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Abstract This paper is concerned with extending the strati-
graphic model previously introduced by Eymard et al. [Int.
J. Numer. Methods Engrg. 60, 527-548 (2004)] and subse-
quently studied by Gervais and her coauthors for the simula-
tion of large scale transport processes of sediments, subject
to an erosion constraint. Two major novelties are considered:
(i) the diffusion law relating the flux of sediments and the
slope of the topography is now nonlinear and involves a p-
Laplacian with p > 2 in order for landscape evolutions to
be more realistic; (ii) the sediment transport is now inter-
twined with the water flows due to lakes and rivers via a di-
rect coupling at the continuous PDE level, which avoids em-
pirical algorithms at the discrete level such as MFD (Multi-
ple Flow Directions) at the price of additional p-Laplacians.
Aimed at enriching the capabilities of IFPEN’s simulator,
these sophistications entail the construction of a new finite
volume scheme, the details of which are supplied. The phys-
ical model is validated through several test cases. Finally, a
further extension of the model to the case of multiple litholo-
gies is presented, along with numerical results.

Keywords stratigraphic forward modeling - weather-
limited erosion - p-Laplacian - complementarity problem

1 Introduction

The knowledge of subsoil structure lies at the heart of vari-
ous fields, such as CO, sequestration, management of wa-
ter resources, exploitation of geothermal energy, where a
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detailed description of sediment layers geometry and their
composition (sands, shales...) is often required. The ability
to trace back the geological history of sedimentary basins is
thus a key asset for the study of energetic georesources.

Sedimentary basins can be seen as large areas (hundreds
of squared kilometers) where sediments due to erosion or
other sources keep accumulating. Generally located in ma-
rine domains, some may also be found on the continent.
Over large periods of time (millions of years), this leads to
the formation of sediment layers, whose composition may
vary according to environmental conditions.

The physical processes that account for the evolution of
sedimentary basins are numerous and complex, but mainly
depend on three parameters. The first one is the accommo-
dation, that is, the available space for sedimentation. It is a
direct consequence of tectonic processes, subsidence (down-
ward motion of the earth’s surface) and eustatism (sea level
variations). The second one is the sediment supplies. These
originate from erosion of neighbouring mountains, rivers
bed load, or may be produced in situ (carbonates, corals).
The third one is the sediment transport. Here, gravity plays
an essential role, but rivers and submarine currents are also
crucially involved.

The study the above processes over large time scales is
the goal of stratigraphic modeling. For this purpose, geolo-
gists have two kinds of field data at their disposal. On one
side, we have seismic data obtained by recording the reflec-
tion of waves emitted at the earth’s surface. These enable us
to estimate large areas but may not be accurate enough. On
the other side, we have well-log data associated with a few
given wells. These allow us to identify the type of sediments,
along with their physical properties. Using these field data,
a geological model can be designed in order to rebuild the
infill scenario of the basin.

However, in complex or poorly known configurations
(either by lack of data or low resolution), classical interpo-
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lation techniques reach their limit and it becomes necessary
to resort to other approaches. Numerical simulation then ap-
pears as a suitable tool to test different infill scenarios of sed-
imentary basins and to find the best match with field data.
As many hypothetical configurations have to be tried, it is
vital that the stratigraphic model selected for simulation be
efficient, both in terms of realism and computational time.

The stratigraphic model implemented in IFPEN’s soft-
ware DionisosFlow dates back to the nineties with the found-
ing principles set up by Granjeon [24], notably regarding
the maximal erosion rate. Granjeon’s discrete algorithm for
the erosion constraint was later reformulated by Eymard et
al. [16] as the explicit discretization of a continuous PDE
system in which the erosion constraint takes the form of
a complementarity equation. This interpretation paved the
way for an implicit discretization allowing for much larger
time-steps, undertaken afterwards by Gervais [20] (see also
[13, 14, 21, 22] for related mathematical aspects). Thanks
to this achievement DionisosFlow remained competitive for
about a decade, until it was decided to endow the code with
two advanced physical phenomena.

The first novelty of interest is the tracking of knickpoints,
which are commonly observed in natural landscape evolu-
tions. This is only possible if the underlying diffusion pro-
cess occurs at finite speed. Propagation at finite speed can in
turn be guaranteed by some kind of nonlinear dependence of
the sediment flux with respect to the gradient of the topog-
raphy. By “some kind of nonlinear dependence,” we mean
that the sediment flux is proportional to |Vh|P~2Vh —where
h denotes the height of sediments and p > 2— instead of
Vh as is the case in [20]. The appearance of the p-Laplacian
makes the Two-Point Flux Approximation of [20] obsolete.
To correctly approximate |V/|P~2, Cancés et al. [7] (see also
Peton [28]) sketched out a solution inspired from the work
of Andreianov et al. [1]. We take the opportunity of this pa-
per to provide full details of the new scheme.

The second novelty of interest is the water effects asso-
ciated with the impact of rivers and lakes. In this respect sev-
eral discrete algorithms, known as Multiple Flow Directions
(MFD), are available (see Freeman [19], Holmgren [25],
Quinn et al. [29] or Tarboton [32]). However, they suffer
from many drawbacks: apart from being non-parallelizable
and highly sensitive to the grid orientation effect, none of
them has a clear limit as the mesh size goes to zero. Put an-
other way, none of them can be understood as a discretiza-
tion of some continuous PDE system. Here, the situation is
worse than what happened with the discrete algorithm for
the erosion constraint, where such an interpretation was pos-
sible. For all these reasons, we advocate to give up the MFD
algorithms and to look for a direct coupling between sed-
iment transport and water effects at the continuous level,
based on fluid mechanics and empirical laws from sedimen-
tology. The model we propose involves two additional p-

Laplacians, one with p = 3/2 and the other with p = 5/2.
It bears strong analogies with but remains differ from that
of Birnir et al. [6]. Let us also mention a few remote works
that rest upon a similar coupling philosophy but the scales of
which are much smaller than ours: Delestre et al. [9] on rain-
water overland-flows, Cordier et al. [8] on bedload transport,
and Audusse et al. [2] on sedimentary river beds.

This paper is outlined as follows. In §2, we derive the
stratigraphic model in the case of one lithology. This model
takes into account the nonlinear sediment diffusion and the
water flows, in addition to the preexisting erosion constraint.
Some properties of the model are enumerated in §3. The
construction of an appropriate Finite Volume scheme is ad-
dressed in §4, where as a preliminary step we focus on the
unsteady p-Laplacian equation in order to highlight the in-
trinsic difficulties of the problem. Unlike Gervais [20], we
recommend the Newton-min method to solve the overall al-
gebraic system arising at each time-step, in place of the va-
riable switching procedure. Some properties of the scheme
are elaborated on in §5, among which the existence of a dis-
crete solution. In §6, numerical results corresponding to two
test cases are analyzed and commented on. Finally, in §7, we
extend the model to the multi-lithology case, where most
of the methods developed for the single-lithology case are
easily carried over. Notwithstanding, specific features need
to be handled, such as the sediment columns and their dis-
cretization.

2 Derivation of the stratigraphic model

We start by revisiting some fundamentals of fluid mechanics
in §2.1, in order to bring out reliable approximations for our
problem. Since the emphasis is laid mostly on the coupling
of sediment transport with water effects, the treatment of the
erosion rate is postponed to §2.2. The reader uninterested in
the derivation is referred to §2.3, where the full model is
stated.

2.1 Approximate balance laws

In a first stage, we put aside gravity diffusion and look for
two conservation laws: one for the water height (denoted by
h), and the other for the sediment height (denoted by £).

Let us consider a water flow in a channel. Based on the
approach of Birnir et al. [6] for modeling long time approxi-
mations of water flows, our analysis takes the shallow water
equations with friction

oh  +div(im) =0, (1a)
9, (ht) + div(hi @) + ghV (h+ h) = —Clulu, (1b)
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Sea level
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Fig. 1: Notations for the stratigraphic model: h denotes the
water height and & the sediment height.

as a starting point, where u represents the water speed, g de-
notes the acceleration due to gravity, and C is the friction co-
efficient. The latter is assumed to be a constant. Introducing
two characteristic heights H , H (hundreds of meters), a char-
acteristic length L (hundreds of kilometers), a characteristic
time 7" (millions of years), we proceed to nondimensionalize
(1) by defining the nondimensional variables
P_h Zl:ﬁ7 ﬁ:i7 );:f’ y:X7 f:£7
H H U L L T
where U = L /T is the characteristic speed. It is readily check-
ed that system (1) is equivalent to

pa

o -+ div(mi) —o0,

Xy gHT?x_x gHT?x

() + div (i 05) + 53 L

For sedimentary basins, the water and sediment heights are
usually small compared to the domain size. More precisely,
the flow regime is such that we have

gI-NI T2
12

gHT? CL
1, =>1.
> 5 >

> 1,

This suggests to neglect the inertia terms in the nondimen-
sionalized momentum balance, which is commonly known
as hydrostatic approximation. Returning to its dimensional-
ized counterpart (1b), the equilibrium of the driving forces
reads

[aja = —K*hV(h+h). )

Here K? = g/C can be seen as the Chézy coefficient [23].
By inverting formula (2), we can express the water speed as

U= —Kh'2\V(h+n)|"">V(h+h). A3)
Then, combining equations (1a) and (3), we obtain
O h+div(—Kh>2|V (h+ )|~V (h 4+ h)) = 0. (4)

which is the desired conservation law for the water height.
Next, we switch to sediments. Contrary to the case of

water, we will use empirical laws. These are described in

various textbooks (see, e.g., Granjeon [24]) and stipulate

WV =V = = fulu.

that the sediment flux F is proportional to the shear stress
due to water (denoted by 7) to the power 3/2, i.e.,

F = k|7|'/?7, (5)

where k is a constant. Here we suppose that the water flow
is strong enough to induce a constant sediment flow, hence
we do not consider critical shear stress in equation (5). Since
we are working over large time and space scales, the stress
T takes the form

T =—pghV(h+h), ©6)

where p represents the water density and g is the accelera-
tion due to gravity. By plugging (6) into (5), we end up with
the sediment flux

F = —k(pg)®>*h**|V (h+h)|'>V(h+h).

