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Numerical scheme for a water flow-driven forward stratigraphic model

Nicolas Peton∗ Clément Cancès† Didier Granjeon∗ Quang-Huy Tran∗ Sylvie Wolf∗

Abstract

This paper is concerned with extending the stratigraphic model previously introduced by Eymard et al. [Int. J. Numer. Methods
Engrg. 60, 527–548 (2004)] and subsequently studied by Gervais and her coauthors for the simulation of large scale transport
processes of sediments, subject to an erosion constraint. Two major novelties are considered: (i) the diffusion law relating the flux of
sediments and the slope of the topography is now nonlinear and involves a p-Laplacian with p > 2 in order for landscape evolutions
to be more realistic; (ii) the sediment transport is now intertwined with the water flows due to lakes and rivers via a direct coupling at
the continuous PDE level, which avoids empirical algorithms at the discrete level such as MFD (Multiple Flow Directions) at the price
of additional p-Laplacians. Aimed at enriching the capabilities of IFPEN’s simulator, these sophistications entail the construction of
a new finite volume scheme, the details of which are supplied. The physical model is validated through several test cases. Finally, a
further extension of the model to the case of multiple lithologies is presented, along with numerical results.

Keywords: stratigraphic forward modeling; weather-limited erosion; p-Laplacian; complementarity problem.

1 Introduction

The knowledge of subsoil structure lies at the heart of vari-
ous fields, such as CO2 sequestration, management of water
resources, exploitation of geothermal energy, where a detailed
description of sediment layers geometry and their composition
(sands, shales...) is often required. The ability to trace back the
geological history of sedimentary basins is thus a key asset for
the study of energetic georesources.

Sedimentary basins can be seen as large areas (hundreds of
squared kilometers) where sediments due to erosion or other
sources keep accumulating. Generally located in marine do-
mains, some may also be found on the continent. Over large
periods of time (millions of years), this leads to the formation
of sediment layers, whose composition may vary according to
environmental conditions.

The physical processes that account for the evolution of sed-
imentary basins are numerous and complex, but mainly depend
on three parameters. The first one is the accommodation, that
is, the available space for sedimentation. It is a direct conse-
quence of tectonic processes, subsidence (downward motion of
the earth’s surface) and eustatism (sea level variations). The sec-

ond one is the sediment supplies. These originate from erosion of
neighbouring mountains, rivers bed load, or may be produced in
situ (carbonates, corals). The third one is the sediment transport.
Here, gravity plays an essential role, but rivers and submarine
currents are also crucially involved.

The study the above processes over large time scales is the
goal of stratigraphic modeling. For this purpose, geologists have
two kinds of field data at their disposal. On one side, we have
seismic data obtained by recording the reflection of waves emit-
ted at the earth’s surface. These enable us to estimate large areas
but may not be accurate enough. On the other side, we have well-
log data associated with a few given wells. These allow us to
identify the type of sediments, along with their physical proper-
ties. Using these field data, a geological model can be designed
in order to rebuild the infill scenario of the basin.

However, in complex or poorly known configurations (either
by lack of data or low resolution), classical interpolation tech-
niques reach their limit and it becomes necessary to resort to other
approaches. Numerical simulation then appears as a suitable tool
to test different infill scenarios of sedimentary basins and to find
the best match with field data. As many hypothetical configu-
rations have to be tried, it is vital that the stratigraphic model
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selected for simulation be efficient, both in terms of realism and
computational time.

The stratigraphic model implemented in IFPEN’s software
DionisosFlow dates back to the nineties with the founding prin-
ciples set up by Granjeon [24], notably regarding the maximal
erosion rate. Granjeon’s discrete algorithm for the erosion con-
straint was later reformulated by Eymard et al. [16] as the explicit
discretization of a continuous PDE system in which the erosion
constraint takes the form of a complementarity equation. This
interpretation paved the way for an implicit discretization allow-
ing for much larger time-steps, undertaken afterwards by Ger-
vais [20] (see also [13, 14, 21, 22] for related mathematical as-
pects). Thanks to this achievement DionisosFlow remained com-
petitive for about a decade, until it was decided to endow the code
with two advanced physical phenomena.

The first novelty of interest is the tracking of knickpoints,
which are commonly observed in natural landscape evolutions.
This is only possible if the underlying diffusion process occurs
at finite speed. Propagation at finite speed can in turn be guaran-
teed by some kind of nonlinear dependence of the sediment flux
with respect to the gradient of the topography. By “some kind of
nonlinear dependence,” we mean that the sediment flux is propor-
tional to |∇h|p−2∇h —where h denotes the height of sediments
and p > 2— instead of ∇h as is the case in [20]. The appear-
ance of the p-Laplacian makes the Two-Point Flux Approxima-
tion of [20] obsolete. To correctly approximate |∇h|p−2, Cancès
et al. [7] (see also Peton [28]) sketched out a solution inspired
from the work of Andreianov et al. [1]. We take the opportunity
of this paper to provide full details of the new scheme.

The second novelty of interest is the water effects associated
with the impact of rivers and lakes. In this respect several discrete
algorithms, known as Multiple Flow Directions (MFD), are avail-
able (see Freeman [19], Holmgren [25], Quinn et al. [29] or Tar-
boton [32]). However, they suffer from many drawbacks: apart
from being non-parallelizable and highly sensitive to the grid ori-
entation effect, none of them has a clear limit as the mesh size
goes to zero. Put another way, none of them can be understood as
a discretization of some continuous PDE system. Here, the situa-
tion is worse than what happened with the discrete algorithm for
the erosion constraint, where such an interpretation was possible.
For all these reasons, we advocate to give up the MFD algorithms
and to look for a direct coupling between sediment transport and
water effects at the continuous level, based on fluid mechanics
and empirical laws from sedimentology. The model we propose
involves two additional p-Laplacians, one with p = 3/2 and the
other with p = 5/2. It bears strong analogies with but remains

differ from that of Birnir et al. [6]. Let us also mention a few re-
mote works that rest upon a similar coupling philosophy but the
scales of which are much smaller than ours: Delestre et al. [9] on
rain-water overland-flows, Cordier et al. [8] on bedload transport,
and Audusse et al. [2] on sedimentary river beds.

This paper is outlined as follows. In §2, we derive the strati-
graphic model in the case of one lithology. This model takes into
account the nonlinear sediment diffusion and the water flows, in
addition to the preexisting erosion constraint. Some properties of
the model are enumerated in §3. The construction of an appro-
priate Finite Volume scheme is addressed in §4, where as a pre-
liminary step we focus on the unsteady p-Laplacian equation in
order to highlight the intrinsic difficulties of the problem. Unlike
Gervais [20], we recommend the Newton-min method to solve
the overall algebraic system arising at each time-step, in place of
the variable switching procedure. Some properties of the scheme
are elaborated on in §5, among which the existence of a discrete
solution. In §6, numerical results corresponding to two test cases
are analyzed and commented on. Finally, in §7, we extend the
model to the multi-lithology case, where most of the methods
developed for the single-lithology case are easily carried over.
Notwithstanding, specific features need to be handled, such as
the sediment columns and their discretization.

2 Derivation of the stratigraphic model
We start by revisiting some fundamentals of fluid mechanics in
§2.1, in order to bring out reliable approximations for our prob-
lem. Since the emphasis is laid mostly on the coupling of sedi-
ment transport with water effects, the treatment of the erosion rate
is postponed to §2.2. The reader uninterested in the derivation is
referred to §2.3, where the full model is stated.

2.1 Approximate balance laws
In a first stage, we put aside gravity diffusion and look for two
conservation laws: one for the water height (denoted by h̃), and
the other for the sediment height (denoted by h).

Let us consider a water flow in a channel. Based on the ap-
proach of Birnir et al. [6] for modeling long time approximations
of water flows, our analysis takes the shallow water equations
with friction

∂t h̃ +div(h̃ũ) = 0, (1a)

∂t(h̃ũ)+div(h̃ũ⊗ ũ)+gh̃∇(h̃+h) =−C|ũ|ũ, (1b)
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as a starting point, where ũ represents the water speed, g de-
notes the acceleration due to gravity, and C is the friction co-
efficient. The latter is assumed to be a constant. Introducing two
characteristic heights H̃, H (hundreds of meters), a characteristic
length L (hundreds of kilometers), a characteristic time T (mil-
lions of years), we proceed to nondimensionalize (1) by defining
the nondimensional variables

ˇ̃h =
h̃

H̃
, ȟ =

h
H
, ˇ̃u =

ũ
Ũ
, x̌ =

x
L
, y̌ =

y
L
, ť =

t
T
,

where Ũ = L/T is the characteristic speed. It is readily checked
that system (1) is equivalent to

∂ť
ˇ̃h +div

( ˇ̃h ˇ̃u
)

= 0,

∂ť
( ˇ̃h ˇ̃u
)
+div

( ˇ̃h ˇ̃u⊗ ˇ̃u
)
+

gH̃T 2

L2
ˇ̃h∇

ˇ̃h+
gHT 2

L2
ˇ̃h∇ȟ =−CL

H̃
| ˇ̃u| ˇ̃u.

