.468

Along these lines, the numerical coupling technique employed was the ping-pong scheme,469

as described by Hensen (1995 [24]), which represents a weakly coupled strategy. The main470

idea here is to oscillate between the microclimate model and the parametric soil model. Each471

model uses the results from the other, as illustrated in Figure 14. First, SOLENE-microclimat472
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SOLENE-Microclimat

...

Parametric soil model

Figure 14: Co-simulation of the parametric soil model with SOLENE-microclimat, the net radiative heat flux

qnetptq and T px “ 0, tq as the soil surface temperature

calculates, by means of successive iterations (onion method), the street energy balance (short-473

and long-wave and convection heat fluxes) until convergence at time step n ` 1. The heat flux474

balance φK,Lpx, n ` 1q is then used by the parametric soil model to calculate the temperature475

of each surface Tsoilpx, n ` 1q. These data are then transferred to SOLENE-microclimat in or-476

der to initialize the next time step (n ` 2) of heat flux balance computation for the time step.477

The performance of the combined parametric soil model is compared to the finite difference478

soil model coupled to SOLENE-microclimat in the same manner. The results of the finite479

difference soil model are adopted as the reference solution. Since the soil models have been480

extracted from the SOLENE-microclimat co-simulation loop with the ping-pong coupling481

method, the soil temperature cannot be updated upon each internal SOLENE-microclimat482

iteration; moreover, the long-wave radiative heat flux cannot be updated with the calculated483

soil temperature. Such is the main limitation of this coupling method. However, since the484

coupling limitations are identical for the two outside soils, the error caused by this coupling485

method on the long-wave radiative heat flux has no impact on the comparative results.486
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Figure 15: Comparison of the calculated mean surface temperatures over the three zones by both the finite

difference and combined parametric soil models. Data from the corresponding zone have been used for the

learning step.

3.3.4. Influence of the learning area487

As discussed above, in order to obtain an efficient reduced-order model, the learning period488

needs to be as short as possible and representative of soil behavior. In an urban scene, each489

triangle has a unique surface heat balance that depends not only on meteorological conditions490

but also on its location (Fig. 13). The location of the triangles used to perform the learning491

process affects the dynamic model behavior. To evaluate the influence of these conditions on492

the model, several zones are compared with several learning areas. The aim here is to study493

the impact of the area assigned to perform the learning step on the results. As indicated in494

the introduction, surface temperature then becomes the key urban micro-climate variable; it495

drives the various heat fluxes at the urban surface. In order to evaluate the performance of496

this reduced model coupled with a microclimate tool, the surface temperature calculated by497

the combined parametric model is to be compared to that calculated by the finite difference498

model.499

Three learning zones are compared. For each of them, the POD basis is built on the500

data calculated by the finite difference model for the considered zone. Since the scene is501
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composed of thousands of triangles, the mean temperature results over the zone are used to502

perform the learning step. Figure 15 displays the mean surface temperature calculated over503

each zone, with a learning stage performed on each corresponding zone. Results are given504

for a PGD basis with M “ 38. The mean temperature signals of each zone, calculated with505

both models, overlap. The ROM (POD+PGD) correctly reproduces the dynamics, with a506

POD basis of 5 modes.507

Evaluation zone Zone 1: Zone 2: Zone 3:

the square North-South street East-West street

Learning zone used ε2px “ 0q ε2px “ 0q ε2px “ 0q

Zone 1 0.15 0.17 0.18

Zone 2 0.14 0.06 0.03

Zone 3 0.12 0.03 0.03

Table 4: ε2px “ 0q (˝C) calculated between the mean temperature output by the finite difference and

combined parametric soil models for April 4th and 5th in using different learning zones