For practical reasons, we choose to use a further approxima-
tion. Once again, as we are working over large time scales,
water flows along slopes with only thin streams. In other
words, the gradient of the total height V(EJr h) is almost
similar to VA, except for regions containing lakes. However,
in that specific case, we suppose for the sake of simplicity
that the sediment flow follows the topography slope, namely,
Vh. This approximation yields

F = —Ki*?|V(h+h)|'>Vh (7)

as the new definition of the sediment flux, with K = k(pg) 3.

In a second stage, we recover gravity diffusion by adding
an extra term to definition (7) of the sediment flux. The new
sediment flux reads

F = —K(W)*?|V(h+h)|'>Vh— K, (h)|VRIP~2Vh,  (8)
and the desired conservation law for the sediment height is
dh+divF = 0. ®)

The exponent p in (8) must be greater than 2 to ensure fi-
nite propagation speed [4,26]. As functions of the sediment
height A, the diffusion coefficients K and K, often take two
values so as to mark the difference between continental and
marine domains, that is,

| K, ifh<H,,

K(h) = {K if h > H,, (102)
| Kgm, ifh<H,,

Ke(h) = {K&c, if h > H,, (10b)

where H,, represents the (known) sea level.
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2.2 Maximal erosion rate

The balance laws (4) and (9) are not sufficient to faithfully
reflect the evolution of sedimentary basins. Indeed, accord-
ing to geomorphologists, sedimentation (d,4 > 0) and ero-
sion (d;h < 0) are non-symmetric processes: soil material
must first be produced in situ by weathering process prior
to being transported by diffusion. Granjeon [24] postulated
that the erosion is limited from below by —FE, where E > 0
is a known maximal erosion rate depending on the climate,
the type of sediments, and the bathymetry, so that

h+E > 0. (11)

To impose this constraint while preserving conservativity of
the sediment height, Eymard et al. [16] introduced a new
variable A € (0,1] called flux limiter and modified (9) as

dh+div(AF) =0,

Locally, either the erosion constraint is saturated (d;h+ E =
0) or the flux is unlimited (A = 1). This is best formulated
by means of the complementarity condition

1-A>0, dh+E>0, (1—A)(dhh+E)=0, (12)
which can be further condensed into the more convenient
equation

min(1—A,d,h+E)=0. (13)

Intuitively, this constraint can be viewed as a way to intro-
duce some a priori information on the availability of the sed-
iment. As illustrated in the two lower panels of Figure 2, as
soon as the maximal amount of sediment EA¢ available for
the time-step has been “consumed” somewhere, the diffu-
sion process abruptly stops at this place.

2.3 Full model

The stratigraphic model we will study is made up of the two
previous conservation laws and the constraint on the ero-
sion rate. In equation (13), the second argument of the min
function is replaced by E — div(AF) to eliminate the time
derivative. Let Q C R? be an open connected bounded do-
main representing the basin. With a slight abuse of notation,
the symbol 7' now stands for the simulation time. The un-
knowns &, h and A are functions of (x,z) € 2 x [0,7] and
solve

Oh+ div (F) =0, onQx[0,T], (14a)
dh+ div(AF) =0, onQx[0,7], (14b)
min(1—A,E —div(AF)) =0, onQ x[0,7T], (14c)

where the fluxes are written under the form

F=—K(h")2|V(h+h)| >V (h+h), (15a)
F = —(h")*2|V(h+h)|">Vy(h) — VRV, (h),
(15b)
with the functions
h
w(h) = / K(a)da, (162)
h
Yo (h) = . K,(a)da. (16b)

In the definition of the fluxes (15), positive parts have been
introduced in order to raise / to the power 3/2. This is nec-
essary, even though we expect this quantity to remain non-
negative. Furthermore, this alteration will be useful at the
discrete level to avoid singularities (e.g., while using New-
ton’s method). To close the physical model, we prescribe
Neumann-type boundary conditions corresponding to water
and sediment inflows as

F-n=¢<0, ond®x|0,T], (17a)
Fn=¢<0, ondQx][0,T]. (17b)
Finally, initial states are given by

hli—o=H°, onQ, (18a)
hl—o=h", onQ, (18b)

with 0 < #° < " and h, < k0 < h* for some hy, h*, h* € R.

3 Basic properties of the model

Before thinking about a numerical scheme for the model
(14)—(18), it is helpful to enumerate some of its properties
at the continuous level. Let us assume that Z, h and A are
smooth solutions in order to justify the calculations below.
We also admit that the flux limiter A is positive, which will
be proven at the discrete level in Lemma 4.

Lemma 1 (Nonnegativity of the water height) The water

height is nonnegative, i.e.,
>0 inQxR,. (19)

Proof LetT € [0, T]. Multiplying the conservation law (14a)
by the negative part A~ and integrating over £ x [0, T] yields

T ~ ~ T ~ ~ o~
//h_z?,hdxdydﬂr//h_div(fK(h+)3/2
0.J/Q 0.J/Q
X |V(h+h)|"'?V(h+h))dxdydr =0. (20)

In the first integral, we notice that i~ 9k = a,[%(ﬁ—)Z]. In
the second integral, we apply the Green theorem and invoke
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h h
Sea level Sea level
—
Sediments Sediments
X x
Time ¢ Time 1 + At
(a) Evolution of the system without constraint.
h h
Sea level Sea level
—
Sedilnents ....................... SEdnnenls .........................
X X
Time ¢ Time 7 + At
(b) Evolution of the system with constraint.
Fig. 2: Comparison of the system evolution with and without constraint on the erosion process.
T 74\3/2 T 74\3/2 cqs . .. .
the fact h~ (h) /2 and Vi (hT) /2 vanish identically. Asa  This implies /(-,T) > h, over £. O

result, equation (20) boils down to

Td 1~ 1~
— fh’zdxdz/fh’z drdy =0
|5 |30 P asay= [ 2G|, ardy=o,
since the initial water height is nonnegative. From this for-
mula, we infer that A~ (-,T) =0 on Q. O

Lemma 2 (Estimate on the sediment height) The sedi-
ment height is uniformly bounded from below, i.e.,

h>h, inQxR,. @1)

Proof LetT € [0, T]. Multiplying the conservation law (14b)
by the negative part (h—h,)~ and integrating over Q x [0, T]
yields

T
//(h—h*)’&hdxdydt
0JQ
T
+/ / (h—h,)~div(AF)drdyds = 0.
0JQ

In the first integral, we notice that (i —h,)~dh =9[4 (h—
h.)~]?. In the second second, we apply the Green theorem.
Expanding the formula of the sediment flux and arguing as
in Lemma 1, we end up with

/%[(h—h*)*]z  dxdy <0,
Q t=T

Lemma 3 (Mass conservation of water and sediments)
At any time T € [0, T, the water and sediment heights satisfy

~ ~ T ~
/h|,=dedy=/ hodxdy—// ddodr,
Q0 Q0 0 JoQ

T
/h|,:dedy:/hodxdy—// ¢dodr.
Q Q 0 JoQ

Proof Straightforward by integrating (14a)—(14b) over Q x
[0, T] and by using the Stokes formula. O

(22a)

(22b)

4 Finite Volume discretization

To compute an approximate solution of (14)—(18), our task
to devise a Finite Volume scheme that correctly takes into
account various p-Laplacians and that coincides as much
as possible with the method of [13, 14, 21, 22] for p = 2
and without any water. To clearly perceive the discretization
of a p-Laplacian, we first focus on a simpler configuration,
namely, the unsteady p-Laplacian equation.

4.1 Notations

The rectangular domain = [0,L,] x [0,L,] is discretized
into N, x Ny uniform cells of size Ax X Ay = Ly /N, X Ly /Ny,
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where N, N, are two positive integers. The cell (i, j), de-
noted by €; ;, is centered at x;; = ((i—1/2)Ax, (j—1/2)Ay).
The boundary dQ2 of the domain is divided into four parts
I,,I;,1I; and I;, as depicted in Figure 3. Time is discretized

by0=1"<t! <... <" < ..., using the time-steps At" =
tn+1 —,

L
o o . o
I ¢ e, j+. 1 Giv lfj+1 ° .
* G ' Givr *
AyI . . . °
— I

Fig. 3: Finite Volume notations.

4.2 A simpler case: the unsteady p-Laplacian equation

The unsteady p-Laplacian equation contains a core difficulty
of system (14)—(18). The unknown % : 2 x R, — R is mo-
mentarily assumed to solve the PDE

dh+divF =0, (23)
with the flux
F=—|VhP2Vh, p>1. (24)

It is known that the elementary solution, called Barenblatt
[4], behaves differently [10,26] according to whether the ex-
ponent p is greater or less than 2, as illustrated in Figure 4. If
p > 2 the solution is compactly supported and the diffusion
speed is finite. If p < 2 the solution does not have a compact
support at each time ¢ > 0 and the diffusion speed is infinite.
The linear case p = 2 is the classical heat equation.