For sedimentary basins, the water and sediment heights are usu-
ally small compared to the domain size. More precisely, the flow
regime is such that we have

gH̃T 2

L2 � 1,
gHT 2

L2 � 1,
CL

H̃
� 1.

This suggests to neglect the inertia terms in the nondimension-
alized momentum balance, which is commonly known as hydro-
static approximation. Returning to its dimensionalized counter-
part (1b), the equilibrium of the driving forces reads

|ũ|ũ =−K̃2h̃∇
(
h̃+h

)
. (2)

Here K̃2 = g/C can be seen as the Chézy coefficient [23]. By
inverting formula (2), we can express the water speed as

ũ =−K̃h̃
1
2
∣∣∇(h̃+h

)∣∣− 1
2 ∇
(
h̃+h

)
. (3)

Then, combining equations (1a) and (3), we obtain

∂t h̃+div
(
−K̃h̃

3
2
∣∣∇(h̃+h

)∣∣− 1
2 ∇
(
h̃+h

))
= 0. (4)

which is the desired conservation law for the water height.
Next, we switch to sediments. Contrary to the case of water,

we will use empirical laws. These are described in various text-
books (see, e.g., Granjeon [24]) and stipulate that the sediment
flux F is proportional to the shear stress due to water (denoted by
τ ) to the power 3/2, i.e.,

F = k|τ |
1
2 τ , (5)

where k is a constant. Here we suppose that the water flow is
strong enough to induce a constant sediment flow, hence we do
not consider critical shear stress in equation (5). Since we are
working over large time and space scales, the stress τ takes the
form

τ =−ρgh̃∇
(
h̃+h

)
, (6)

where ρ represents the water density and g is the acceleration due
to gravity. By plugging (6) into (5), we end up with the sediment
flux

F =−k(ρg)
3
2 h̃

3
2
∣∣∇(h̃+h

)∣∣ 1
2 ∇
(
h̃+h

)
.

For practical reasons, we choose to use a further approximation.
Once again, as we are working over large time scales, water flows
along slopes with only thin streams. In other words, the gradient
of the total height ∇

(
h̃+ h

)
is almost similar to ∇h, except for

regions containing lakes. However, in that specific case, we sup-
pose for the sake of simplicity that the sediment flow follows the
topography slope, namely, ∇h. This approximation yields

F =−Kh̃
3
2
∣∣∇(h̃+h

)∣∣ 1
2 ∇h (7)

as the new definition of the sediment flux, with K = k(ρg)
3
2 .

In a second stage, we recover gravity diffusion by adding an
extra term to definition (7) of the sediment flux. The new sedi-
ment flux reads

F =−K(h)h̃
3
2
∣∣∇(h̃+h

)∣∣ 1
2 ∇h−Kg(h)|∇h|p−2

∇h, (8)

and the desired conservation law for the sediment height is

∂th+div
(
F
)
= 0. (9)

The exponent p in (8) must be greater than 2 to ensure finite
propagation speed [4, 26]. As functions of the sediment height
h, the diffusion coefficients K and Kg often take two values so as
to mark the difference between continental and marine domains,
that is,

K(h) =
{

Km, if h < Hs,
Kc, if h > Hs,

(10a)

Kg(h) =
{

Kg,m, if h < Hs,
Kg,c, if h > Hs,

(10b)

where Hs represents the (known) sea level.
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2.2 Maximal erosion rate
The balance laws (4) and (9) are not sufficient to faithfully reflect
the evolution of sedimentary basins. Indeed, according to geo-
morphologists, sedimentation (∂th > 0) and erosion (∂th < 0) are
non-symmetric processes: soil material must first be produced in
situ by weathering process prior to being transported by diffusion.
Granjeon [24] postulated that the erosion is limited from below
by −E, where E > 0 is a known maximal erosion rate depending
on the climate, the type of sediments, and the bathymetry, so that

∂th+E > 0. (11)

To impose this constraint while preserving conservativity of the
sediment height, Eymard et al. [16] introduced a new variable
λ ∈ (0,1] called flux limiter and modified (9) as

∂th+div(λF) = 0,

Locally, either the erosion constraint is saturated (∂th+E = 0) or
the flux is unlimited (λ = 1). This is best formulated by means
of the complementarity condition

1−λ > 0, ∂th+E > 0, (1−λ )(∂th+E) = 0, (12)

which can be further condensed into the more convenient equa-
tion

min(1−λ ,∂th+E) = 0. (13)

Intuitively, this constraint can be viewed as a way to introduce
some a priori information on the availability of the sediment. As
illustrated in the two lower panels of Figure 2, as soon as the max-
imal amount of sediment E∆t available for the time-step has been
“consumed” somewhere, the diffusion process abruptly stops at
this place.

2.3 Full model
The stratigraphic model we will study is made up of the two pre-
vious conservation laws and the constraint on the erosion rate.
In equation (13), the second argument of the min function is
replaced by E − div(λF) to eliminate the time derivative. Let
Ω ⊂ R2 be an open connected bounded domain representing the
basin. With a slight abuse of notation, the symbol T now stands
for the simulation time. The unknowns h̃, h and λ are functions
of (x, t) ∈Ω× [0,T ] and solve

∂t h̃+div
(
F̃
)

= 0, on Ω× [0,T ], (14a)
∂th+div(λF) = 0, on Ω× [0,T ], (14b)
min(1−λ ,E−div(λF)) = 0, on Ω× [0,T ], (14c)

where the fluxes are written under the form

F̃ =−K̃
(
h̃+
) 3

2
∣∣∇(h̃+h

)∣∣− 1
2 ∇
(
h̃+h

)
, (15a)

F =−
(
h̃+
) 3

2
∣∣∇(h̃+h

)∣∣ 1
2 ∇ψ(h)−|∇h|p−2

∇ψg(h), (15b)

with the functions

ψ(h) =
∫ h

Hm

K(a)da, (16a)

ψg(h) =
∫ h

Hm

Kg(a)da. (16b)

In the definition of the fluxes (15), positive parts have been in-
troduced in order to raise h̃ to the power 3/2. This is neces-
sary, even though we expect this quantity to remain nonnegative.

Furthermore, this alteration will be useful at the discrete level to
avoid singularities (e.g., while using Newton’s method). To close
the physical model, we prescribe Neumann-type boundary condi-
tions corresponding to water and sediment inflows as

F̃ ·n = φ̃ 6 0, on ∂Ω× [0,T ], (17a)
F ·n = φ 6 0, on ∂Ω× [0,T ]. (17b)

Finally, initial states are given by

h̃|t=0 = h̃0, on Ω, (18a)

h|t=0 = h0, on Ω, (18b)

with 0 6 h̃0 6 h̃∗ and h∗ 6 h0 6 h∗ for some h∗,h∗, h̃∗ ∈ R.

3 Basic properties of the model
Before thinking about a numerical scheme for the model (14)–
(18), it is helpful to enumerate some of its properties at the con-
tinuous level. Let us assume that h̃, h and λ are smooth solutions
in order to justify the calculations below. We also admit that the
flux limiter λ is positive, which will be proven at the discrete
level in Lemma 5.1.

Lemma 3.1 (Nonnegativity of the water height). The water
height is nonnegative, i.e.,

h̃ > 0 in Ω×R+. (19)
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(a) Evolution of the system without constraint.
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(b) Evolution of the system with constraint.

Figure 2: Comparison of the system evolution with and without constraint on the erosion process.

Proof. Let T ∈ [0,T ]. Multiplying the conservation law (14a) by
the negative part h̃− and integrating over Ω× [0,T] yields∫ T

0

∫
Ω

h̃−∂t h̃dxdydt +
∫ T

0

∫
Ω

h̃−div
(
− K̃

(
h̃+
) 3

2

×
∣∣∇(h̃+h

)∣∣− 1
2 ∇
(
h̃+h

))
dxdydt = 0. (20)

In the first integral, we notice that h̃−∂t h̃ = ∂t [
1
2 (h̃
−)2]. In the

second integral, we apply the Green theorem and invoke the fact
h̃−
(
h̃+
)3/2 and ∇h̃−

(
h̃+
)3/2 vanish identically. As a result, equa-

tion (20) boils down to∫ T

0

d
dt

∫
Ω

1
2
(
h̃−
)2 dxdy =

∫
Ω

1
2
(
h̃−
)2∣∣

t=T
dxdy = 0,

since the initial water height is nonnegative. From this formula,
we infer that h̃−(·,T) = 0 on Ω.

Lemma 3.2 (Estimate on the sediment height). The sediment
height is uniformly bounded from below, i.e.,

h > h∗ in Ω×R+. (21)

Proof. Let T ∈ [0,T ]. Multiplying the conservation law (14b) by
the negative part (h−h∗)− and integrating over Ω× [0,T] yields

∫ T

0

∫
Ω

(h−h∗)−∂thdxdydt

+
∫ T

0

∫
Ω

(h−h∗)−div(λF)dxdydt = 0.