Evaluation zone Zone 1: Zone 2: Zone 3:

the square North-South street East-West street

Learning zone used ε8 ε8 ε8

Zone 1 0.84 1.92 1.64

Zone 2 0.96 0.27 0.31

Zone 3 0.50 0.44 0.38

Table 5: ε8 (˝C) calculated between the mean temperature output by the finite difference and combined

parametric soil models for April 4th and 5th in using different learning zones

Lastly, in order to evaluate the behavior of the combined parametric soil model, the ε8508

error indicator is calculated from the output of the mean temperature of each zone, depending509

on the learning zone. The ℓ2 error is also derived at the surface since the surface temperature510

is the key urban micro-climate variable. Tables 4 and 5 list all these results. To obtain511

a model as accurate as that presented above at the surface (see Fig. 9), the POD basis512

comprises 5 modes. For this POD basis and the PGD basis containing 38 modes, the RMSE513

of the mean surface temperature remains less than 0.20˝C. Depending on the learning zone514
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targeted, the loss of accuracy varies from 0.03˝C to 0.18˝C at the surface. The maximum515

RMSE varies from 0.27˝C to 1.92˝C.516
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Figure 16: Evolution of the ε2pxq error for the three zones relative to the learning area used (i.e. the figure

in (a) provides the evolution of this ε2pxq error for zone 1. Each plot corresponds to one of the learning areas

used)

Figure 16 shows the evolution of the ε2pxq error for all three zones relative to the learning517

area used. Results vary by learning zone. Zone 1 (Fig. 16(a)) is not affected by the shading.518

The temperature range then is most significant in this zone compared to the other zones519

(37.0˝C amplitude). At the surface, the loss of accuracy increases when the learning process520

is performed on the streets (zones 2 and 3). The model does not easily reproduce a signal with521
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an amplitude larger than that learned. The two streets (zones 2 and 3) exhibit very different522

surface heat balances. The temperature signal of zone 2 (Fig. 16(b)) has an amplitude of523

27.4˝C. The temperature increases suddenly and then decreases gradually. However, the524

temperature signal of zone 3 (Fig. 16(c)) gradually increases and then decreases but with525

a smaller amplitude: 22.2˝C. The dynamic of both temperature profiles is very distinct,526

which has consequences on the accuracy of the POD+PGD parametric soil model. For each527

zone, the error is smaller when the learning conditions are met: the calculated area is the528

same as that used during the learning stage. For the other zones, the loss of accuracy is529

greater. For example, the maximum Zone 1 error ε8 “ 0.84˝C occurs when the learning530

period is performed on this zone, and 0.1.92˝C when the learning process is performed on531

zone 2 (see Table 5). This finding illustrates that both the learning period and location must532

be representative of the soil thermal behavior in order to generate accurate results.533

3.3.5. Calculation cost and time534

The model is also evaluated with respect to its computational cost. Two methods are used535

herein to compare the combined parametric model with the finite difference model, namely536

the number of problem degrees of freedom, and CPU time. For both the finite difference537

and combined parametric models, the most expensive operation is to reverse the problem538

matrix. The number of problem degrees of freedom often yields direct information on the539

computational complexity of the problem and its cost [16]. With the finite difference model,540

a system of Nt time steps and Nx nodes needs to be solved. With the PGD parametric model,541

the size of the system depends on Nt and the number of POD modes N. The computational542

cost reduction can then be estimated by: 1 ´ N

Nt
. In our case study, the model was run for 5543

modes and 157 time steps (6 days), for a 96.5% cost reduction.544

The previous method however does not take into account all the additional operations,545

like additions and multiplications, due to the PGD parametric model, the coupling, etc.546

Consequently, CPU time is used to produce an estimation of the actual drop in computational547

cost. The CPU times of all simulations (performed on the same computer) were calculated548

for both soil models (POD+PGD and FD); it includes all online operations due to the model549

and its coupling with SOLENE-microclimat. The simulation time was averaged over 11 runs550
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Step CPU time for M “ 38

