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Abstract—Traces collected from an operational Google data
center over 29 days represent a very rich and useful source of
information for understanding the main features of a data center.
In this paper, we characterize the strong heterogeneity of jobs
and the medium heterogeneity of machine configurations. We
analyze the off-periods of machines. We study the distribution
of jobs per category, per scheduling class, per priority and per
number of tasks. The distribution of job execution durations
shows a high disparity, as does the job waiting time before being
scheduled. The resource requests in terms of CPU and memory
are also analyzed. The distribution of these parameter values
is very useful to develop accurate models and algorithms for
resource allocation in data centers.

Index Terms—Data analysis, data center, big data application,
resource allocation, scheduling.

I. CONTEXT AND MOTIVATION

In High Performance Computing (HPC), it is assumed
that all machines are homogeneous in terms of CPU and
memory capacities, and that, the tasks making up the jobs have
similar resource requests. It has been shown in [1] that this
homogeneity relating both to machine capacity and workload ,
although generally valid for HPC, does no longer apply to data
centers. This explains why the publication of data gathered in
an operational Google data center over 29 days [2] has aroused
such great interest among researchers.

For jobs and tasks, researchers want to characterize their
submission, their structure and the workload requested, while
for machines, they study the distribution of off-periods. They
also highlight any periodic patterns and tendencies, and detect
correlations between memory usage and CPU usage if such
correlations exist. More generally, they validate or invalidate
some simplifying assumptions that are usually made when
reasoning about models. Such results are needed to make
the models more accurate for jobs and tasks as well as for
available machines. Having validated these models on real
data centers, they are then used for extensive evaluation of
placement and scheduling algorithms and more generally for
resource allocation (i.e. CPU and memory). These algorithms
can then be applied in real data centers.

Another possible use of this data set is to consider it as a
learning set in order to predict some feature of the data center,
such as the workload of hosts or the next arrival of jobs.

As a conclusion, it is crucial to have real traces of a Google
data center publicly available that are representative of the
functioning of real data centers. Our goal in this paper is
to analyze the data collected and to draw useful conclusions

about machines, jobs and tasks as well as resource usage. In a
further step, these results will be integrated in models used in
a general framework designed for high performance resource
allocation in a data center.

II. RELATED WORK

All the studies so far published relating to this data set
[2] include data analysis. In this paper, we also focus on
data analysis and draw original conclusions on machine
availability, as in [3], [4], jobs and tasks, as in [4], [5], [6]
and resource usage, as in [1], [5], [7], [8].

The first lessons drawn from a shorter data set of 6 hours
were published in [9]. Although the authors pointed out the
presence of peaks in job submissions, the existence of both
short jobs and very long ones, the size of this data set is too
small to generalize.

Using the 29-day data set published in [2], the authors of
[4] show that on average 5.8% of jobs running in a given
time window account for 94.7% of CPU usage and 89% of
memory usage. They also show that actual resource usage
can be approximated by a lognormal distribution. With regard
to CPU usage, two thirds of the dominant jobs belonging
to normal production exhibit a daily pattern and half of the
jobs exhibit a weekly pattern. In addition, the distribution
of machine removals shows that the number of removals
observed in the trace is higher than that provided by a Poisson
distribution, suggesting some spatial or temporal correlations
for some machines. However, independent failures with a
failure rate of 10~° per hour is a reasonable approximation.
A characterization of machines and jobs is provided in [3].
The authors observe that while most machine downtimes are
short (i.e less than 25 mn), others may last more than 2 hours
and a half. They also show that there are many jobs with a
single task, and that most jobs have fewer than 100 tasks,
but also that there is a small number of jobs with 2000 tasks.
They also point out that on average, a job has 20 scheduling
constraints associated with its tasks, which makes such tasks
more difficult to place and schedule. An important result is
that up to 60% of CPU resource is wasted by tasks that do
not complete successfully.

The authors of [5] use K-Means to classify the jobs into
three categories according to their duration: short, medium
and long. They show that short jobs are the most frequent
and use less resources. Medium jobs are frequent and are
memory-intensive, i.e. they have strong requirements in



terms of memory. Long jobs, the least frequent, have strong
requirements in terms of CPU, and are termed CPU-intensive.
The authors of [1] show that 2% of jobs account for 80%
of resource usage (i.e. CPU or memory) and that about 75%
of jobs run a single task. More generally, they observe that
the number of tasks per job is a power of two. The high
diversity of resource requests per task is highlighted. The
overall memory usage is only 53% of the memory allocation,
whereas the CPU usage corresponds to only 40% of the CPU
allocation.