In the Finite Volume context, the principal difficulty lies
in approximating the term |V/|P~2 at each interface between
the cells. Over rectangular meshes, Andreianov et al. [1] has
developped a method for the stationary p-Laplacian equa-
tion. Here we adapt their method to the unsteady version by
first computing an approximation of |V4"|? on each dual cell
(cf. Figure 5) using the formula

n no\2 n n 2
o U 7\ (R e =
/241275 Ax *3 Ax

i+1,j+1

then by raising the result to the power (p —2)/2 to get an
approximation of |[VA"|P~2, It is worth noticing that the ap-
proximation (25) is coercive, i.e., it cannot vanish unless the
four values on the dual cell are identical. Coercivity holds
naturally without any stabilization, as is customarily required
in other Finite Volume methods for nonlinear elliptic prob-
lems, such as those proposed by Droniou [12] and Eymard et
al. [18] over general meshes. This is a significant advantage
of Andreianov et al.’s scheme.

The discrete flux at each inner edge of the domain is
given, in the case p > 2, by the semi-implicit formulae

rn 1 7 - 7 -
Fi++1}2,j: _E[(Bi+1/2~,j—1/2)p/2 1+(Bi+1/2,j+1/2)p/2 1]

WL — it
i+1,j bJ
) B 26
x Ax 20
. 1
] 21 2—1
Fifl;l/z ) [(B;lfl/z,jﬂ/z)[)/ + (B?+1/2»J'+1/2)P/ ]
Wl —
i,j+ L]
— 0 (26b
% i (26b)

The choice of keeping the approximation of |VA|P~2 explicit
is motivated by saving computational cost. Numerical exper-
iments testify to the fact that the semi-implicit scheme com-
pares well with the full implicit one. If p < 2, a regulariza-
tion is needed to avoid singularities. In that case, Bl'.’ 12,412
is replaced by max(BY, | /2,j41/2° €), with € > 0 small. For all
p > 1, the Finite Volume scheme reads

ron+1

n+1 en+1 gl on+l
Wiy =h iy~ Ficip JrFi,j+1/2 P
At Ax Ay
(27)
for 1 <i<KNyand 1< j<N,.

Gon, G ,
R S T P St EETY BEF B D oo L e
1 1 1 1 1 1
: 1 1 1 1 :

1 1 1 1 1 1
e--F--9--d---@---}--- ¢---f--o--4---9
h X X : 4 1
1 1 1 1 1 1
1 1 1 1 1 1
CHCIE R Wy (pliy JRplply R ¢-=--f--0--J-=-09
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
S E S £t S R R s
1 1 1 1 1 1
H i ) i i H
PPN ENEPY R PR R —— PRI PN -

1 1 1 1 1 1
1 1 1 1 1 1
i 1 1 1 1 i
Hoodboadsoodlaoatiooal boao Boodboodsood|loags?
60,0 ENet1,0

L /R =N k! "\
4= i,j+1 LJ + = it+1,j . X . T . . .
) 7Ay ) Ay ) Fig. 5: Mesh illustration: initial domain € (in white), ghost

(25)

cells (in orange) and dual mesh (in red).
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0.45

0.4 |

0.35 |

03 |

h(x,t)

(a) Slow diffusion case (p > 2).

0.3

wnno

e 1
VNON

©ToTT

0.25 |

0.2 |

0.15 |-

h(x,t)

01

0.05 |-

20

(b) Fast diffusion case (p < 2).

Fig. 4: Elementary solution in 1D at time ¢ = 1.

Since normal fluxes are prescribed on the boundary, it
seems at first sight that the scheme (27) is well defined ev-
erywhere and there is no need to define the B*’s at the bound-
ary. Nevertheless, this impression is dispelled upon close in-
spection of the fluxes tangential to the boundary. Let us take
a look at the Figure 5. The approximation of the blue flux,
associated to an inner edge, can be directly computed using
(26). On the contrary, for the purple one which is tangential
to the domain, we observe that data outside of £2 are needed
to perform its approximation.

To remedy this issue, we consider a layer of ghost cells
around the initial domain, and associate a new unknown A
to each of these cells. To have a well-posed system we then
need to add as much equations as ghost cells. The idea is
to link the value of the new unknowns with the fluxes pre-
scribed at the boundary. For 1 <i < Ny, 1 < j < N,, the
equations take the form

tn+
I: Fr) / 0,/)dxdr =0
b2 AxAt o i 1Ax¢(x’ ) ) )
+1 i pidy
0. / / 0(0,y,1)dydsr =0,
25 Ayar J Ny

tn+
. pntl
I;: Fi,Nerl/Z AxAt/, /l Dax ¢(x,Ly,1)dxdr =0,
_— tn+ JjAy
. n
E'FNX+1/2,j AyAtZ / x;%)dydt O

There remain four ghost cells at the corners i € {0, N, + 1},
7 €{0,N,+1}, to be taken care of. For simplicity, we choose
to use an extrapolation of the neighbouring values, that is,

CgO,O . hn+1 +h"+1 7hn+1 *hgjl _ 07
CNe+1,0 hx,jil 0 +hn+l h;'vjil Y -
CONy+1 - hﬁjviﬂ —&—h”“ _ hrﬁvl‘+1 _ hn+1 o,
CgNXH‘M’H : th}rlvl\’yH +h7\/+1 h;l\’t}\’v—&-l h;l\’;l—l Ny = =0.

4.3 Numerical scheme for the stratigraphic model

We are now in a position to return to the stratigraphic model
(14)—(18). Since we have |Vh| and |V(h+ h)| in the model

we need not only a dual-cell approximation B}, | 2.7+ /12
|VA"? but also a dual-cell approximation B}, /2,j+1/2 for
|V (h" + h") 2. Following the spirit of (25), the latter approx-

imation can be straightforwardly written as

I 7 2
B! ; _1 Wiy j—he =
i+1/2,j+1/2 7 5 iy
2
+* l+1]+1+h’+11+1 hi,j+1_htr'l,j+1
2 Ax
7 2
+1< et hw—h,-,f)
2
2
_|_1 '+1/+1+h¢+1/+1 hi+11 Wiy
2 Ay )

(28)

4.3.1 Conservation law for water

To discretize the conservation law for the water height (14a),
we first recast it in a slightly different way, as

dh+div[(h")32G] =0, (29)
with

G = —K|V(h+h)|""?V(h+h).

The idea behind (29) is to upwind the “transported” quantity

@*)312 with respect to the sign of the normal “velocity”
G = G -n at the edges. This amounts to defining the discrete
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water fluxes

fnJrl _ [('],;Z;rl)+]3/2(6;1i1]/27j)++ [(F],;;zillL]_)JrP/Z(621:11/2’]_)77

i+1/2,j =

n+1 _ 1/n+1\+13/2/ ~n+1 + Tn+1 3/2 /1 ~n+1 —
Einp= [(hi.;'r )] / (G,-J-H/z) ‘*‘[(hi,}rﬂ)ﬂ / (Gi,;'r+l/2) )
where a* = max(a,0) and a~ = min(a,0). To define the

G’s, we need an approximation of |V(Z+ h) |_1/ ?_ This can
be achieved by raising formula (28) to the power —1/4. Be-
cause of the negative exponent, a regularization must be per-
formed in order to avoid infinities in flat zones, which results
in

St = i ~1/4
Gﬁl/z,‘,’ = —K[max (B}, /5 j_1/2:€) /
P gl et et
ol —1/47 i1, i+1,j iJ iJ
+max (Bi+1/2,j+1/2a8) / ] 2Ax J
St = ol ~1/4
Girlijp = —K[max(Bi 5 41 0.6) 7"

Tn+1 n+l _ pn+l _ pn+l
14 hijer +hije —hiy —

+maX(§;11/2,j+1/27 €)

Ay
Finally, the interior scheme is given by
Tl _ 7 pnt1 rntl rntl rntl
R T VYR VS AR Ve Ve
At Ax Ay '
(30)

4.3.2 Conservation law for sediments

The approximation of the conservation law for the sediment
height (14b) takes the same approach but is exposed here in
reverse order. The interior scheme is given by

+1 +1
Wy AF) ),
At Ax
AR —(F)t!
4! )”’“/ZA APy, 31)
y

where the reduced fluxes A F result from upwinding the lim-
iter A with respect to the sign of F = F-n. In other words,

+1 1 1 1 1 _
(A’F)7+1/2,j :/Iir,'f (Fir-ﬁ/z,j)JrJF/I,TL;(F,-TE/QJ) ,  (32a)

+1 1 1 1 1 —
(AF)jy1 2 = A5 (B )T+ A (FLL ) (32D)

Now, we need to define the F’s. As in the previous case, let
us recast the unconstrained sediment flux in a different way,
ie.,

F = (h")32G — |VA[P2Vy,(h), (33)
with

G = —|V(h+h)|'>Vy(h).