Offline no.1: Building the POD basis 503.5

Offline no.2: Building the PGD parametric model 375.0

Online : Use of the Finite Difference Model 503.4

Online : Use of the Combine Parametric model 99.4

Online Calculation cost reduction 80%

Table 6: Mean CPU computation time for each step (see Fig. 4 for a description of the offline/online steps)

for each soil model. The simulations performed with the finite difference model required on551

average 503.4 sec, while the combined parametric model time amounted to 99.4 sec with 38552

modes. The actual cost reduction for this urban scene is 80% with 38 modes. The number of553

modes used in the PGD basis has little influence on the online computation time, yet it does554

affect the offline steps and the accuracy of the PGD model. This computation time depends555

on: the urban scene, the duration of the simulated period, the proportion of soil triangles in556

the scene (32% in this case), and the specifications of the computer used. However, it does557

not take into account the time spent offline to build the POD basis.558

4. Conclusion559

The main objective of this paper has been to propose a reduced urban soil model that560

precisely reproduces the surface temperature and thermal heat flux exchanged between the561

soil and the urban scene with a reduced computation time. In this aim, a combination of two562

order-reduction methods has been proposed. The PGD method is used to build a parametric563

solution, while the POD method configures the initial condition with a minimum number of564

parameters. The compound method is then composed of an offline phase (learning step plus565

creation of the parametric model) and an online phase (use of the parametric model).566

The POD+PGD parametric soil model was first validated using a simple case with a567

known analytical solution. The parametric model solutions with 4 modes and the finite dif-568

ference model produced similar results with an RMSE of 0.03˝C at the surface and 0.01˝C569

at a depth of 0.5 m. This first case study illustrates the numerical behavior of the com-570

bined parametric model, which has been considered accurate enough to be applied to other571
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situations.572

The parametric model was then applied to an actual case study in an open space, more573

specifically a parking lot. For both models (POD+PGD ROM, FD), the temporal temper-574

ature variation at the surface and at several depths was well reproduced compared to the575

measurements. The loss of accuracy due to model reduction for an entire learning period576

remains below 0.30˝C (POD+PGD ROM/FD) at the surface with an RMSE of 1.24˝C with577

the measurements (POD+PGD ROM/measurements).578

Beyond the loss due to the PGD algorithm, this accuracy drop is due to the POD ba-579

sis accuracy, which depends directly on the learning period. Various learning periods were580

compared herein. As expected, the model is accurate when run under the same tempo-581

ral boundary conditions. Complex signals, such as watering events, are more difficult to582

model accurately, which is why selecting a short and representative learning period is key to583

obtaining an efficient parametric model.584

The combined parametric soil model was then used in the case of a theoretical urban585

scene with two canyon streets; it was coupled with the SOLENE-microclimat simulation tool586

using the ping-pong co-simulation scheme. For a POD basis containing 5 modes and a PGD587

basis composed of 38 modes, the RMSE of the mean surface temperature remained less than588

0.20˝C. Since each triangle of an urban scene has different loadings depending on its location,589

the accuracy of the model varies with the location of the area used for the learning process.590

These two case studies illustrate the difficulties encountered when selecting a represen-591

tative learning period, which must be short and representative of boundary conditions (me-592

teorological conditions, materials, location of the triangle, etc.) inherent in the simulated593

soil. The selection of an efficient learning period - sample pair is a new challenge to ensuring594

model efficiency.595

In conclusions, the proposed ROM is able to accurately represent the thermal heat flux596

exchanged between the soil and the urban scene. For our specific urban case study (30%597

of soil triangles in the scene and a one-week simulation period), the computational cost598
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reduction amounts to 80%. And this time only takes into account the online part. Further599

work must now be carried out to improve the offline part, i.e. the learning process.600

A. Description of the analytical solution601

The analytical solution TASpx, tq of problem 1 from the EXACT toolbox [21] is described602

hereafter.603

The problem is normalised with the following dimensionless variables:

x̃ “ x
L
; t̃ “ αt

L2 ; ω̃ “ ω.L2

α
; B “ hconv .L

k

The solution is given by the following equation:

TASpx, tq

T8
“ Real

„

B.eiω̃t̃.
p1 ` Rq.re´σ̃x̃ ´ e´σ̃p2´x̃qs

2.σ̃p1 ` R.e´2σ̃q



´ 2B
8
ÿ

m “ 1

β2

m.e
´β2

m.t̃

β4
m ` ω̃2

.
rβm cospβmx̃q ` B sinpβmx̃qsβm

β2
m ` B2 ` B

(A.1)

with : σ2 “ iω
α

; σ̃ “ σL ; R “ σ̃´B
σ̃ ` B

; ´B “ βm cot βm604

The notation Real refers to the real part of the complex expression. βm values are the positive605

roots of βm cot βm “ ´B.606

B. Building the POD basis Φ607

The POD method consists of searching for a set of basis functions Φ that approximates608

the temperature profile T px, tq from the eigenvalues and eigenmodes (Eq. (3)). This method609

follows three steps:610

• First, the LOM is solved. Here, the finite difference model is used to calculate the611

temperature profile in the soil for a given set of boundary conditions
`

q a , T a
˘

.612

• Then, from this dataset, the reduced-order model is built.613

• Finally, this model can be used under a new set of conditions.614

The temperature profile obtained from the LOM constitutes a collection of snapshots stored615

in a matrix QpNx, Ntq, in which each column represents a snapshot of the temperature profile616

at a given time step. This matrix defines the terms of the learning process and has an impact617
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on the reduced model performance. For this reason, the snapshots must be representative of618

the problem (boundary values, initial conditions, materials used). The basis Φ capturing the619

greatest amount of energy from a system with a minimum number of degrees of freedom is620

formed by the eigenvectors of the problem:621

γ.Φ “ λ.Φ (B.1)

622

γ “ QQT (B.2)

623

From the snapshots matrix Q, the auto-correlation matrix γ can then be calculated.624

Next, the eigenmodes (eigenvalues and eigenvectors) are calculated in solving the eigenvalue625

problem (Equation B.1). The temperature profile is now approximated by N eigenvectors626

Φi associated with their N eigenvalues λi with Nx ě N ě 1.627

λ1 ě ... ě λi ě ... ě λN ě 0

Nx ě N ě 1
(B.3)

Each eigenvalue represents the portion of energy captured by a mode. Several criteria may628

be used to select the optimal number of modes. In most examples, an arbitrary threshold is629

set depending either on the ratio between the first and current eigenvalues (λN ą η λ1) or630

on the portion of energy captured (
řN
k “ 1

λk
řNx
i “ 1

λi
ą 0.999). In the field of fluid dynamics, Sirovich631

et al. (1991 [26]) used a combination of both criteria. Moreover, according to Sempey632

(2007, [27]), these criteria must be adjusted to each specific problem. The reduced basis Φ633

of order N can now be written in the following form:634

Φ “
´

Φ1 Φ2 ... ΦN

¯

“

¨

˚

˚

˚

˚

˚

˚

˝

Φ1px1q Φ2px1q ... ΦN px1q

Φ1px2q Φ2px2q ... ΦN px2q

... ... ... ...

Φ1pxNxq Φ2pxNxq ... ΦN pxNxq

˛

‹

‹

‹

‹

‹

‹

‚

(B.4)

635
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C. Development of the alternating direction strategy636

C.1. Computation of F p
mpT nq from Xp

mpxq and Gp´1
m pψq637

Eq. (7) is inserted into Eq. (5), with the following test function (Eq. (C.1)).638

u˚px, T n, ψq “ Xp
mpxq.F ˚mpT nq.Gp´1

m pψq “ X.F ˚.G (C.1)