In the first integral, we notice that (h−h∗)−∂th= ∂t [
1
2 (h−h∗)−]2.

In the second second, we apply the Green theorem. Expanding
the formula of the sediment flux and arguing as in Lemma 3.1,
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we end up with ∫
Ω

1
2
[
(h−h∗)−

]2∣∣∣
t=T

dxdy 6 0.

This implies h(·,T)> h∗ over Ω.

Lemma 3.3 (Mass conservation of water and sediments). At any
time T ∈ [0,T ], the water and sediment heights satisfy∫

Ω

h̃|t=T dxdy =
∫

Ω

h̃0 dxdy−
∫ T

0

∫
∂Ω

φ̃ dσ dt, (22a)∫
Ω

h|t=T dxdy =
∫

Ω

h0 dxdy−
∫ T

0

∫
∂Ω

φ dσ dt. (22b)

Proof. Straightforward by integrating (14a)–(14b) over Ω× [0,T]
and by using the Stokes formula.

4 Finite Volume discretization
To compute an approximate solution of (14)–(18), our task to de-
vise a Finite Volume scheme that correctly takes into account var-
ious p-Laplacians and that coincides as much as possible with the
method of [13, 14, 21, 22] for p = 2 and without any water. To
clearly perceive the discretization of a p-Laplacian, we first fo-
cus on a simpler configuration, namely, the unsteady p-Laplacian
equation.

4.1 Notations
The rectangular domain Ω = [0,Lx]× [0,Ly] is discretized into
Nx×Ny uniform cells of size ∆x×∆y = Lx/Nx× Ly/Ny, where

Nx, Ny are two positive integers. The cell (i, j), denoted by Ci, j, is
centered at xi j = ((i−1/2)∆x,( j−1/2)∆y). The boundary ∂Ω of
the domain is divided into four parts Γb,Γt ,Γl and Γr, as depicted
in Figure ??. Time is discretized by 0 = t0 < t1 < · · ·< tn < .. . ,
using the time-steps ∆tn = tn+1− tn.

4.2 A simpler case: the unsteady p-Laplacian
equation

The unsteady p-Laplacian equation contains a core difficulty of
system (14)–(18). The unknown h : Ω×R+→ R is momentarily
assumed to solve the PDE

∂th+div
(
F̌
)
= 0, (23)

with the flux

F̌ =−|∇h|p−2
∇h, p > 1. (24)

It is known that the elementary solution, called Barenblatt [4],
behaves differently [10, 26] according to whether the exponent p
is greater or less than 2, as illustrated in Figure 4. If p > 2 the
solution is compactly supported and the diffusion speed is finite.
If p< 2 the solution does not have a compact support at each time
t > 0 and the diffusion speed is infinite. The linear case p = 2 is
the classical heat equation.

In the Finite Volume context, the principal difficulty lies in ap-
proximating the term |∇h|p−2 at each interface between the cells.
Over rectangular meshes, Andreianov et al. [1] has developped a
method for the stationary p-Laplacian equation. Here we adapt
their method to the unsteady version by first computing an ap-
proximation of |∇hn|2 on each dual cell (cf. Figure 5) using the
formula

Bn
i+ 1

2 , j+
1
2
=

1
2

(hn
i+1, j−hn

i, j

∆x

)2

+
1
2

(hn
i+1, j+1−hn

i, j+1

∆x

)2

+
1
2

(hn
i, j+1−hn

i, j

∆y

)2

+
1
2

(hn
i+1, j+1−hn

i+1, j

∆y

)2

, (25)

then by raising the result to the power (p−2)/2 to get an approx-
imation of |∇hn|p−2. It is worth noticing that the approximation

(25) is coercive, i.e., it cannot vanish unless the four values on
the dual cell are identical. Coercivity holds naturally without any
stabilization, as is customarily required in other Finite Volume
methods for nonlinear elliptic problems, such as those proposed
by Droniou [12] and Eymard et al. [18] over general meshes. This
is a significant advantage of Andreianov et al.’s scheme.

The discrete flux at each inner edge of the domain is given, in
the case p > 2, by the semi-implicit formulae

F̌n+1
i+ 1

2 , j
=−1

2

[(
Bn

i+ 1
2 , j−

1
2

) p−2
2 +

(
Bn

i+ 1
2 , j+

1
2

) p−2
2

]
×

hn+1
i+1, j−hn+1

i, j

∆x
, (26a)
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(a) Slow diffusion case (p > 2). (b) Fast diffusion case (p < 2).

Figure 4: Elementary solution in 1D at time t = 1.

F̌n+1
i, j+ 1

2
=−1

2

[(
Bn

i− 1
2 , j+

1
2

) p−2
2 +

(
Bn

i+ 1
2 , j+

1
2

) p−2
2

]
×

hn+1
i, j+1−hn+1

i, j

∆y
. (26b)

The choice of keeping the approximation of |∇h|p−2 explicit is
motivated by saving computational cost. Numerical experiments
testify to the fact that the semi-implicit scheme compares well
with the full implicit one. If p < 2, a regularization is needed
to avoid singularities. In that case, Bn

i+1/2, j+1/2 is replaced by
max(Bn

i+1/2, j+1/2,ε), with ε > 0 small. For all p > 1, the Finite
Volume scheme reads

hn+1
i, j −hn

i, j

∆t
+

F̌n+1
i+ 1

2 , j
− F̌n+1

i− 1
2 , j

∆x
+

F̌n+1
i, j+ 1

2
− F̌n+1

i, j− 1
2

∆y
= 0 (27)

for 1 6 i 6 Nx and 1 6 j 6 Ny.
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C0,0 CNx+1,0

CNx+1,Ny+1C0,Ny+1

Figure 5: Mesh illustration: initial domain Ω (in white), ghost
cells (in orange) and dual mesh (in red).

Since normal fluxes are prescribed on the boundary, it seems
at first sight that the scheme (27) is well defined everywhere and
there is no need to define the Bn’s at the boundary. Nevertheless,
this impression is dispelled upon close inspection of the fluxes
tangential to the boundary. Let us take a look at the Figure 5. The
approximation of the blue flux, associated to an inner edge, can
be directly computed using (26). On the contrary, for the pur-
ple one which is tangential to the domain, we observe that data
outside of Ω are needed to perform its approximation.

To remedy this issue, we consider a layer of ghost cells around
the initial domain, and associate a new unknown h to each of
these cells. To have a well-posed system we then need to add as
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much equations as ghost cells. The idea is to link the value of the
new unknowns with the fluxes prescribed at the boundary. For
1 6 i 6 Nx, 1 6 j 6 Ny, the equations take the form

Γb : F̌n+1
i, 1

2
+

1
∆x∆t

∫ tn+1

tn

∫ i∆x

(i−1)∆x
φ(x,0, t)dxdt = 0,

Γl : F̌n+1
1
2 , j

+
1

∆y∆t

∫ tn+1

tn

∫ j∆y

( j−1)∆y
φ(0,y, t)dydt = 0,

Γt : F̌n+1
i,Ny+

1
2
− 1

∆x∆t

∫ tn+1

tn

∫ i∆x

(i−1)∆x
φ(x,Ly, t)dxdt = 0,

Γr : F̌n+1
Nx+

1
2 , j
− 1

∆y∆t

∫ tn+1

tn

∫ j∆y

( j−1)∆y
φ(Lx,y, t)dydt = 0.

There remain four ghost cells at the corners i ∈ {0,Nx + 1},
j ∈ {0,Ny + 1}, to be taken care of. For simplicity, we choose
to use an extrapolation of the neighbouring values, that is,

C0,0 : hn+1
0,0 +hn+1

1,1 −hn+1
1,0 −hn+1

0,1 = 0,

CNx+1,0 : hn+1
Nx+1,0 +hn+1

Nx,1 −hn+1
Nx+1,1 −hn+1

Nx,0 = 0,

C0,Ny+1 : hn+1
0,Ny+1 +hn+1

1,Ny
−hn+1

1,Ny+1 −hn+1
0,Ny

= 0,

CNx+1,Ny+1 : hn+1
Nx+1,Ny+1 +hn+1

Nx,Ny
−hn+1

Nx,Ny+1−hn+1
Nx+1,Ny

= 0.