Then, the discretization of F - n is carried out by upwinding
(E+)3/ ? with respect to the sign of G = G - n. For the second
summand in the right-hand side of (33), we apply the same
method as that employed for the p-Laplacian and the first
conservation law. It follows that

)+_|_[(7,;n+1 )+]3/2(Gn+1 )7

1 Tk 1y+13/2 1
F, =7 (e it1,] i+1/2,]

i+1/2,j = i+1/2,]
1

3 [(Bzr'lﬂ/z,j—1/2)1”/271 + (B?+1/2,j+1/2)p/271}
y ‘I’g(hﬁll,j) - ‘I’g(hﬁl)

4
A , (34a)
= ) PG ) PG )
1 1 - 7 _
_E[(Bifl/z,j+1/2)p/ +(Bi+1/2,j+1/2)p/2 gy
HL Yy oy (!
% V’g( l,j+l) Wg( i,j )7 (34b)
Ay
with
nl Lrgn 4 g 1/4
Gi+1/2,j:_5[(Bi+1/2,j—1/2) + Bis1/2,j41/2) ]
By y(pt!
« llf( 1+11j) lll( i,] )’ (353)
Ax
n | Qp— -
Giﬁl/g =75 [(Bi—l/z,j+1/2)l/4 + (Bi+1/2,j+1/2)1/4]
WLy (g t!
YU ) — vl ) (35b)
Ay

Note that no regularization is necessary in (35), as the expo-
nent 1/4 is positive.

4.3.3 Complementarity equation

To discretize the complementarity condition (14c), we first
define the maximum erosion rate on each cell as

1
E i=— E dxdy. 36
LJ AxAy/%” (‘x7y) Y ( )

Then, using (32), we consider the discrete version

()LF)nJrl

i+1/2,j ()“F)"Hl

i—1/2,j
Ax

nal n+1
B (AF)i,jH/ZA_y()LF)"J'ﬂ) =0 (37

. n+1 L
min (1 *li,j JE;

of (14c). Let us transform this equation into a more valu-
able form, for theoretical as well as numerical purposes, by
introducing two notions. The first one represents the total
unlimited outgoing flux from cell ¢, ;, i.e.,

+1 +1 \+ +1 \—
<F>Zj :AY[(E11/2J) +(Firi1/27j) ]

A )+ ()7

ij—1/2 (38a)
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while the second one represents the toral limited incoming
flux from cell €, j, i.e.,

n+1 7 -
>)LF<1,]+ - [lszrllj(FPE}2]) +7Ll’3—+11j( l:lj}Z ]) }
1 1 1 1
HAXAT (B ) T A (F p) 7] (38b)
Then, equation (37) receives the more compact form
<F>Vl+1 >)LF<”+1
in(1-A" E - AT o) =0, 39
min ( ij L i,j AxAy AXA ) ( )

in which k{‘}“l in the second argument has been isolated

from the neighboring A”*!’s. The idea is now to calibrate
this new relation so that the coefficient of kf;fl in the sec-
ond argument is —1. To this end, we invoke the equivalence

property

min(a,b) =0 <= min(a,yb) = vy >0.

In the “good” case (F >”+1 #0, by setting y= AxAy/ (F >f;’1,
equation (39) becomes

1
AxAyE; j +)AF <:’j

n+1
(F)ij

min (l—lf;rl, —lf;rl> =0.

By virtue of min(a —¢,b —c¢)
2"+ out of the min and obtain

= min(a,b) — ¢, we can pull

(40)

AXAYE; j+)AF (11!
lif’flzmin(l, YEi TIAEG, )

1
(F)IT

In the “bad” case (F >1”J]rl = 0, the relation (39) reduces to

AF ("1
min (1 —lf;rl,Ei,j-f—w) =

41
AxAy @1

Owing to the definition of various terms, we see that the sec-
ond argument of the min is positive (see also the Lemma 4).
Then the only way to solve this equation is to have M‘;Fl =1.
This result should not come as a surprise. Indeed, having
(F >771 = 0 means there is no outgoing fluxes from the cell
%, that is to say, erosion does not occur. Thus, there is no
need to limit the sediment flux to satisfy the constraint on
the erosion process, whence lif‘fl =1.

Anticipating the boundary conditions that will be ad-
dressed in §4.3.4, we wish to point out one important is-
sue regarding the numerical resolution. Contrary to Gervais
and her coauthors [13, 14, 20-22], we advocate mounting
the whole set of equations (30)—(36), (40)—(46) into a sin-
gle system in the unknowns (hf]+1 , hl”jl ,ll"fl) and applying
Newton’s method to this system. In [13,14,20-22], the strat-
egy for numerical resolution rested on a variable-switching
procedure whereby, as examplified in Eymard et al. [17,

§7.2.3] for a compositional multiphase flow problem, the set

of equations and the set of unknowns evolve locally and dy-
namically with the iterates, according to the presumed flow
regime (i.e., whether or not the erosion constraint is thought
to be saturated). The main advantage of our strategy is to
make implementation much easier by providing a unified
formulation to the problem at the discrete level.

It could be argued that the min function is not differen-
tiable everywhere, which could cause trouble to Newton’s
method. In fact, we recommend the Newton-min method,
a variant in which any element of the subdifferential can be
selected in place of the corresponding partial derivative. The
Newton-min method has been proved to work well by many
authors (see, e.g., Ben Gharbia [5]).

4.3.4 Boundary conditions and initial data

The boundary conditions are discretized via an approach
similar to what was done for the p-Laplacian case. For each
ghost cell, two new equations are considered to take into ac-
count the water and sediment inflows. Moreover, on these
cells the flux limiter A is set to the value 1, which amounts
to saying that the prescribed boundary conditions are never
truncated. For the water fluxes, the equations are

t"+1

I,: F't) / 0,t)dx =0
vl T m (i-1)Ax ol ’
tn+l jAy
. n+l —
U‘FI/ZJ AyAl[ / “1)ay Oya _Oa
1‘"+1
. pn+l
I F;'an'"‘l/z AxAl/t /l 1)Ax x Ly t =0,
tn+]
. pn+l Y
R e T / / (Ley)dy =0, (42)

and for the sediment fluxes, the equations are

l‘"+l
I,: Fr) / 0,r)dx =0
AVE AXAt " (i—-1)Ax x ’
tn+1 jAy
I : F}’H—l / / =0
l 1/2,j AyAl n 0 Ay aya y s

t"+]
. n+1
s B = AxAt/, /1 1)Ax Pl Ly t)dr =0,
ln+1
n:Frtlo / / £)dy =0. (43
re Pyernya AyAt p G lAy (Ly,y,t)dy = 43)

As far as the corner ghost cells are concerned, we con-
sider two new equations that are extrapolation of the water
and sediment heights from the neighbouring cells. For the
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water height, these are

Goo: ! +at —nyt —mgyt =0,
CNe+1,0 EIV(J;lrl,O "’Z;lvj,ll —E”vfil.l —Eﬁ,ﬁ, =0,
Gonrr: HiR L IR RN <TGy =0,

CNy+ 1Ny +1 - ZX/jil,Ny-s—l JFEflvtzlvv - E;’vj}vyﬂ - E;lvﬂl,zvy =0.
(44)
For the sediment height, these are

%00 iy +h =t -t =0,
CNe110 - h;le-il-l.O +h7vj,11 _hy\l;l—l,l _hflvf,%) =0,
GONy+1 hgj;viH JFhﬁvi *hrlljlrviﬂ - hg?\/ﬁ =0,

<gf\/xﬂwyﬂ : h;?V;]rl,N\Hrl + h%}v} - h;lvj,il\(ﬁl - h;lvﬁl.zvy =0.
(45)

We conclude this section by detailing the discretization
of the initial data 4° and 4°. In the domain £, these are cho-
sen as piecewise-constant functions whose cell values are

- 1 -

0 _ 0

0= dady [, T aray (460)
|

n = / 19 (x.y) dxdy. 46b

l,] AxAy (6;.]- ('x7y) y ( )

Regarding the values in the ghost cells, for the sake of sim-
plicity we choose to use an extrapolation of the values com-
puted in (46). We can also determine an initial value for the
flux limiter, which is in practice only used as an initial guess
for the first Newton iteration. To do so, one method consists
in: (i) sorting cells in decreasing topography order, and (ii)
applying formula (40) while visiting the cells in this specific
order. This method, introduced by Granjeon [24] in a more
intuitive language, avoids the resolution of a linear system.

5 Properties of the numerical scheme

The numerical scheme (30)-(36), (40)—(46) enjoys many fa-
vorable properties that deserve mentioning. The first prop-
erty is an estimate on the flux limiter A.

Lemma 4 (Estimates on the flux limiter) For alln > 0, for
all 1 <i<N,, 1 < j<N,, we have

0< A <L (47)

Proof In formula (40), we observe that AxAyE; ; > 0 and
<F>?71 > 0. We thus have to show that >7LF<71+1 > 0.

Let us suppose that cells are sorted in decreasing to-
pographical order. Then, computing the discrete flux lim-
iter in this specific order, we can see that the term )AF (fjl
involves unknowns M‘;Tl computed only in previous cells.

In particular, for the one with the highest sediment height,
YAF (;’]“ =0 (or )AF (f‘jﬂ > 0if it is located near the bound-
ary where inflow of sediments is prescribed). By propagat-
ing positivity from the highest cell to lower ones, every cell
can be reached. This completes the proof. O

The next statement is the discrete of Lemmas 1 and 2.

Lemma 5 (Estimates on water and sediment heights) For
alln 20, forall 1 <i< Ny, 1 < j<N,, we have
ki j

i

0, (48a)
L] h

=
2 h. (48b)

Proof The first estimate is proven by induction. Suppose
that (48a) holds at n and assume that hl"f]L < 0 for some
(i*, j*). Then, analyzing the sign of the fluxes associated to
@i+, and applying the update formula (30), it turns out that
the latter leads to Z:’J’]l* > 0, which is a contradiction.