In [6], the tasks are classified by means of K-Means and
density-based clustering into two categories: CPU-intensive
and memory-intensive. The authors propose associating a
virtual machine with each task, and their placement algorithm
puts two virtual machines of different categories on the same
physical machine. However, no performance evaluation is
done to validate this approach.

In [8], the authors predict the average load of a host with a
Bayesian model. Their method provides a greater accuracy
than other methods based on moving averages or auto-
regression.

III. DATA PREPROCESSING
A. Real traces

The real traces were collected in an operational Google

data center over a period of 29 consecutive days. The goal
of the authors of [10] was to point out the complexity of
scheduling the jobs submitted to a data center. This complexity
is due to the variety of job types, the existence of scheduling
constraints for some jobs, the heterogeneity of machines and
a bad estimation of resource usage by users.
The confidentiality of these traces is ensured by obfuscation
techniques. Each information element recorded has a times-
tamp expressed in microseconds. The traces are organized into
different tables related to machines, jobs and tasks as well as
resource usage. Each table corresponds to several files in the
CSV format.

e The Machine events table contains the following
events: add a machine to the data center, remove a
machine from the data center, and update the available
resources of a machine. It also gives the CPU capacity
and the memory capacity of the machine. It has a volume
of 2.9 MBytes.

e The Machine attributes table gives the kernel version,
clock speed, etc. of the machine considered.

o The Jobs events table and the Task events table
describe the events related to a job and a task, respec-
tively. These events are submit, schedule, evict, fail,
finish, kill, update pending and update running. The
Tasks events table also contains the scheduling class,
the priority, the resource request in terms of CPU and
memory, as well as some placement constraint of each
task. This table has a size of 15.4 GBytes.

o The Tasks resource usage includes information about
the mean and maximum usage of memory and CPU

during each measurement period of 5 minutes. It has a
size of 159 GBytes.

B. Data cleaning

Before being analyzed, data are cleaned up. Any record with
missing information is discarded. The outliers are discarded,
for example events occurring at time 0 that were artificially
added by the measurement process. To make the processing
of records faster, the columns in the different tables that are
not analyzed are removed.

IV. MACHINE ANALYSIS
A. Memory and CPU capacities of machines

The total number of machines in the data center is 12582.
The CPU capacity of any machine is expressed relative
to the CPU capacity of the most powerful machine. As a
consequence, three types of machines are distinguished, as
depicted in Figure 1.

o The most powerful machines with a CPU capacity equal
to 1. There are 796 machines of this type, which corre-
sponds to 6.32% of the total number of machines. These
machines have consecutive identifiers, which could mean
that they have been replaced recently.

e Machines with medium CPU capacity, equal to 0.5. These
represent the largest number of machines (11632) corre-
sponding to 92.449% of the total number of machines.

o The least powerful machines with small CPU capacity,
equal to 0.25. There are 123 such machines, which
represents 0.977% of the total number of machines.

As an initial approximation, machines can be considered as
homogeneous in terms of having a CPU capacity equal to 0.5.
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Fig. 1. CPU capacity

Similarly, the Memory capacity of any machine is ex-
pressed relative to the highest Memory capacity. 6 types of
machines are distinguished, as depicted in Figure 2.

e Machines with the highest memory capacity have a
Memory capacity in the interval [0.9678,1]. There are
907 machines of this type, which corresponds to 7.02%
of the total number of machines.

e Machines with a Memory capacity of 0.75. These are
1001 such machines, which corresponds to 7.95% of the
total number of machines.



e Machines with a Memory capacity in the interval
[0.4995,0.5]. There are 6712 of these machines, corre-
sponding to 53.34% of the total number of machines.

e Machines with a Memory capacity in the interval
[0.2493,0.25]. There are 3858 machines, which corre-
sponds to 30.66% of the total number of machines.

¢ Machines with a Memory capacity of 0.1241. There are
54 such machines, which corresponds to 0.429% of the
total number of machines.

o The least powerful machines with a Memory capacity in
the interval [0.03885,0.06158]. There are 6 machines of
this type, corresponding to 0.047% of the total number
of machines.

There is a greater heterogeneity of machines in terms of
memory capacity than in CPU capacity. Assuming that the
most recent machines have the highest identifiers, we notice
that the most recent machines have the highest memory
capacity.
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Fig. 2. Memory capacity.

We can now focus on the different machine configura-
tions. Each machine configuration is represented by a pair
(CPU capacity, memory capacity), as illustrated in Fig-
ure 3. We observe the existence of 10 different configurations
in the data center. The most frequent configuration, 53% of
the machines, corresponds to a CPU capacity > 0.5 and a
memory capacity > 0.5. We observe that the machines with
the most powerful CPU also have the largest memory capacity.
30% of machines have a CPU capacity of 0.5 and a memory
capacity of 0.25. Machine heterogeneity (i.e. 10 different
configurations) should be taken into account in the scheduling
algorithm. In addition, a uniform distribution model is not
appropriate.