4.3 Numerical scheme for the stratigraphic model
We are now in a position to return to the stratigraphic model (14)–
(18). Since we have |∇h| and |∇(h̃+h)| in the model, we need not
only a dual-cell approximation Bn

i+1/2, j+/12 for |∇hn|2 but also a

dual-cell approximation Bn
i+1/2, j+1/2 for |∇(h̃n + hn)|2. Follow-

ing the spirit of (25), the latter approximation can be straightfor-
wardly written as

Bn
i+ 1

2 , j+
1
2
=

1
2

(
h̃n

i+1, j +hn
i+1, j− h̃n

i, j−hn
i, j

∆x

)2

+
1
2

(
h̃n

i+1, j+1 +hn
i+1, j+1− h̃n

i, j+1−hn
i, j+1

∆x

)2

+
1
2

(
h̃n

i, j+1 +hn
i, j+1− h̃n

i, j−hn
i, j

∆y

)2

+
1
2

(
h̃n

i+1, j+1 +hn
i+1, j+1− h̃n

i+1, j−hn
i+1, j

∆y

)2

. (28)

4.3.1 Conservation law for water

To discretize the conservation law for the water height (14a), we
first recast it in a slightly different way, as

∂t h̃+div
[(

h̃+
) 3

2 G̃
]
= 0, (29)

with
G̃ =−K̃

∣∣∇(h̃+h
)∣∣− 1

2 ∇
(
h̃+h

)
.

The idea behind (29) is to upwind the “transported” quantity
(h̃+)3/2 with respect to the sign of the normal “velocity” G̃= G̃ ·n
at the edges. This amounts to defining the discrete water fluxes

F̃n+1
i+ 1

2 , j
=
[(

h̃n+1
i, j
)+] 3

2
(
G̃n+1

i+ 1
2 , j

)+
+
[(

h̃n+1
i+1, j

)+] 3
2
(
G̃n+1

i+ 1
2 , j

)−
,

F̃n+1
i, j+ 1

2
=
[(

h̃n+1
i, j
)+] 3

2
(
G̃n+1

i, j+ 1
2

)+
+
[(

h̃n+1
i, j+1

)+] 3
2
(
G̃n+1

i, j+ 1
2

)−
,

where a+ = max(a,0) and a− = min(a,0). To define the G̃’s, we
need an approximation of

∣∣∇(h̃+ h
)∣∣−1/2. This can be achieved

by raising formula (28) to the power −1/4. Because of the neg-
ative exponent, a regularization must be performed in order to
avoid infinities in flat zones, which results in

G̃n+1
i+ 1

2 , j
=−

[
max

(
Bn

i+ 1
2 , j−

1
2
,ε
)− 1

4 +max
(
Bn

i+ 1
2 , j+

1
2
,ε
)− 1

4
]

× K̃
2
·

h̃n+1
i+1, j +hn+1

i+1, j− h̃n+1
i, j −hn+1

i, j

∆x
,

G̃n+1
i, j+ 1

2
=−

[
max

(
Bn

i− 1
2 , j+

1
2
,ε
)− 1

4 +max
(
Bn

i+ 1
2 , j+

1
2
,ε
)− 1

4
]

× K̃
2
·

h̃n+1
i, j+1 +hn+1

i, j+1− h̃n+1
i, j −hn+1

i, j

∆y
.

Finally, the interior scheme is given by

h̃n+1
i, j − h̃n

i, j

∆t
+

F̃n+1
i+ 1

2 , j
− F̃n+1

i− 1
2 , j

∆x
+

F̃n+1
i, j+ 1

2
− F̃n+1

i, j− 1
2

∆y
= 0. (30)

4.3.2 Conservation law for sediments

The approximation of the conservation law for the sediment
height (14b) takes the same approach but is exposed here in re-
verse order. The interior scheme is given by

hn+1
i, j −hn

i, j

∆t
+

(λF)n+1
i+ 1

2 , j
− (λF)n+1

i− 1
2 , j

∆x

+
(λF)n+1

i, j+ 1
2
− (λF)n+1

i, j− 1
2

∆y
= 0, (31)

8



where the reduced fluxes λF result from upwinding the limiter λ

with respect to the sign of F = F ·n. In other words,

(λF)n+1
i+ 1

2 , j
= λ

n+1
i, j
(
Fn+1

i+ 1
2 , j

)+
+λ

n+1
i+1, j

(
Fn+1

i+ 1
2 , j

)−
, (32a)

(λF)n+1
i, j+ 1

2
= λ

n+1
i, j
(
Fn+1

i, j+ 1
2

)+
+λ

n+1
i, j+1

(
Fn+1

i, j+ 1
2

)−
. (32b)

Now, we need to define the F’s. As in the previous case, let us
recast the unconstrained sediment flux in a different way, i.e.,

F =
(
h̃+
) 3

2 G−|∇h|p−2
∇ψg(h), (33)

with
G =−

∣∣∇(h̃+h
)∣∣ 1

2 ∇ψ(h).

Then, the discretization of F · n is carried out by upwinding(
h̃+
)3/2 with respect to the sign of G=G ·n. For the second sum-

mand in the right-hand side of (33), we apply the same method as
that employed for the p-Laplacian and the first conservation law.
It follows that

Fn+1
i+ 1

2 , j
=
[(

h̃n+1
i, j
)+] 3

2
(
Gn+1

i+ 1
2 , j

)+
+
[(

h̃n+1
i+1, j

)+] 3
2
(
Gn+1

i+ 1
2 , j

)−
− 1

2
[(

Bn
i+ 1

2 , j−
1
2

) p−2
2 +

(
Bn

i+ 1
2 , j+

1
2

) p−2
2
]

×
ψg
(
hn+1

i+1, j

)
−ψg

(
hn+1

i, j

)
∆x

, (34a)

Fn+1
i, j+ 1

2
=
[(

h̃n+1
i, j
)+] 3

2
(
Gn+1

i, j+ 1
2

)+
+
[(

h̃n+1
i, j+1

)+] 3
2
(
Gn+1

i, j+ 1
2

)−
− 1

2
[(

Bn
i− 1

2 , j+
1
2

) p−2
2 +

(
Bn

i+ 1
2 , j+

1
2

) p−2
2
]

×
ψg
(
hn+1

i, j+1

)
−ψg

(
hn+1

i, j

)
∆y

, (34b)

with

Gn+1
i+ 1

2 , j
=−1

2

[(
Bn

i+ 1
2 , j−

1
2

) 1
4 +
(
Bn

i+ 1
2 , j+

1
2

) 1
4
]

×
ψ(hn+1

i+1, j)−ψ(hn+1
i, j )

∆x
, (35a)

Gn+1
i, j+ 1

2
=−1

2

[(
Bn

i− 1
2 , j+

1
2

) 1
4 +
(
Bn

i+ 1
2 , j+

1
2

) 1
4
]

×
ψ(hn+1

i, j+1)−ψ(hn+1
i, j )

∆y
. (35b)

Note that no regularization is necessary in (35), as the exponent
1/4 is positive.

4.3.3 Complementarity equation

To discretize the complementarity condition (14c), we first define
the maximum erosion rate on each cell as

Ei, j =
1

∆x∆y

∫
Ci, j

E(x,y)dxdy. (36)

Then, using (32), we consider the discrete version

min
(

1−λ
n+1
i, j , Ei, j−

(λF)n+1
i+1/2, j− (λF)n+1

i−1/2, j

∆x

−
(λF)n+1

i, j+1/2− (λF)n+1
i, j−1/2

∆y

)
= 0 (37)

of (14c). Let us transform this equation into a more valuable
form, for theoretical as well as numerical purposes, by introduc-
ing two notions. The first one represents the total unlimited out-
going flux from cell Ci, j, i.e.,

〈F〉n+1
i, j = ∆y

[(
Fn+1

i+ 1
2 , j

)+
+
(
Fn+1

i− 1
2 , j

)−]
+∆x

[(
Fn+1

i, j+ 1
2

)+
+
(
Fn+1

i, j− 1
2

)−]
, (38a)

while the second one represents the total limited incoming flux
from cell Ci, j, i.e.,

〉λF〈n+1
i, j =∆y

[
λ

n+1
i−1, j

(
Fn+1

i− 1
2 , j

)+
+λ

n+1
i+1, j

(
Fn+1

i+ 1
2 , j

)−]
+∆x

[
λ

n+1
i, j−1

(
Fn+1

i, j− 1
2

)+
+λ

n+1
i, j+1

(
Fn+1

i, j+ 1
2

)−]
. (38b)

Then, equation (37) receives the more compact form

min
(

1−λ
n+1
i, j , Ei, j−λ

n+1
i, j

〈F〉n+1
i, j

∆x∆y
+
〉λF〈n+1

i, j

∆x∆y

)
= 0, (39)

in which λ
n+1
i, j in the second argument has been isolated from the

neighboring λ n+1’s. The idea is now to calibrate this new relation
so that the coefficient of λ

n+1
i, j in the second argument is −1. To

this end, we invoke the equivalence property

min(a,b) = 0 ⇐⇒ min(a,γb) = 0, ∀γ > 0.

In the “good” case 〈F〉n+1
i, j 6= 0, by setting γ = ∆x∆y/〈F〉n+1

i, j ,
equation (39) becomes

min
(

1−λ
n+1
i, j ,

∆x∆yEi, j + 〉λF〈n+1
i, j

〈F〉n+1
i, j

−λ
n+1
i, j

)
= 0.