The second estimate also relies on induction. Suppose
that (48b) holds at n and let K" = min; ;2. As before,
the claim is proven by applying the numerical scheme (31)
and studying the sign of the corresponding fluxes (note that
Y and y, are increasing functions). ad

Lemma 3 also has the following discrete counterpart.

Lemma 6 (Mass conservation of water and sediments)
For alln > 0, one has

Ny N.\'

. o ot -
AxAyZ Z hi; = /Q ho(x,y)dxdy—/o o o (x,y,r)dods,
i=1j=1 * :

Ny Ny

tn
AxAyZ Zh:'] :/ ho(x,y)dxdy—/ ¢ (x,y,t)dodr.
P e Q 0 Joo

(49)

Proof Again, we proceed by induction. For n = 0, this is
due to the discretization of the initial data (46). If (49) holds
at n, then by adding the first equation with the sum of (30)
over (i, j), by adding the second equation with the sum of
(31)) over (i, j), by using the conservativity of the scheme
and the definition of the boundary fluxes (42)-(43), we get
the result. a

The last property we wish to put forward is the existence
of a discrete solution. Far from being trivail, this property
is of practical importance for the Newton method to have a
chance to converge.

Proposition 1 (Existence of a discrete solution) Let Z{’ ;
and h i be such that (48)—(49) hold. Then, for all At, > 0,
there exists at least one solution (ﬁﬁl ,h;’jl , ll{’j“)i_j to the
numerical scheme (30)—(36), (40)—(46), satisfying the prop-
erties (47)—(49).
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Proof The result follows from a topological degree argu-

ment that we only sketch out, referring the readers to the

standard literature [11, 15,27] or to Peton [28] for full de-

tails. The basic idea is to define a homotopy 7, u € [0,1]

between our system of equations and a simpler one, for which
the existence of a unique solution is trivial. The difficulty

lies in making sure that some technical conditions are satis-

fied along the homotopy.

In our problem, let us consider the system

Tun+l 7 o+l Epntl sl Eundl
S I L SV e VY, JrFi.j+1/2 Fiizip o
At Ax Ay ’

nn+1 uon+l ot pont+l ol
b —h; Fi+1/2,j Fi—1/2,j+Fi,j+1/2 Fi,jfl/z ~0
At Ax Ay ’

1

AXAYE; j+)AF (1T

AR —&-u—l—umin(l i bJ ):
2] ’ n+1
(P

For u = 1 we recover the numerical scheme (30)-(36), (40)—
(46), while taking ¢t = 0 leads to a simple mapping for which
the topological degree is equal to 1. What is left to show is
that the variables (%f J”:"H, ht J’-n+1, Al ]-’"H) remain bounded
for all u € [0, 1]. This can be achieved by adapting the proofs
of the estimates (47)—(49). Thus all the mappings .77, 4 €
[0,1], have a topological degree equal to 1, which implies
the existence of at least one solution. a

6 Numerical results

In this section, we present two test cases in order to illus-
trate the stratigraphic model as well as the capabilities of
the numerical scheme.

6.1 Delta evolution

This first configuration aims to highlight the impact of water
effects in the stratigraphic model. Let us consider a domain
of size 20 km x 20 km divided into marine and continen-
tal parts, the sea level being fixed at H,, = 1.4 km. Table 1
gathers the values of the diffusion coefficients. The gravity
ones are intended to be small in order to focus on beld load
transport. Concerning K, its value is set to 20000 km2 /My.
We also take into account a constraint on the erosion process
through the maximum weathering rate £ = 0.1 km/My. In-
flows of water and sediments are prescribed at the boundary
as

—/ ¢ do = 40km® /My, —/ ¢ do = 0.04km’ /My,
JoQ Q

forallt > 0.
The computational domain is divided into 200 x 200 cel-
Is, and the evolution of the system is simulated over 1 My.

Coefficient Domain
Marine  Continental
K (km*/My)  0.01 0.04
K (km'/ 2/My) 3000 10000

Table 1: Diffusion coefficients value.

The value of the exponent of the p-Laplacian in the sedi-
ment flux (15b) is set to p = 2.5. We start the simulation with
the initial time-step A" = 10~* My. At each time-step, the
nonlinear system is solved using Newton’s method, at a pre-
cision of 107> km for the water and sediment heights, and
107 for the flux limiter (based on the infinity norm of the
residual). The resolution of the linear systems arising at each
Newton iteration is made using the BiCGStab [31] method
from PETSc routines [3]. If the time iteration is accepted,
the next time-step is defined as A"*! = 1.1A¢", up to the
maximum value 1073 My. Otherwise, if Newton’s method
fails to converge after 20 iterations, the time-step is rejected
and is restarted with At = 0.5A¢".

Figure 6 illustrates the behaviour of the system. Because
of the low gravity diffusion coefficients, the sediment trans-
port is mainly due to water fluxes. By looking at Figure 6c¢,
we observe that water tends to carry away sediments from
the continental part. Moreover, the associated transport be-
ing strong, the sediment flux needs to be limited (see the
evolution of the flux limiter) in order to satisfy the con-
straint on the erosion rate. As time goes by, we can also
distinguish the formation of a delta near the shoreline. In
particular, we observe a break between the continental and
marine domains, which is due to the discontinuity within the
diffusion coefficients.

In Table 2 are gathered some numerical data, obtained at
the end of the simulation. We show the importance of choos-
ing a good preconditioner to solve the underlying system
properly. Among the configurations tested, we have always a
low number of refused time-steps. Nevertheless, we observe
that the preconditioner choice leads to important changes in
the computational time. In our case, it is better to use ILU(2)
or ILU(3). For stronger preconditioning methods, the cost of
each iteration becomes too important to gain in efficiency.
On the opposite situation, ILU(0) turns out to not be a good
choice because of the high number of iterations needed at
each Newton step.

6.2 Lakes formation

In this second configuration, we aim to reproduce the filling
of lakes. Once again, we consider a domain of size 20 km x
20 km divided in marine and continental regions. The sea
level separating these two parts is set to H,, = 1.8 km. The
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(a) Initial water and sediment heights (km). (b) Initial flux limiter.
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(e) Water and sediment heights (km) at time 7 = 1 My. (f) Flux limiter at time 7 = 1 My.
Fig. 6: Evolution of the water and sediment heights and of the flux limiter.
Numerical data Preconditioner
ILUO) ILUd) ILU®R) ILU@B) ILU@)
Accepted time-steps 1117 1117 1117 1117 1117
Refused time-steps 40 40 40 40 40
Mean Newton iterations per time-step 5.92 5.12 4.85 4.55 4.33
Mean solver iterations per Newton iteration ~ 56.32 34.93 27.65 19.96 15.93
CPU time (s) 4521 3456 3286 3277 3631

Table 2: Numerical results.



Numerical scheme for a water flow-driven forward stratigraphic model

Coefficient Domain

Marine  Continental

K, (km*/My) 40 5
K (km'?My) 6000 3000

Table 3: Diffusion coefficients value.

value of the diffusion coefficients is given in Table 3, and
K is fixed to 10000 km'/? /My. A constraint on the erosion
process is taken into account with the maximum weather-
ing rate E = 0.1 km/My. Finally, inflows of water and sedi-
ments are prescribed at the boundary, which satisfy

_ / ¢do = d6km® /My, — / 0do = 0.046km’ /My,
JoQ 0Q

forall¢ > 0.

Concerning the numerical parameters: first, the domain
is approximated by a regular grid of 200 x 200 cells. The
evolution of the system is simulated over 1 My. The expo-
nent of the p-Laplacian in the sediment flux (15b) is fixed
to p = 2.5. For the stopping criteria of Newton’s method
and the management of the time-step, we choose the same
methodology as for the first test case.

The evolution of the system is presented in Figure 7. In a
first phase, the water inflows fill the upper part of the domain
with the creation of lakes (Figure 7c). Then, once the reser-
voir capacity is reached, water flows downhill carrying away
sediments from the central area (Figure 7e). Furthermore, on
the pictures displaying the evolution of the flux limiter, one
can see that the main areas where the sediment flux needs to
be limited (in red) correspond to mountain flanks (where the
slope Vh is high). From time 7 = 0.5 My, a new constrained
zone appears in the central zone of the domain. This is due
to the water flowing to the lower part, which tends to trans-
port a large quantity of sediments. The sediment flux thus
has to be limited to respect the constraint on the weathering
rate.

In Table 4 are presented some numerical data. As in the
previous test case, we observe that the choice of precondi-
tioner has a tremendous impact on the computational time.
Among the configurations tested, ILU(2) and ILU(3) still
seem to be the better ones.

7 Extension to the multi-lithology case

Gervais and Masson [20, 22] went on developing a multi-
lithology version of their initial model in order to capture
effects due to the simultaneous presence of various types of
sediments. The purpose of this section is to demonstrate that
our stratigraphic model (14)—(18) is also extendable to the
multi-lithology case.

7.1 Physical model

In geology, sediments are classified according to different
criteria, e.g., the mineral composition, grain size... Among
these categories, called lithologies, we can find sands and
shales. Each of these may have its own physical properties,
such as the transportability (i.e., the diffusion speed) which
will be our main concern in this section.