Table I shows the percentage of machines per category,
given in decreasing order. In a first approximation, we can
consider only the first six configurations, the last four config-
urations concerning only 0.10% of the machines.

B. Study of machine events
We now focus on the number of changes in machine
status. Google defined three types of machine events:

¢ Add (also called event 0) the machine is added to the set
of operational machines.
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Fig. 3. Number of machines per (CPU, Memory) configuration.

TABLE I
PERCENTAGE OF MACHINES PER CONFIGURATION.
CPU capacity | Memory capacity | Percentage of machines
0.5 0.5 53.45%
0.5 0.25 30.73%
0.5 0.75 7.97%

1 1 6.31%
0.25 0.25 0.98%
0.5 0.125 0.43%
0.5 0.03 0.039%
0.5 1 0.031%

1 0.5 0.023%
0.5 0.06 0.007%

o Remove (also called event 1) the machine is no longer
operational. It has either failed or is undergoing mainte-
nance.

o Update (also called event 2) the resources (e.g. CPU or
memory or system version) of the machine are updated.

Figure 4 depicts the number of machines on a logarithmic
scale having a given number of adds, removes and updates per
machine. The number of machines having had a given number
of removes is equal to the number of machines having had
the same number of adds. This seems to indicate that each
machine that has been removed has finally been added. The
number of updates is higher than the number of adds and
removes. We observe that very few machines, 4, have a number
of changes higher that 50, which corresponds to 0.03%. A very
large number of machines, 12540, corresponding to 99.66%
of all the machines have a number of changes less than or
equal to 10. The three curves (i.e. add, remove and update)
follow a hyperbolic pattern.

There were 8860 remove events followed by an add event,
corresponding to machine restarts. The duration of these off-
periods is depicted in Figure 5. It varies from 5 seconds to
1044365 seconds, corresponding to 11.5 days. 1 machine was
unavailable for 11.5 days. 50% of off-periods were less than
or equal to 1000 seconds. 1% of the off-periods has a duration
equal to 1000 seconds. The number of off-periods equal to a
given duration higher than 1000 seconds is equal to 1 or 2.
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V. PATTERN OF JOB SUBMISSIONS

We compute the number of jobs submitted per minute.
observing the distribution of job submissions over the
29 days a repetitive and fractal pattern becomes apparent,
as depicted in Figure 6. We observe a periodicity of 10,
100, 1000 and 10000. This means that every 10 minutes
we observe an absence of submissions for 1 minute; every
100 minutes an absence of job submissions for 10 minutes;
every 1000 minutes an absence of job submissions for 100
minutes; every 10000 minutes an absence of job submissions
during 1000 minutes. An absence of job submissions does
not mean that no job arrives in the data center but that no
job is released by the global scheduler. This regularity cannot
be explained by randomness. It should correspond to some
periodic management task run in the Google data center.

10000

Number of submitied jobs per minute

1000

100

25000 30000 35000

1000

Number of submitied jobs per minute

100

1
12500

13000

13500 14000 14500

1000

Number of submitied jobs per minute

100

1
13350 13400 13450 13500 13550

Fig. 6. Repetitive pattern in the job submission.

VI. ANALYSIS OF JOBS AND TASKS

From the Task FEvent table, we compute the following
three distributions: the priority of jobs, the scheduling class
of jobs and the number of tasks per job.

The priority of jobs ranges from 0 to 11. Depending on its
priority, a job belongs to one of the following five categories
defined in [1]:

o F'ree with the lowest priorities 0 and 1. Such jobs incur

little charging.

e Production with priority 9.

e Monitoring with priority 10. These jobs are in charge

of monitoring the health of other jobs.

o Infrastructure with the highest priority 11. These jobs

deal with the infrastructure of the data center.

e Other with priorities 2 to 8.

Table II provides the distribution of jobs in the different

categories.
TABLE II
PERCENTAGE OF JOBS PER CATEGORY.