9



By virtue of min(a− c,b− c) = min(a,b)− c, we can pull λ
n+1
i, j

out of the min and obtain

λ
n+1
i, j = min

(
1,

∆x∆yEi, j + 〉λF〈n+1
i, j

〈F〉n+1
i, j

)
. (40)

In the “bad” case 〈F〉n+1
i, j = 0, the relation (39) reduces to

min
(

1−λ
n+1
i, j ,Ei, j +

〉λF〈n+1
i, j

∆x∆y

)
= 0. (41)

Owing to the definition of various terms, we see that the second
argument of the min is positive (see also the Lemma 5.1). Then
the only way to solve this equation is to have λ

n+1
i, j = 1. This

result should not come as a surprise. Indeed, having 〈F〉n+1
i, j = 0

means there is no outgoing fluxes from the cell Ci, j, that is to say,
erosion does not occur. Thus, there is no need to limit the sedi-
ment flux to satisfy the constraint on the erosion process, whence
λ

n+1
i, j = 1.

Anticipating the boundary conditions that will be addressed
in §4.3.4, we wish to point out one important issue regarding
the numerical resolution. Contrary to Gervais and her coauthors
[13, 14, 20–22], we advocate mounting the whole set of equa-
tions (30)–(36), (40)–(46) into a single system in the unknowns
(h̃n+1

i, j ,hn+1
i, j ,λ n+1

i, j ) and applying Newton’s method to this system.
In [13, 14, 20–22], the strategy for numerical resolution rested on
a variable-switching procedure whereby, as examplified in Ey-
mard et al. [17, §7.2.3] for a compositional multiphase flow prob-
lem, the set of equations and the set of unknowns evolve locally
and dynamically with the iterates, according to the presumed flow
regime (i.e., whether or not the erosion constraint is thought to be
saturated). The main advantage of our strategy is to make imple-
mentation much easier by providing a unified formulation to the
problem at the discrete level.

It could be argued that the min function is not differentiable
everywhere, which could cause trouble to Newton’s method. In
fact, we recommend the Newton-min method, a variant in which
any element of the subdifferential can be selected in place of the
corresponding partial derivative. The Newton-min method has
been proved to work well by many authors (see, e.g., Ben Ghar-
bia [5]).

4.3.4 Boundary conditions and initial data

The boundary conditions are discretized via an approach similar
to what was done for the p-Laplacian case. For each ghost cell,

two new equations are considered to take into account the water
and sediment inflows. Moreover, on these cells the flux limiter λ

is set to the value 1, which amounts to saying that the prescribed
boundary conditions are never truncated. For the water fluxes, the
equations are

Γb : F̃n+1
i, 1

2
+

1
∆x∆t

∫ tn+1

tn

∫ i∆x

(i−1)∆x
φ̃(x,0, t)dxdt = 0,

Γl : F̃n+1
1
2 , j

+
1

∆y∆t

∫ tn+1

tn

∫ j∆y

( j−1)∆y
φ̃(0,y, t)dydt = 0,

Γt : F̃n+1
i,Ny+

1
2
− 1

∆x∆t

∫ tn+1

tn

∫ i∆x

(i−1)∆x
φ̃(x,Ly, t)dxdt = 0,

Γr : F̃n+1
Nx+

1
2 , j
− 1

∆y∆t

∫ tn+1

tn

∫ j∆y

( j−1)∆y
φ̃(Lx,y, t)dydt = 0,

(42)

and for the sediment fluxes, the equations are

Γb : Fn+1
i, 1

2
+

1
∆x∆t

∫ tn+1

tn

∫ i∆x

(i−1)∆x
φ(x,0, t)dxdt = 0,

Γl : Fn+1
1
2 , j

+
1

∆y∆t

∫ tn+1

tn

∫ j∆y

( j−1)∆y
φ(0,y, t)dydt = 0,

Γt : Fn+1
i,Ny+

1
2
− 1

∆x∆t

∫ tn+1

tn

∫ i∆x

(i−1)∆x
φ(x,Ly, t)dxdt = 0,

Γr : Fn+1
Nx+

1
2 , j
− 1

∆y∆t

∫ tn+1

tn

∫ j∆y

( j−1)∆y
φ(Lx,y, t)dydt = 0.

(43)

As far as the corner ghost cells are concerned, we consider
two new equations that are extrapolation of the water and sedi-
ment heights from the neighbouring cells. For the water height,
these are

C0,0 : h̃n+1
0,0 + h̃n+1

1,1 − h̃n+1
1,0 − h̃n+1

0,1 = 0,

CNx+1,0 : h̃n+1
Nx+1,0 + h̃n+1

Nx,1 − h̃n+1
Nx+1,1 − h̃n+1

Nx,0 = 0,

C0,Ny+1 : h̃n+1
0,Ny+1 + h̃n+1

1,Ny
− h̃n+1

1,Ny+1 − h̃n+1
0,Ny

= 0,

CNx+1,Ny+1 : h̃n+1
Nx+1,Ny+1 + h̃n+1

Nx,Ny
− h̃n+1

Nx,Ny+1− h̃n+1
Nx+1,Ny

= 0.

(44)
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For the sediment height, these are

C0,0 : hn+1
0,0 +hn+1

1,1 −hn+1
1,0 −hn+1

0,1 = 0,

CNx+1,0 : hn+1
Nx+1,0 +hn+1

Nx,1 −hn+1
Nx+1,1 −hn+1

Nx,0 = 0,

C0,Ny+1 : hn+1
0,Ny+1 +hn+1

1,Ny
−hn+1

1,Ny+1 −hn+1
0,Ny

= 0,

CNx+1,Ny+1 : hn+1
Nx+1,Ny+1 +hn+1

Nx,Ny
−hn+1

Nx,Ny+1−hn+1
Nx+1,Ny

= 0.

(45)

We conclude this section by detailing the discretization of
the initial data h̃0 and h0. In the domain Ω, these are chosen
as piecewise-constant functions whose cell values are

h̃0
i, j =

1
∆x∆y

∫
C i j

h̃0(x,y)dxdy, (46a)

h0
i, j =

1
∆x∆y

∫
C i j

h0(x,y)dxdy. (46b)

Regarding the values in the ghost cells, for the sake of simplicity
we choose to use an extrapolation of the values computed in (46).
We can also determine an initial value for the flux limiter, which
is in practice only used as an initial guess for the first Newton
iteration. To do so, one method consists in: (i) sorting cells in de-
creasing topography order, and (ii) applying formula (40) while
visiting the cells in this specific order. This method, introduced
by Granjeon [24] in a more intuitive language, avoids the resolu-
tion of a linear system.

5 Properties of the numerical scheme
The numerical scheme (30)–(36), (40)–(46) enjoys many favor-
able properties that deserve mentioning. The first property is an
estimate on the flux limiter λ .

Lemma 5.1 (Estimates on the flux limiter). For all n > 0, for all
1 6 i 6 Nx, 1 6 j 6 Ny, we have

0 < λ
n+1
i, j 6 1. (47)

Proof. In formula (40), we observe that ∆x∆yEi, j > 0 and
〈F〉n+1

i, j > 0. We thus have to show that 〉λF〈n+1
i, j > 0.

Let us suppose that cells are sorted in decreasing topographi-
cal order. Then, computing the discrete flux limiter in this specific
order, we can see that the term 〉λF〈n+1

i, j involves unknowns λ
n+1
i, j

computed only in previous cells. In particular, for the one with
the highest sediment height, 〉λF〈n+1

i, j = 0 (or 〉λF〈n+1
i, j > 0 if it

is located near the boundary where inflow of sediments is pre-
scribed). By propagating positivity from the highest cell to lower
ones, every cell can be reached. This completes the proof.

The next statement is the discrete of Lemmas 3.1 and 3.2.

Lemma 5.2 (Estimates on water and sediment heights). For all
n > 0, for all 1 6 i 6 Nx, 1 6 j 6 Ny, we have

h̃n
i, j > 0, (48a)

hn
i, j > h∗. (48b)

Proof. The first estimate is proven by induction. Suppose that
(48a) holds at n and assume that h̃n+1

i∗, j∗ < 0 for some (i∗, j∗). Then,
analyzing the sign of the fluxes associated to Ci∗, j∗ and apply-
ing the update formula (30), it turns out that the latter leads to
h̃n+1

i∗, j∗ > 0, which is a contradiction.
The second estimate also relies on induction. Suppose that

(48b) holds at n and let hn+1
i∗, j∗ = mini, j hn+1

i, j . As before, the claim
is proven by applying the numerical scheme (31) and studying
the sign of the corresponding fluxes (note that ψ and ψg are in-
creasing functions).

Lemma 3.3 also has the following discrete counterpart.