The notations used in the sequel are presented in Fig-
ure 8. We suppose sediments are made up of a mixture of L
lithologies, the concentrations (c¢)¢=1.... 1 € [0, 1]* of which
naturally satisfy the relation

gl

cr=1. (50)

=1

Instead of considering one conservation law on the sediment
height as before, the idea is to seek a balance law for each
fraction of lithology. This notion is computed over the sed-
iment thickness on each point of the domain, that is, as a
function of the depth { € [h., h(x,y,?)], where A, is the min-
imum sediment height. More precisely, it is defined through
the formula

h(x,yt)
S/(x,yj):/h ce(x,y,8,1)dg, ¢=1,...,L. (51)
The corresponding time derivative is given by
h
A% = cole_ndh+ /h drepdt. (52)

We now have to set the corresponding lithology flux. To do
so, we follow the procedures of Gervais [20] and Riven®s
[30]. The first step is to extend the diffusion coefficients K,
and K of the previous model to the case of multiple litholo-
gies. For £ =1,...,L, we define K, ; and K, by

K, ¢ if h < H,
_ 8,L,m> ms
Ke(h) = { Kesor  ifh>Hy, (33
_ (Kip, ifh<H,,
Ki(n) = { Kie, ifh>H,. (33b)

Next, we introduce a new type of concentration, named sur-
se are defined only at the surface of the sedimentary basin,
and aimed at representing the sediment transport which oc-
curs nowhere but at the surface. Moreover, they satisfy the

property

=1 (54)

M=

(=1

As a consequence, concentrations within the basin do not
change over time, i.e.,

dc =0, inQx[h, h[xRy, (=1,... L. (55)
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Fig. 7: Evolution of the water and sediment heights and of the flux limiter.

Numerical data

Preconditioner

ILU(1) ILU@Q) ILUB) ILU@)

Accepted time-steps
Refused time-steps
Mean Newton iterations per time-step

Mean solver iterations per Newton iteration

CPU time (s)

1077 1077 1077 1075
26 26 26 26
4.88 4.59 4.40 4.23
57.15 45.08 32.89 26.05
4519 4034 4017 4203

Table 4: Numerical results.
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15

Sea level

Sediments

Fig. 8: Notations for the stratigraphic model: h denotes the
water height, & the sediment height, ¢, the concentration of
lithology £ and c} the surface concentration of lithology £.

These can change only during sedimentation, where the com-
position of deposited sediments is given by the surface con-
centrations, that is to say, if d;z > 0 then

C[‘C:h:C;, inQXR+, gzl,,L (56)

From this, the time derivative of the fraction of lithology ¢
(52) can be written in the simpler form

Tt = cilcnorh. (57)

Then, the conservation law for each fraction of lithology ¢ =
1,...,L1is taken to be

ctle—pdh+div(AF,) =0, inQ xRy, (58)

with the corresponding lithology flux

Fy = —Ky(h)c)(h")*/|V(h+h)|'/*Vh
— Ky (R)cS|VRIP™2Vh.  (59)

To take into account the constraint on the erosion pro-
cess, we apply a procedure similar to that of (13) for the
single-lithology model. Summing the equations (58) over
{=1,...,L gives

L
dh+ Y div(AF,) =0.
(=1
It is therefore natural to impose the complementarity condi-
tion

L
min (1 -ME-Y div()LFg)> =0, inQxR,. (60
(=1

The balance law for the water height is exactly the same
equation as (14a). Thus, the multilithological model includes
the conservation laws (14a) and (58), the complementarity
condition (60) and the closure equation (54). The associated
unknowns are the water and sediment heights h and h, the
flux limiter A, and the surface concentrations (c})/—1,.. . As

for the boundary conditions, we consider inflow of water and
lithologies.

In the above multi-lithology model, some geologically
realistic processes such as changing sea level, subsidence

and compaction have been omitted in order to simplify the
exposition. There is no difficutly in taking these into ac-
count, except for the fact that the become equations longer
and the presentation heavier. In §7.3.2, we will show a test
case with eustasy using a given history for the sea level.
Needless to say, these additional processes are fully incor-
porated into the DionisosFlow software.

7.2 Finite Volume discretization

In the discretization of the equations, a new difficulty em-
erges regarding the approximation of sediment columns. In-
deed, it is now essential to determine the proportion of each
type of sediment during the erosion and sedimentation pro-
cesses. Let { be the coordinate in the vertical direction. Fol-
lowing Gervais [20], the concentration CZJ;JI (&) is defined as
the solution at time #"*! of the system

(?ICE)[J’(CJ) = 07 C € [h*ahi.,j(t)[a re [tn,tn+l]a
cpij(hij(t),1) ZCZ?,J;I, iR > ny e it
crij(6,1")  =c};;(8), C€lhhi, (61)

where £; ; is a convex combination of the discrete sediment
height between times " and "+

hij(t) = (1= o))+ o0 )R T,

with ¢ € [t",#"+1]. The solution of this system can be easily
computed by distinguishing sedimentation from erosion. In
the first case, the procedure consists in adding a block of
thickness hl"jl — hf’ ; above the column at time ¢", in which
the composition is given by the surface concentrations

e (0)
cz,t;(o:{ Li

Lij o

CE [h*vh?,j[’

¢ elnymt,

(=1,...,L.

(62a)

In the situation of erosion, one only has to truncate the col-
umn at time " up to the sediment height hf’fl Hence,
1 1
Q)= ;(0), Celh,m'l, £=1,.. L (62b)
This procedure is illustrated in Figure 9.
We are now ready to tackle the discretization of the con-

servation laws of the lithologies (58). The time derivative,
written in the form (57), is approximated by

32?;_3?ij 1 LI &
Shs b e +1 Y en
a2 (f anede [Na@a)
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Fig. 9: Management of sediment columns.

Thanks to (62), this can be straightforwardly separated into
two cases (sedimentation and erosion) as

ntl o ‘”HL}LI_ b 1fh”+1 > ht
Sﬁ,i,jigl,i,j _ li,j N At ’ i,j?
At L7 n e pn+l n
Al cp;(8)dg, it hT <.
ij

The lithology fluxes (59) can be written as Fy = c;? ¢, where
? ¢ 1s the sediment flux (15b) used in the case of a single
lithology. The only difference lies in the value of the diffu-
sion coefficients, which may be different for each type of
sediment. The associated approximation method consists in
upwinding Acj according to the sign of .7 = } ¢-n. It fol-
lows that the discretization of the full equation is given by

W )t -
s;n+1 ( ) L g
Coij = At = +At< CZ,i,j(C)dC)

N (?lFf),H/zj (AR 1/2,j

Ax
(lFZ):TH/z (lFé) ij— 1/2
: =0, (63
+ 2y ; (63)
where the discrete limited fluxes read
+1 1 +1\+ 1 +
()*Fé)?ﬁ/z, )“H (C;:l, ) ( zn;l/z ,)
1 +1 1 -
z’zjl j(czlll-ﬁ-l j) (‘gzﬁnlj:»l/z ]) » (64a)
1 +1 1 +
(AFZ)t]-&-l/Z An+ ( ;7/ ) (’gzénj_]+l/2)
1 s;n+1 \+ 1 —
)‘ln;L+1 ( S le+1> ('?Z;L]Jr]/Z) (64b)
The quantities .%, Z’:Lll 12, and .7, g’l 172 Ar€ then defined anal-

ogously to (34). In equations (64), we have deliberately taken

the positive part of all surface concentrations. This enables
us to show that these quantities remain nonnegative at each
time-step.

The discretization of the complementarity equation (14¢)
follows exactly the same steps as for the case in a single
lithology. It is not difficult to show that we still obtain

(65)

AXAYE; j+)AF (I
),l."’;'lzmin<l, vEi +) <"" )

+1
(F)ij

The difference is hidden in the definition of the outgoing and
limited incoming fluxes, which now take the form

L
Fi =Y @ A ) = (T )]

+ax[(7]

G ]+l/2)+ - (y&nJrl

) 1) 66

and
n+1 n+1 n+1l o+ n+1 +
>)‘F<i,j _Ayz {ll 1,j 021 1]) (‘g‘[f,ifl/Z,j)

—l'1+1 ( s,n+1 ) (53"+1 )—}

i+1,j ZH-I,J Li+1/2,f

+Ax Z {ll”fll

+1 s;n+1 \+ +1 -
7)Llnj+1( l z,j+1) (‘gzént j+1/2) } - (67)
In the case (F >"J+] =0, we infer as previously that ),”H =1.

The closure equation (54) is approximated by the simple
formula

;Zj—l1)+(§ﬁ} 1/2)+

et =1, (68)

MP‘

(=1
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The last aspect to look at is the boundary conditions. Rough-
ly speaking, we extend what has been done in the case of a
single lithology. First, we consider the same equations (42)
to take into account the water inflows. Instead of consider-
ing analogous ones for a global sediment inflow, we adapt
one set of equations (43) for each lithology. To have a well-
posed system, we also need to impose the discrete closure
equation (68) on the boundary. Concerning the values in the
four remaining ghost cells in the corners, we just have to
consider the same equations as (44)—(45). Indeed, no con-
centrations nor columns are needed in these areas, as they
only serve to compute local approximations of terms of the
kind |VA[P~2.

7.3 Numerical results

We now illustrate the multilithological model with two test
cases.

7.3.1 Evolution of an estuary

The first one stems from real-world data representing the
evolution of an estuary in an Iranian region, at the Paleogene
period. The domain of study measures 120 km x 260 km,
and is divided into a marine and a continental part, the sea
level being fixed at H,,, = 0.6 km. For this configuration, we
assume sediments are made of a mixture of four lithologies,
whose respective diffusion coefficients are detailed in Table
5. The value of K is set to 10% km? /My. We also consider
a constraint on the erosion process, which is characterized
by a maximum erosion rate E = 0.008 km/My. Multiples
sources of water and sediment inflows are prescribed, which
is presented in Table 6.