We obtain the following equation:639

ż

ΩxˆΩT nˆΩψ

X .F ˚ . G

ˆ

c
X . F .G

∆t
´

B

Bx

ˆ

k
BX

Bx

˙

. F .G

˙

dx. dT n. dψ

´

ż

ΩxˆΩT nˆΩψ

X .F ˚ . G . c
T n

∆t
dx. dT n. dψ

“ ´

ż

ΩxˆΩT nˆΩψ

X .F ˚ . G

m´1
ÿ

i “ 1

ˆ

c
X i.F i.G i

∆t
´

B

Bx

ˆ

k
BX i

Bx

˙

. F i . G i

˙

dx. dT n. dψ

Since all the functions that depend on parametric coordinate ψ and x are known, they640

can be integrated over their domain: Ωx and Ωψ.641
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ş
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pXq dx

x2 “
ş

Ωx
pXq2 dx

x3 “
ş

Ωx

ˆ

X. B
Bx

ˆ

k BX
Bx

˙˙

dx

g1 “
ş

Ωψ
pGq dψ

g2 “
ş

Ωψ
pGq2 dψ

xi,1 “
ş

Ωx
pX.Xiq dx

xi,2 “
ş

Ωx

ˆ

X. B
Bx

ˆ

k BXi
Bx

˙˙

dx

gi “
ş

Ωψ
pG.Giq dψ

(C.2)

We derive the following algebraic equation (12), whose direct solution yields the function F.642

F.
´ c

∆t
x2 g2 ´ x3 g2

¯

“ ´
m´1
ÿ

i “ 1

ˆ

c
Fi

∆t
xi,1 gi ´ Fi xi,2 gi

˙

` x1 g1 c
T n

∆t
(C.3)

C.2. Computation of Gp
mpψq from Xp

mpxq and F p
mpT nq643

Eq. (7) is inserted into Eq. (5), with the following test function (Eq. (C.4))644

u˚px, T n, ψq “ Xp
mpxq.FmpT nq.G˚mpψq “ X.F.G˚ (C.4)
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We obtain the following equation:645

ż

ΩxˆΩT nˆΩψ

X .F .G˚
ˆ

c
X . F .G

∆t
´

B

Bx

ˆ

k
BX

Bx

˙

. F .G

˙

dx. dT n. dψ

´

ż

ΩxˆΩT nˆΩψ

X .F .G˚ . c
T n

∆t
dx. dT n. dψ

“ ´

ż

ΩxˆΩT nˆΩψ

X .F .G˚
m´1
ÿ

i “ 1

ˆ

c
X i.F i.G i

∆t
´

B

Bx

ˆ

k
BX i

Bx

˙

. F i . G i

˙

dx. dT n. dψ

Since all the functions that depend on parametric coordinate x and T n are known, they can646

be integrated over their domain: Ωx and ΩT n .647
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X. B
Bx

ˆ
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˙˙
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f1 “
ş
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pF q dT n

f2 “
ş

ΩT n
pF q2 dT n

xi,1 “
ş

Ωx
pX.Xiq dx

xi,2 “
ş

Ωx

ˆ

X. B
Bx

ˆ

k BXi
Bx

˙˙

dx

fi “
ş

ΩT n
pF.Fiq dT n

(C.5)

We derive the following algebraic equation (13), whose direct solution yields the function G.648

G
´ c

∆t
x2 f2 ´ x3 f2

¯

“ ´
m´1
ÿ

i “ 1

ˆ

c
Gi

∆t
.xi,1.fi ´ Gi xi,2 fi

˙

` x1 f1 c
T n

∆t
(C.6)
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[18] E. Cueto, D. González, I. Alfaro, Proper Generalized Decompositions, SpringerBriefs in695

Applied Sciences and Technology, Springer International Publishing, Cham, 2016. DOI:696

10.1007/978-3-319-29994-5.697

[19] F. Chinesta, R. Keunings, A. Leygue, The proper generalized decomposition for ad-698

vanced numerical simulations: a primer, Springer Science & Business Media, 2013.699
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