Lemma 5.3 (Mass conservation of water and sediments). For all
n > 0, one has

∆x∆y
Nx

∑
i=1

Ny

∑
j=1

h̃n
i, j =

∫
Ω

h̃0(x,y)dxdy−
∫ tn

0

∫
∂Ω

φ̃(x,y, t)dσ dt,

∆x∆y
Nx

∑
i=1

Ny

∑
j=1

hn
i, j =

∫
Ω

h0(x,y)dxdy−
∫ tn

0

∫
∂Ω

φ(x,y, t)dσ dt.

(49)

Proof. Again, we proceed by induction. For n = 0, this is due to
the discretization of the initial data (46). If (49) holds at n, then
by adding the first equation with the sum of (30) over (i, j), by
adding the second equation with the sum of (31)) over (i, j), by
using the conservativity of the scheme and the definition of the
boundary fluxes (42)–(43), we get the result.

The last property we wish to put forward is the existence of a
discrete solution. Far from being trivail, this property is of prac-
tical importance for the Newton method to have a chance to con-
verge.
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Proposition 5.4 (Existence of a discrete solution). Let h̃n
i, j and

hn
i, j be such that (48)–(49) hold. Then, for all ∆tn > 0, there ex-

ists at least one solution
(
h̃n+1

i, j ,hn+1
i, j ,λ n+1

i, j

)
i, j to the numerical

scheme (30)–(36), (40)–(46), satisfying the properties (47)–(49).

Proof. The result follows from a topological degree argument
that we only sketch out, referring the readers to the standard liter-
ature [11, 15, 27] or to Peton [28] for full details. The basic idea
is to define a homotopy Hµ , µ ∈ [0,1] between our system of
equations and a simpler one, for which the existence of a unique
solution is trivial. The difficulty lies in making sure that some
technical conditions are satisfied along the homotopy.

In our problem, let us consider the system

h̃µ,n+1
i, j − h̃n

i, j

∆t
+µ

[F̃µ,n+1
i+ 1

2 , j
− F̃µ,n+1

i− 1
2 , j

∆x
+

F̃µ,n+1
i, j+ 1

2
− F̃µ,n+1

i, j− 1
2

∆y

]
= 0,

hµ,n+1
i, j −hn

i, j

∆t
+µ

[Fµ,n+1
i+ 1

2 , j
−Fµ,n+1

i− 1
2 , j

∆x
+

Fµ,n+1
i, j+ 1

2
−Fµ,n+1

i, j− 1
2

∆y

]
= 0,

λ
µ,n+1
i, j +µ−1−µ min

(
1,

∆x∆yEi, j + 〉λF〈µ,n+1
i, j

〈F〉µ,n+1
i, j

)
= 0.

For µ = 1 we recover the numerical scheme (30)–(36), (40)–(46),
while taking µ = 0 leads to a simple mapping for which the topo-
logical degree is equal to 1. What is left to show is that the vari-
ables (h̃µ,n+1

i, j , hµ,n+1
i, j , λ

µ,n+1
i, j ) remain bounded for all µ ∈ [0,1].

This can be achieved by adapting the proofs of the estimates (47)–
(49). Thus all the mappings Hµ , µ ∈ [0,1], have a topological

degree equal to 1, which implies the existence of at least one so-
lution.

6 Numerical results

In this section, we present two test cases in order to illustrate the
stratigraphic model as well as the capabilities of the numerical
scheme.

6.1 Delta evolution

This first configuration aims to highlight the impact of water ef-
fects in the stratigraphic model. Let us consider a domain of size
20 km×20 km divided into marine and continental parts, the sea
level being fixed at Hs = 1.4 km. Table ?? gathers the values
of the diffusion coefficients. The gravity ones are intended to
be small in order to focus on bed load transport. Concerning K̃,
its value is set to 20000 km

1
2 /My. We also take into account a

constraint on the erosion process through the maximum weath-
ering rate E = 0.1 km/My. Inflows of water and sediments are
prescribed at the boundary as

−
∫

∂Ω

φ̃ dσ = 40km3/My, −
∫

∂Ω

φ dσ = 0.04km3/My,

for all t > 0.

The computational domain is divided into 200× 200 cells,
and the evolution of the system is simulated over 1 My. The value
of the exponent of the p-Laplacian in the sediment flux (15b) is
set to p = 2.5. We start the simulation with the initial time step
∆t0 = 10−4 My. At each time step, the nonlinear system is solved
using Newton’s method, at a precision of 10−5 km for the water
and sediment heights, and 10−5 for the flux limiter (based on the
infinity norm of the residual). The resolution of the linear systems
arising at each Newton iteration is made using the BiCGStab [31]
method from PETSc routines [3]. If the time iteration is accepted,
the next time step is defined as ∆tn+1 = 1.1∆tn, up to the maxi-
mum value 10−3 My. Otherwise, if Newton’s method fails to con-
verge after 20 iterations, the time step is rejected and is restarted
with ∆tn = 0.5∆tn.

Figure 6 illustrates the behaviour of the system. Because of
the low gravity diffusion coefficients, the sediment transport is

mainly due to water fluxes. By looking at Figure 6c, we observe
that water tends to carry away sediments from the continental
part. Moreover, the associated transport being strong, the sedi-
ment flux needs to be limited (see the evolution of the flux lim-
iter) in order to satisfy the constraint on the erosion rate. As time
goes by, we can also distinguish the formation of a delta near the
shoreline. In particular, we observe a break between the continen-
tal and marine domains, which is due to the discontinuity within
the diffusion coefficients.

In Table 2 are gathered some numerical data, obtained at the
end of the simulation. We show the importance of choosing
a good preconditioner to solve the underlying system properly.
Among the configurations tested, we have always a low number
of refused time steps. Nevertheless, we observe that the precon-
ditioner choice leads to important changes in the computational
time. In our case, it is better to use ILU(2) or ILU(3). For stronger
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(a) Initial water and sediment heights (km). (b) Initial flux limiter.

(c) Water and sediment heights (km) at time T = 0.5 My. (d) Flux limiter at time T = 0.5 My.

(e) Water and sediment heights (km) at time T = 1 My. (f) Flux limiter at time T = 1 My.

Figure 6: Evolution of the water and sediment heights and of the flux limiter for the delta evolution test case.

13



preconditioning methods, the cost of each iteration becomes too
important to gain in efficiency. On the opposite situation, ILU(0)
turns out to not be a good choice because of the high number of
iterations needed at each Newton step.

6.2 Lakes formation
In this second configuration, we aim to reproduce the filling of
lakes. Once again, we consider a domain of size 20 km×20 km
divided in marine and continental regions. The sea level sep-
arating these two parts is set to Hs = 1.8 km. The value of
the diffusion coefficients is given in Table ??, and K̃ is fixed to
10000 km1/2/My. A constraint on the erosion process is taken
into account with the maximum weathering rate E = 0.1 km/My.
Finally, inflows of water and sediments are prescribed at the
boundary, which satisfy

−
∫

∂Ω

φ̃ dσ = 46km3/My, −
∫

∂Ω

φ dσ = 0.046km3/My,

for all t > 0.

Concerning the numerical parameters: first, the domain is ap-
proximated by a regular grid of 200× 200 cells. The evolution
of the system is simulated over 1 My. The exponent of the p-
Laplacian in the sediment flux (15b) is fixed to p = 2.5. For the
stopping criteria of Newton’s method and the management of the
time step, we choose the same methodology as for the first test
case.

The evolution of the system is presented in Figure 7. In a first
phase, the water inflows fill the upper part of the domain with the
creation of lakes (Figure 7c). Then, once the reservoir capacity is
reached, water flows downhill carrying away sediments from the
central area (Figure 7e). Furthermore, on the pictures display-
ing the evolution of the flux limiter, one can see that the main
areas where the sediment flux needs to be limited (in red) cor-
respond to mountain flanks (where the slope ∇h is high). From
time T = 0.5 My, a new constrained zone appears in the central
zone of the domain. This is due to the water flowing to the lower
part, which tends to transport a large quantity of sediments. The
sediment flux thus has to be limited to respect the constraint on
the weathering rate.

In Table 4 are presented some numerical data. As in the pre-
vious test case, we observe that the choice of preconditioner has
a tremendous impact on the computational time. Among the con-
figurations tested, ILU(2) and ILU(3) still seem to be the better
ones.

7 Extension to the multi-lithology case
Gervais and Masson [20, 22] went on developing a multi-
lithology version of their initial model in order to capture effects
due to the simultaneous presence of various types of sediments.
The purpose of this section is to demonstrate that our stratigraphic
model (14)–(18) is also extendable to the multi-lithology case.

7.1 Physical model
In geology, sediments are classified according to different crite-
ria, e.g., the mineral composition, grain size... Among these cat-
egories, called lithologies, we can find sands and shales. Each
of these may have its own physical properties, such as the trans-
portability (i.e., the diffusion speed) which will be our main con-
cern in this section.