Lithology K, K. Ko m K,
1 4000 9000 25 1500
2 11000 21000 60 1800
3 13000 28000 75 2400
4 24000 38000 200 3300

Table 5: Diffusion coefficients value (K, and K, in
km!/2 /My, Ky, and K, . in km? /My).

The discretization of the domain consists of 48 x 104
cells, while the simulation time is set to 7 = 4 My. The
exponent of the p-Laplacian in the lithology fluxes (59) is
set to p = 2.5. Concerning the sediment columns, we im-
pose a maximum layers number of 100, which already gives
good approximations. We start the simulation with the ini-
tial time-step A7® = 10710 My. This value may seem small,
but is sometimes needed to start the simulation. Though if

17
Boundary flux I, I;
0 360 —
03} 0.36 0.95
[0 0.18  0.095
(03] 0.036 9.5
04 0.018 5.0

Table 6: Value of instantaneous boundary fluxes, integrated
over Q (in km? /My).

such a case arises, these small values are no longer neces-
sary for the rest of the simulation. The resolution of the lin-
ear systems arising at each Newton iteration is carried out
using the BiCGStab [31] method from PETSc routines [3].
If the time iteration is accepted, we define the next time-step
as A" = 1.1Ar", up to the maximum value 5.1073 My.
On the contrary, if Newton’s method fails to converge after
20 iterations, the time-step is rejected and is restarted with
At = 0.5A1"

The initial state of the system is displayed in Figure 10.
One can see that the constraint is active on a large part of
the domain, essentially in steep areas. The distribution of the
different lithologies are also represented: for example lithol-
ogy 4 is mainly located in the marine domain. The Figure
11 shows the state of the system after 4 My. We first observe
that the diffusion has smoothed the topography. Moreover,
the contrast within the diffusion coefficients leads to a break
along the shoreline. Concentrations in lithologies have also
undergone many changes. Looking again at lithology 4, we
notice that it seems concentrated in the pits in the center of
the domain.

In order to have a more precise view of the internal struc-
ture of the sedimentary basin, we make a slice along the axe
x = 84 km. The result is shown in Figure 12. As lithology 4
is present from the beginning in this area and is also the one
associated to the highest diffusion coefficients, it is not sur-
prising to find it in the central pit. The remaining deposits
are made of lithologies 1 and 2, as they are found in the
surrounding areas. Also, on the left side we observe high
concentrations in lithologies 3 and 4, which is due to a pre-
scribed inflow of sediments nearby.

The Table 7 gathers numerical data obtained at the end
of the simulation. In general, very few time-steps are refused
for this test case. As for the configurations in the case of
one lithology, a comparison between different precondition-
ers is made. We notice that the choice of the precondition-
ning method alters notably the computing time. In this case,
ILU(2) seems to be the better option, whereas ILU(1) leads
to higher refused time-steps and an important increase in the
computing time.
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Fig. 10: Initial data.

7.3.2 Influence of bathymetry

The second test case is aimed at capturing the influence of
eustasy (variations of the sea level) on sedimentary deposit.
We consider a domain of size 50 km x 75 km, discretized by
a grid of 100 x 150 rectangular cells. The simulations runs
over a duration of 7' = 320 My, using the exponent p = 2.5
for the p-Laplacian. Water fluxes are neglected. The sedi-
ments are made up of three distinct lithologies, the gravity
diffusion coefficients of which are given in Table 8.

The maximal erosion constraint is set to the value £ =
10~3 km/My. The sea level is imposed as a known function
of time, represented in Figure 13. Its evolution can be di-
vided into three cycles: (i) a long cycle from 30 My to 130
My; (ii) a short cycle from 145 to 161 My; (iii) a “mixed”
cycle from 203 My to 309 My.

The sediment columns are discretized by at most 100
layers. The stopping criterion for the Newton-min method is
based on the L*-residual of equations: 10~° km for balance
laws of lithologies and 10~ for various complementarity
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Fig. 11: State at time 7 = 4 My.

. Preconditioner
Numerical data
ILU(1) ILU@2) ILU@E) ILU#)
Accepted time-steps 1216 1004 981 979
Refused time-steps 62 9 2 1

Mean Newton iterations per time-step

Mean solver iterations per Newton iteration

CPU time (s)

7.39 5.43 5.32 5.31
11.66 7.70 6.02 5.33
2171 1551 2063 2935

Table 7: Numerical results.
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Fig. 12: Slice at x = 84 km: lithology concentrations at time 7 = 4 My.
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Lithologie  Kg (km? /Ma) K, (km? /My)
1 2 20
4 40
3 8 80

Table 8: Gravity diffusion coefficients K, ,, and K, ..

and closure equations. Linear systems are solved by means
of the same algorithm and preconditioner as in §7.3.1. The
management of time-steps A" is the same as in §7.3.1.

0.65
0.6 ¢

0.55
0.5

0.45
0.4 -

Hm(t) (km)

Sea level ——
0.35 L I 1 1 I I
0

50 100 150 200 250 300
t (Ma)

Fig. 13: Evolution of the sea level H,, (7).

The inflows of sediments at the boundary are given by
T L
—/ / ¢1(x,0,¢)dxdr = 0.176T km?,
0o Jo
T L
—/ / ¢2(x,0,7) dxdr = 0.88T km?,
o Jo

T L
7/ / $3(x,0,7)dxdr = 0.44T km?>.
0 0

The initial state of the system is displayed in Figure 14. We
observe that the various strata are already there, with space-
dependent concentrations in lithologies. At the end of the
simulation, the state of the system is depicted in Figure 15.
We observe that gravity diffusion has smoothed out the to-
pography almost everywhere, except for the upper corners
of the domain where the erosion constraint is still active.
Besides, it is possible to notice a few geological structures
emerging from the variations of different concentrations.

In order to better inspect those structures, a slice-cut is
performed at x = 25 km and reported in Figures 16—-17. At
the beginning, lithology 3 whose diffusion coefficients are
the strongest is found mainly at the bottom. The other two
lithologies, which move at a lower speed, share the remain-
ing space. After a while, the deposition structures appearing
on the lithology concentrations can be related to sediments
deposited during the different eustasy cycles, as indicated
in Figure 17. We can then distinguish the marks left in the
short cycle and the long cycle in Figure 16. The mixed cycle
is more difficult to single out.

Finally, some numerical data in relation with the sim-
ulation are gathered in Table 9. It can be seen that a few
time-steps have been refused and had to be restarted. This

non-convergence is due to a cyclic behavior, which occurs
when At is too large.

Numerical data Value
Accepted time-steps 16644
Refused time-steps 250
Mean Newton iterations per time-step 4.74
Mean solver iterations per Newton iteration 5.28
CPU time (h) 9.72

Table 9: Numerical results.

8 Conclusion

The present contribution is a logical sequel to [13, 14, 20—
22]. We have successfully embedded two additional physical
processes to the model of DionisosFlow, while maintaining
the foundational aspects of the previous work. The two nov-
elties under consideration —nonlinear gravity diffusion flux
for sediment transport and coupling between sediments and
water effects— have required tremendous changes in the nu-
merical scheme. The new scheme, built upon the old one and
the ideas of Andreianov et al. [1] for the p-Laplacian, allows
us to preserve the physical bounds of various unknowns and
also guarantees the existence of a discrete solution. The sim-
ulation results it provides on realistic test cases have been
deemed very satisfactory by geologists and demonstrate its
overall efficiency.

There are many improvements and extensions that could
possibly be envisaged. On the one hand, more optimized nu-
merical treatments could be tried in an attempt to consoli-
date the code. More specifically, we believe that block pre-
conditioning (to speed up the resolution of linear systems)
and step-control in Newton’s method (to avoid cyclic behav-
ior and other failures in the resolution of nonlinear systems)
would significantly enhance the performance of the scheme.
We have unfortunately not had time to deepen those issues.
On the other hand, more physical processes could be in-
cluded into the model. In the short term, adding source terms
in the balance laws would enable us to model rain, evap-
oration and production of carbonates. In the middle term,
it would be reasonable to incorporate subsidence and com-
paction. In the long run, it might be challenging to work
out a model for marine hyperpycnal/hypopycnal flows in the
zones mixing river water and standing ocean water.

References

1. Andreianov, B., Boyer, F., Hubert, F.: Finite volume schemes for
the p-Laplacian on Cartesian meshes. M2AN 38(6), 931-959
(2004). DOI 10.1051/m2an:2004045



22

Nicolas Peton et al.

Deposition age
1.426-14 90

&
=

i<}
©

il
58
-8

o

(a) Deposition age.

Lithology 2 conc.
0.4 o

(c) Concentration of lithology 2.

Lithology 1 conc.
07 9y

0.2

Sea level
05

(b) Concentration of lithology 1.

Lithology 3 conc.
06 9y

Sea level
05 =

(d) Concentration of lithology 3.

Fig. 14: Deposition age and lithology concentrations at time 7" = 0 My.

Deposition age
g =

320

0.38,

(a) Deposition age.

Lithology 2 conc,
0.453 i

0.00549 -

Sea level
0383~

(c) Concentration of lithology 2.

Lithology 1 con
0851 9y 1 cone
0.8

7.250-07 ©

Sea level
0383 -

(b) Concentration of lithology 1.

Lithology 3 conc,
0.995 i

Sea level
0383-

(d) Concentration of lithology 3.

Fig. 15: Deposition age and lithology concentrations at time 7" = 320 My.