The notations used in the sequel are presented in Figure ??.
We suppose sediments are made up of a mixture of L lithologies,
the concentrations (c`)`=1,...,L ∈ [0,1]L of which naturally satisfy
the relation

L

∑
`=1

c` = 1. (50)

Instead of considering one conservation law on the sediment
height as before, the idea is to seek a balance law for each frac-
tion of lithology. This notion is computed over the sediment
thickness on each point of the domain, that is, as a function of
the depth ζ ∈ [h∗,h(x,y, t)], where h∗ is the minimum sediment
height. More precisely, it is defined through the formula

F`(x,y, t) =
∫ h(x,y,t)

h∗
c`(x,y,ζ , t)dζ , `= 1, . . . ,L. (51)

The corresponding time derivative is given by

∂tF` = c`|ζ=h∂th+
∫ h

h∗
∂tc` dζ . (52)

We now have to set the corresponding lithology flux. To do so, we
follow the procedures of Gervais [20] and Rivenæs [30]. The first
step is to extend the diffusion coefficients Kg and K of the previ-
ous model to the case of multiple lithologies. For `= 1, . . . ,L, we
define Kg,` and K` by

Kg,`(h) =
{

Kg,`,m, if h < Hs,
Kg,`,c, if h > Hs,

(53a)

K`(h) =
{

K`,m, if h < Hs,
K`,c, if h > Hs.

(53b)
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(a) Initial water and sediment heights (km). (b) Initial flux limiter.

(c) Water and sediment heights (km) at time T = 0.5 My. (d) Flux limiter at time T = 0.5 My.

(e) Water and sediment heights (km) at time T = 1 My. (f) Flux limiter at time T = 1 My.

Figure 7: Evolution of the water and sediment heights and of the flux limiter for the lake formation test case.
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Next, we introduce a new type of concentration, named surface
concentrations and denoted by (cs

`)`=1,...,L ∈ [0,1]L. These are
defined only at the surface of the sedimentary basin, and aimed at
representing the sediment transport which occurs nowhere but at
the surface. Moreover, they satisfy the property

L

∑
`=1

cs
` = 1. (54)

As a consequence, concentrations within the basin do not change
over time, i.e.,

∂tc` = 0, in Ω× [h∗,h[×R+, `= 1, . . . ,L. (55)

These can change only during sedimentation, where the compo-
sition of deposited sediments is given by the surface concentra-
tions, that is to say, if ∂th > 0 then

c`|ζ=h = cs
`, in Ω×R+, `= 1, . . . ,L. (56)

From this, the time derivative of the fraction of lithology ` (52)
can be written in the simpler form

∂tF` = c`|ζ=h∂th. (57)

Then, the conservation law for each fraction of lithology ` =
1, . . . ,L is taken to be

c`|ζ=h∂th+div(λF`) = 0, in Ω×R+, (58)

with the corresponding lithology flux

F` =−K`(h)cs
`

(
h̃+
) 3

2
∣∣∇(h̃+h

)∣∣ 1
2 ∇h

−Kg,`(h)cs
`|∇h|p−2

∇h. (59)

To take into account the constraint on the erosion process, we
apply a procedure similar to that of (13) for the single-lithology
model. Summing the equations (58) over `= 1, . . . ,L gives

∂th+
L

∑
`=1

div(λF`) = 0.

It is therefore natural to impose the complementarity condition

min
(

1−λ ,E−
L

∑
`=1

div(λF`)

)
= 0, in Ω×R+. (60)

The balance law for the water height is exactly the same equa-
tion as (14a). Thus, the multilithological model includes the con-
servation laws (14a) and (58), the complementarity condition (60)
and the closure equation (54). The associated unknowns are the
water and sediment heights h̃ and h, the flux limiter λ , and the
surface concentrations (cs

`)`=1,...,L. As for the boundary condi-
tions, we consider inflow of water and lithologies.

7.2 Finite Volume discretization

In the discretization of the equations, a new difficulty emer-
ges regarding the approximation of sediment columns. Indeed, it
is now essential to determine the proportion of each type of sed-
iment during the erosion and sedimentation processes. Let ζ be
the coordinate in the vertical direction. Following Gervais [20],
the concentration cn+1

`,i, j (ζ ) is defined as the solution at time tn+1

of the system

∂tc`,i, j(ζ , t) = 0, ζ ∈ [h∗,hi, j(t)[, t ∈ [tn, tn+1],

c`,i, j(hi, j(t), t) = cs,n+1
`,i, j , if hn+1

i, j > hn
i, j, t ∈ [tn, tn+1],

c`,i, j(ζ , tn) = cn
`,i, j(ζ ), ζ ∈ [h∗,hn

i, j[, (61)

where hi, j is a convex combination of the discrete sediment height
between times tn and tn+1:

hi, j(t) =
(
1−α(t)

)
hn

i, j +α(t)hn+1
i, j , α(t) =

t− tn

tn+1− tn ,

with t ∈ [tn, tn+1]. The solution of this system can be easily
computed by distinguishing sedimentation from erosion. In the
first case, the procedure consists in adding a block of thickness
hn+1

i, j −hn
i, j above the column at time tn, in which the composition

is given by the surface concentrations

cn+1
`,i, j (ζ ) =

{
cn
`,i, j(ζ ), ζ ∈ [h∗,hn

i, j[,

cs,n+1
`,i, j , ζ ∈ [hn

i, j,h
n+1
i, j ],

`= 1, . . . ,L.

(62a)

In the situation of erosion, one only has to truncate the column at
time tn up to the sediment height hn+1

i, j . Hence,

cn+1
`,i, j (ζ ) = cn

`,i, j(ζ ), ζ ∈ [h∗,hn+1
i, j [, `= 1, . . . ,L. (62b)

This procedure is illustrated in Figure 9.
We are now ready to tackle the discretization of the conserva-

tion laws of the lithologies (58). The time derivative, written in
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h

hn+1
ero.,i, j

hn
i, j

hn+1
sed.,i, j

Erosion at tn+1 Data at tn Sedimentation at tn+1

cn
`,i, j

cn
`,i, j cn

`,i, j

cs,n+1
`,i, j

Figure 9: Management of sediment columns.

the form (57), is approximated by

Fn+1
`,i, j −Fn

`,i, j

∆t
=

1
∆t

(∫ hn+1
i, j

h∗
cn+1
`,i, j (ζ )dζ −

∫ hn
i, j

h∗
cn
`,i, j(ζ )dζ

)
.

Thanks to (62), this can be straightforwardly separated into two
cases (sedimentation and erosion) as

Fn+1
`,i, j −Fn

`,i, j

∆t
=


cs,n+1
`,i, j

hn+1
i, j −hn

i, j

∆t
, if hn+1

i, j > hn
i, j,

1
∆t

∫ hn+1
i, j

hn
i, j

cn
`,i, j(ζ )dζ , if hn+1

i, j 6 hn
i, j.

The lithology fluxes (59) can be written as F` = cs
`

−→
F `, where

−→
F `

is the sediment flux (15b) used in the case of a single lithology.
The only difference lies in the value of the diffusion coefficients,
which may be different for each type of sediment. The associ-
ated approximation method consists in upwinding λcs

` according
to the sign of F =

−→
F ` ·n. It follows that the discretization of the

full equation is given by

cs,n+1
`,i, j

(
hn+1

i, j −hn
i, j
)+

∆t
+

1
∆t

(∫ hn+1
i, j

hn
i, j

cn
`,i, j(ζ )dζ

)−
+

(λ F̀ )n+1
i+1/2, j− (λ F̀ )n+1

i−1/2, j

∆x

+
(λ F̀ )n+1

i, j+1/2− (λ F̀ )n+1
i, j−1/2

∆y
= 0, (63)

where the discrete limited fluxes read

(λ F̀ )n+1
i+1/2, j = λ

n+1
i, j
(
cs,n+1
`,i, j

)+(
F n+1

`,i+1/2, j

)+
+λ

n+1
i+1, j

(
cs,n+1
`,i+1, j

)+(
F n+1

`,i+1/2, j

)−
, (64a)

(λ F̀ )n+1
i, j+1/2 = λ

n+1
i, j
(
cs,n+1
`,i, j

)+(
F n+1

`,i, j+1/2

)+
+λ

n+1
i, j+1

(
cs,n+1
`,i, j+1

)+(
F n+1

`,i, j+1/2

)−
. (64b)

The quantities F n+1
`,i+1/2, j and F n+1

`,i, j+1/2 are then defined analo-
gously to (34). In equations (64), we have deliberately taken
the positive part of all surface concentrations. This enables us to
show that these quantities remain nonnegative at each time-step.