Numerical scheme for a water flow-driven forward stratigraphic model

Deposition age

320
' —
Mixed cycle end - 300

HHH

Mixed cycle beginning 200

Short cycle end |
Short cycle beginning -
Long cycle end ~

100

Long cycle beginning-|

-100-

Fig. 16: Influence of eustasy on sedimentary deposit.

Lithology 1 concentration Sea level
02 04 06 08 0.1 02 03
HH\H‘HH, HH\HH‘HH H‘\ Lo \‘HHHH
7.256-07 0.808 0.00721 0.383

(a) Concentration of lithology 1.

Lithology 2 concentration Sea level
0.1 0.2 0.3 0.4 0.1 0.2 0.3
H\HH‘HHH\M \HHHH‘HH H‘\ (NI \‘HHHH
0.00549 0.451 0.00721 0.383

(b) Concentration of lithology 2.

Lithology 3 concentration Sea level

0.2 0.4 0.6 0.8 0.1 0.2 03
[ERRRRNARRRANIRERS YA (ARRRRRRN ARRRRNRNAS ARNRRERNR SN AR RRRNN|

0.0329 0995 0.00721 0.383

(c) Concentration of lithology 3.

Fig. 17: Slice at x = 25 km : Lithology concentrations at time 7" = 320 My.



24

Nicolas Peton et al.

10.

11.

12.

13.

14.

15.

16.

17.

Audusse, E., Boyaval, S., Goutal, N., Jodeau, M., Ung, P.: Nu-
merical simulation of the dynamics of sedimentary river beds with
a stochastic Exner equation. ESAIM: Proc. 48, 321-340 (2015).
DOI 10.1051/proc/201448015

Balay, S., Abhyankar, S., Adams, M.F., Brown, J., Brune, P,
Buschelman, K., Dalcin, L., Eijkhout, V., Gropp, W.D., Kaushik,
D., Knepley, M.G., Mclnnes, L.C., Rupp, K., Smith, B.F,
Zampini, S., Zhang, H., Zhang, H.: PETSc users manual. Tech.
Rep. ANL-95/11 - Revision 3.7, Argonne National Laboratory
(2016). URL http://www.mcs.anl.gov/petsc

Barenblatt, G.I.: On self-similar motions of a compressible fluid
in a porous medium. Prikl. Mat. Mech. 16(6), 679-698 (1952)

. Ben Gharbia, I.: Résolution de problemes de complémentarité. :

Application a un écoulement diphasique dans un milieu poreux.
Ph.D. thesis, Université Paris Dauphine (Paris IX) (2012). URL
http://tel.archives-ouvertes.fr/tel-00776617

Birnir, B., Smith, T.R., Merchant, G.E.: The scaling of fluvial
landscapes. Computers & Geosciences 27(10), 1189-1216 (2001).
DOI 10.1016/S0098-3004(01)00022-X

Cances, C., Granjeon, D., Peton, N., Tran, Q.H., Wolf, S.: Numer-
ical scheme for a stratigraphic model with erosion constraint and
nonlinear gravity flux. In: FVCA 8 - 2017 - International Confer-
ence on Finite Volumes for Complex Applications VIII, Proceed-
ings in Mathematics & Statistics, vol. 200, pp. 327-335. Springer
(2017). DOI 10.1007/978-3-319-57394-6_35

Cordier, S., L&, M.H., Morales de Luna, T.: Bedload transport in
shallow water models: Why splitting (may) fail, how hyperbolic-
ity (can) help. Adv. Water Res. 34(8), 980-989 (2011). DOI
10.1016/j.advwatres.2011.05.002

Delestre, O., Cordier, S., James, F., Darboux, F.: Simulation of
rain-water overland-flow. In: J.G.L. E. Tadmor, A. Tzavaras (eds.)
12th International Conference on Hyperbolic Problems, Proceed-
ings of Symposia in Applied Mathematics, vol. 67, pp. 537—
546. American Mathematical Society, College Park, United States
(2008). URL https://hal.archives-ouvertes.fr/hal-00343721

Di Benedetto, E., Herrero, M.A.: Non-negative solutions of the
evolution p-Laplacian equation. initial traces and Cauchy problem
when 1 < p < 2. Trans. Amer. Math. Soc. 314(1), 187-224 (1989).
DOI 10.1090/S0002-9947-1989-0962278-5

Droniou, J.: Degrés topologiques et applications (2006).
http://users.monash.edu.au/ jdroniou/docs/degre.pdf
Droniou, J.: Finite volume schemes for fully non-linear elliptic
equations in divergence form. ESAIM: Math. Model. Numer.
Anal. 40(6), 1069-1100 (2006). DOI 10.1051/m2an:2007001
Eymard, R., Gallouét, T., Gervais, V., Masson, R.: Existence and
uniqueness of a weak solution to a stratigraphic model. In:
M. Feistauer, V. Dolejsi, P. Knobloch, K. Najzar (eds.) Numerical
Mathematics and Advanced Applications, pp. 278-287. Springer,
Berlin (2004). DOI 10.1007/978-3-642-18775-9-25

Eymard, R., Gallouét, T., Gervais, V., Masson, R.: Convergence of
a numerical scheme for stratigraphic modeling. SIAM J. Numer.
Anal. 43(2), 474-501 (2005). DOI 10.1137/S0036142903426208
Eymard, R., Gallouét, T., Ghilani, M., Herbin, R.: Error estimates
for the approximate solutions of a nonlinear hyperbolic equation
given by finite volume schemes. IMA J. Numer. Anal. 18(4), 563—
594 (1998). DOI 10.1093/imanum/18.4.563

Eymard, R., Gallouét, T., Granjeon, D., Masson, R., Tran, Q.H.:
Multi-lithology stratigraphic model under maximum erosion rate
constraint. Int. J. Numer. Meth. Eng. 60(2), 527-548 (2004). DOI
10.1002/nme.974

Eymard, R., Gallouét, T., Herbin, R.: Finite volume methods.
In: P.G. Ciarlet, J.L.. Lions (eds.) Techniques of Scientific Com-
puting (Part 3), Handbook of Numerical Analysis, vol. VII, pp.
713-1018. North-Holland, Elsevier, Amsterdam (2000). DOI
10.1016/S1570-8659(00)07005-8

URL

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31

32.

Eymard, R., Gallouét, T., Herbin, R.: Cell centred discretisation
of non linear elliptic problems on general multidimensional poly-
hedral grids. J. Numer. Math. 17(3), 173-193 (2009). DOI
10.1515/INUM.2009.010

Freeman, T.G.: Calculating catchment area with divergent flow
based on a regular grid. Computers & Geosciences 17(3), 413—
422 (1991). DOI 10.1016/0098-3004(91)90048-1

Gervais, V.: Etude et simulation d’un modgle stratigraphique
multi-lithologique sous contrainte de taux d’érosion maximal.
Ph.D. thesis, Université de Provence, Aix-Marseille I (2004). URL
http://tel.archives-ouvertes.fr/tel-01445562

Gervais, V., Masson, R.: Mathematical and numerical analysis of
a stratigraphic model. ESAIM: Math. Model. Numer. Math. 38(4),
585-611 (2004). DOI 10.1051/m2an:2004035

Gervais, V., Masson, R.: Numerical simulation of a stratigraphic
model.  Comput. Geosci. 12(2), 163-179 (2008). DOI
10.1007/s10596-007-9076-4

Graf, W.H., Altinakar, M.S.: Hydraulique fluviale: Ecoulement
et phénomenes de transport dans les canaux a géométrie simple,
Traité de Génie Civil, vol. 16. Presses polytechniques et universi-
taires romandes (2000)

Granjeon, D.: Modélisation stratigraphique déterministe: Con-
ception et applications d’un modele diffusif 3-d multi-
lithologique. Ph.D. thesis, Université de Rennes I (1996). URL
https://geosciences.univ-rennes1.fr/IMG/pdf/Granjeon.pdf
Holmgren, P.: Multiple flow direction algorithms for runoff mod-
elling in grid based elevation models: An empirical evalua-
tion. Hydrological Processes 8(4), 327-334 (1994). DOI
10.1002/hyp.3360080405

Kamin, S., Vazquez, J.L.: Fundamental solutions and asymptotic
behaviour for the p-Laplacian equation. Rev. Mat. Iberoamericana
4(2), 339-354 (1988)

Kavian, O.: Introduction a la théorie des points critiques et appli-
cations aux probleémes elliptiques, Mathématiques & Applications,
vol. 13. Springer-Verlag (1993)

Peton, N.: Etude et simulation d’un modgle stratigraphique
advecto-diffusif non-linéaire avec frontieéres mobiles. Ph.D. thesis,
Université Paris-Saclay (2018)

Quinn, P, Beven, K., Chevallier, P., Planchon, O.: The prediction
of hillslope flow paths for distributed hydrological modelling us-
ing digital terrain models. Hydrological Processes 5(1), 59-79
(1991). DOI 10.1002/hyp.3360050106

Rivenas, J.C.: Application of a dual-lithology, depth-dependent
diffusion equation in stratigraphic simulation. Basin Research
4(2), 133-146 (1992). DOI 10.1111/j.1365-2117.1992.tb00136.x
Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn.
Society for Industrial and Applied Mathematics (2003). DOI
10.1137/1.9780898718003

Tarboton, D.G.: A new method for the determination of flow
directions and upslope areas in grid digital elevation mod-
els. Water Resources Research 33(2), 309-319 (1997). DOI
10.1029/96WR03137