The discretization of the complementarity equation (14c) fol-
lows exactly the same steps as for the case in a single lithology.
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It is not difficult to show that we still obtain

λ
n+1
i, j = min

(
1,

∆x∆yEi, j + 〉λF〈n+1
i, j

〈F〉n+1
i, j

)
. (65)

The difference is hidden in the definition of the outgoing and lim-
ited incoming fluxes, which now take the form

〈F〉n+1
i, j =

L

∑
`=1

(
cs,n+1
`,i, j

)+{
∆y
[(

F n+1
`,i+1/2, j

)+− (F n+1
`,i−1/2, j

)−]
+∆x

[(
F n+1

`,i, j+1/2

)+− (F n+1
`,i, j−1/2

)−]}
, (66)

and

〉λF〈n+1
i, j =∆y

L

∑
`=1

{
λ

n+1
i−1, j

(
cs,n+1
`,i−1, j

)+(
F n+1

`,i−1/2, j

)+
−λ

n+1
i+1, j

(
cs,n+1
`,i+1, j

)+(
F n+1

`,i+1/2, j

)−}
+∆x

L

∑
`=1

{
λ

n+1
i, j−1

(
cs,n+1
`,i, j−1

)+(
F n+1

`,i, j−1/2

)+
−λ

n+1
i, j+1

(
cs,n+1
`,i, j+1

)+(
F n+1

`,i, j+1/2

)−}
. (67)

In the case 〈F〉n+1
i, j = 0, we infer as previously that λ

n+1
i, j = 1.

The closure equation (54) is approximated by the simple for-
mula

L

∑
`=1

cs,n+1
i, j = 1. (68)

The last aspect to look at is the boundary conditions. Roughly
speaking, we extend what has been done in the case of a single
lithology. First, we consider the same equations (42) to take into
account the water inflows. Instead of considering analogous ones
for a global sediment inflow, we adapt one set of equations (43)
for each lithology. To have a well-posed system, we also need to
impose the discrete closure equation (68) on the boundary. Con-
cerning the values in the four remaining ghost cells in the corners,
we just have to consider the same equations as (44)–(45). Indeed,
no concentrations nor columns are needed in these areas, as they
only serve to compute local approximations of terms of the kind
|∇h|p−2.

7.3 Numerical results

We now illustrate the multilithological model with a test case
representing the evolution of an estuary. The domain of study
measures 120 km× 260 km, and is divided into a marine and a
continental part, the sea level being fixed at Hs = 0.6 km. For this
configuration, we assume sediments are made of a mixture of four
lithologies, whose respective diffusion coefficients are detailed in
Table 5. The value of K̃ is set to 106 km2/My. We also consider
a constraint on the erosion process, which is characterized by a
maximum erosion rate E = 0.008 km/My. Multiples sources of
water and sediment inflows are prescribed, which is presented in
Table 6.

The discretization of the domain consists of 48× 104 cells,
while the simulation time is set to T = 4 My. The exponent of
the p-Laplacian in the lithology fluxes (59) is set to p = 2.5.
Concerning the sediment columns, we impose a maximum lay-
ers number of 100, which already gives good approximations.
We start the simulation with the initial time step ∆t0 = 10−10 My.
This value may seem small, but is sometimes needed to start the
simulation. Though if such a case arises, these small values are
no longer necessary for the rest of the simulation. The resolution
of the linear systems arising at each Newton iteration is carried
out using the BiCGStab [31] method from PETSc routines [3].
If the time iteration is accepted, we define the next time step as
∆tn+1 = 1.1∆tn, up to the maximum value 5.10−3 My. On the
contrary, if Newton’s method fails to converge after 20 iterations,
the time step is rejected and is restarted with ∆tn = 0.5∆tn.

The initial state of the system is displayed in Figure 10. One
can see that the constraint is active on a large part of the domain,

essentially in steep areas. The distribution of the different litholo-
gies are also represented: for example lithology 4 is mainly lo-
cated in the marine domain. The Figure 11 shows the state of
the system after 4 My. We first observe that the diffusion has
smoothed the topography. Moreover, the contrast within the dif-
fusion coefficients leads to a break along the shoreline. Concen-
trations in lithologies have also undergone many changes. Look-
ing again at lithology 4, we notice that it seems concentrated in
the pits in the center of the domain.

In order to have a more precise view of the internal structure
of the sedimentary basin, we make a slice along the axe x = 84
km. The result is shown in Figure 12. As lithology 4 is present
from the beginning in this area and is also the one associated to
the highest diffusion coefficients, it is not surprising to find it in
the central pit. The remaining deposits are made of lithologies 1
and 2, as they are found in the surrounding areas. Also, on the
left side we observe high concentrations in lithologies 3 and 4,
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which is due to a prescribed inflow of sediments nearby.

The Table 7 gathers numerical data obtained at the end of the
simulation. In general, very few time steps are refused for this
test case. As for the configurations in the case of one lithology,
a comparison between different preconditioners is made. We no-
tice that the choice of the preconditionning method alters notably
the computing time. In this case, ILU(2) seems to be the better
option, whereas ILU(1) leads to higher refused time steps and an
important increase in the computing time.

8 Conclusion

The present contribution is a logical sequel to [13,14,20–22]. We
have successfully embedded two additional physical processes to
the model of DionisosFlow, while maintaining the foundational
aspects of the previous work. The two novelties under considera-
tion —nonlinear gravity diffusion flux for sediment transport and
coupling between sediments and water effects— have required
tremendous changes in the numerical scheme. The new scheme,
built upon the old one and the ideas of Andreianov et al. [1] for the
p-Laplacian, allows us to preserve the physical bounds of various
unknowns and also guarantees the existence of a discrete solu-
tion. The simulation results it provides on realistic test cases have
been deemed very satisfactory by geologists and demonstrate its
overall efficiency.

There are many improvements and extensions that could pos-
sibly be envisaged. On the one hand, more optimized numerical
treatments could be tried in an attempt to consolidate the code.
More specifically, we believe that block preconditioning (to speed
up the resolution of linear systems) and step-control in Newton’s
method (to avoid cyclic behavior and other failures in the reso-
lution of nonlinear systems) would significantly enhance the per-
formance of the scheme. We have unfortunately not had time to
deepen those issues. On the other hand, more physical processes
could be included into the model. In the short term, adding source
terms in the balance laws would enable us to model rain, evapora-
tion and production of carbonates. In the middle term, it would be
reasonable to incorporate subsidence and compaction. In the long
run, it might be challenging to work out a model for marine hy-
perpycnal/hypopycnal flows in the zones mixing river water and
standing ocean water.
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Applications, vol. 13. Springer-Verlag (1993)

[28] Peton, N.: Étude et simulation d’un modèle stratigraphique
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Numerical data Preconditioner

ILU(0) ILU(1) ILU(2) ILU(3) ILU(4)

Accepted time steps 1117 1117 1117 1117 1117
Refused time steps 40 40 40 40 40
Mean Newton iterations per time step 5.92 5.12 4.85 4.55 4.33
Mean solver iterations per Newton iteration 56.32 34.93 27.65 19.96 15.93
CPU time (s) 4521 3456 3286 3277 3631

Table 2: Numerical results for the delta evolution test case.

Numerical data Preconditioner

ILU(0) ILU(1) ILU(2) ILU(3) ILU(4)

Accepted time steps 1077 1077 1077 1077 1075
Refused time steps 26 26 26 26 26
Mean Newton iterations per time step 5.53 4.88 4.59 4.40 4.23
Mean solver iterations per Newton iteration 92.39 57.15 45.08 32.89 26.05
CPU time (s) 6026 4519 4034 4017 4203

Table 4: Numerical results for the lake formation test case.

Lithology Km Kc Kg,m Kg,c

1 4000 9000 25 1500
2 11000 21000 60 1800
3 13000 28000 75 2400
4 24000 38000 200 3300

Table 5: Diffusion coefficients value (Km and Kc in km1/2/My, Kg,m and Kg,c in km2/My).

Boundary flux Γb Γr

φ̃ 360 —
φ1 0.36 0.95
φ2 0.18 0.095
φ3 0.036 9.5
φ4 0.018 5.0

Table 6: Value of instantaneous boundary fluxes, integrated over ∂Ω (in km3/My).
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(a) Water and sediment height (km). (b) Flux limiter.

(c) Lithology 1 concentration. (d) Lithology 2 concentration.

(e) Lithology 3 concentration. (f) Lithology 4 concentration.

Figure 10: Initial data.

23



(a) Water and sediment heights (km). (b) Flux limiter.

(c) Lithology 1 concentration. (d) Lithology 2 concentration.

(e) Lithology 3 concentration. (f) Lithology 4 concentration.

Figure 11: State at time T = 4 My.

24



Numerical data Preconditioner

ILU(1) ILU(2) ILU(3) ILU(4)

Accepted time steps 1216 1004 981 979
Refused time steps 62 9 2 1
Mean Newton iterations per time step 7.39 5.43 5.32 5.31
Mean solver iterations per Newton iteration 11.66 7.70 6.02 5.33
CPU time (s) 2171 1551 2063 2935

Table 7: Numerical results for the multilithological test case.
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(a) Lithology 1 concentration.

(b) Lithology 2 concentration.

(c) Lithology 3 concentration.

(d) Lithology 4 concentration.

Figure 12: Slice at x = 84 km: lithology concentrations at time T = 4 My.
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