Category Priorities | Percentage of jobs
Free Oor1l 33.63%
Other 2t08 56.30%

Production 9 9.91%
Monitoring 10 0.13%
Infrastructure 11 0.002%

Figure 7 depicts the number of jobs per priority on a
logarithmic scale. There is no job in priority 7. As expected,
there is only 1 job having the highest priority 11 which is
reserved to the infrastructure. The number of jobs with a
priority equal to 3 or 5 is equal to 100, for both. The numbers
of jobs having a priority of 0, 1, 4, 6, 8 or 9 is close to 100000.
Here again, a uniform distribution of jobs in the different
priorities does not apply.
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The scheduling class of a job indicates the latency sensitiv-
ity of this job, where 0 denotes a non-production task and 3 a
latency-sensitive task. Figure 8 depicts the number of jobs per
scheduling class. As expected, there is a very small number of
jobs, 2364, that are latency-sensitive, with a scheduling class
equal to 3. Most jobs, 178959, belong to the scheduling class
1, whereas remaining jobs are more or less evenly distributed
in the scheduling classes 0 and 2, with about 12000. Table III
provides the percentage of jobs per scheduling class.
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Fig. 8. Number of jobs per scheduling class.

TABLE III
PERCENTAGE OF JOBS PER SCHEDULING CLASS.

Scheduling class | Percentage of jobs
0 30.3%
1 42.65%
2 26.45%
3 0.5%

The number of tasks per job is depicted in Figure 9 on a
logarithmic scale on both axes. 92.05% of jobs have a single
task. 95.75% of jobs have fewer than 10 tasks, 98.6% of jobs
have fewer than 50 tasks and 99% of tasks have fewer than 92
tasks. We also notice that 1 job has a number of tasks equal
to 10500 and 12 jobs have a number of tasks equal to 5000.
The number of tasks per job is frequently a multiple of 10.

VII. RESOURCE REQUESTS AND JOB EXECUTION

From the Task Event table, we compute the distribution
of CPU requests and memory requests per job shown in
Figure 10. We observe that all the tasks of a same job request
the same amount of CPU and the same amount of memory.
We notice that:
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Fig. 9. Distribution of the number of tasks per job.

Number of jobs

e 1.54% of jobs have a CPU request higher than or equal
to 10%
e 1.74% of jobs have a memory request higher than or
equal to 10%.
e 0.11% of jobs have a memory request and a CPU request
higher than or equal to 10%.
In Figure 10, where the x-axis and the y-axis are represented
with a log base 2 scale, many CPU and memory requests are
”aligned”. This means that some specific values are preferred
over others. An in-depth analysis shows that most of the
“lines” are powers of 2. In other words, memory requests and
CPU requests are often expressed as powers of 2.
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Fig. 10. Distribution of CPU and memory requests.

We first focus on the time jobs must wait before being
scheduled. This time is called job schedule time. The distribu-
tion of job schedule times is depicted in Figure 11. 60% of jobs
wait 1 second before being scheduled. 94.25% of jobs wait less
than 10 seconds. Surprisingly, there are 50 jobs (0.013%) that
wait more than 1000 seconds. One possible explanation could
be that they request specific resources that are not immediately
available.

The job execution time is evaluated from the schedule time
up to the completion time of the last task. The distribution
of the job execution times is illustrated in Figure 12. 35122
jobs do not finish within the 29-day period. considered in
the dataset. 384362 jobs finish successfully, corresponding to
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91.62% of all the jobs. 4 jobs have an execution time less than
10 seconds. About 36000 jobs, representing 9% of the jobs
have an execution time within the interval [20,25] seconds.
Most jobs, 49%, have an execution less less than 100 seconds.
90% of jobs have a duration less than 1000 seconds. We
observe that the number of jobs with an execution time equal
to 1000 x n, with n a positive integer, is approximately divided
by two, each time n is increased by 1.
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Fig. 12. Distribution of job execution times.

VIII. CONCLUSION

The data set obtained from an operational data center over
29 days provides very interesting information. Data analysis
allows us to draw the following conclusions.

Although 92.45% of machines have a CPU capacity of
0.5, there are 10 machine configurations in the data
center, each configuration is characterized by a pair
(CPU capacity, memory capacity). The most frequent
configuration is supported by only 53.34% of machines.
Over the 29 days, all the machines in the data center
that were removed, were restarted later after an off-
period. 50% of these periods have a duration less than
or equal to 1000 seconds (i.e. 16.66 minutes), suggesting
a maintenance operation.

o The study of the number of job submissions per minute

shows an unexpected fractal pattern with a periodicity
of 10, 100, 1000 and 10000 minutes, where every 10
minutes there is an absence of submissions for 1 minute,
and so on. This could be explained by the fact that
the global scheduler could be periodically unavailable to
allow some management of the data center infrastructure
to take place.

The distribution of jobs per category reveals only one
job, representing 0.002%, for the Infrastructure, 0.13%
of jobs for Monitoring, 9.91% of jobs for Production,
56.30% of jobs for Other, and 33.63% of jobs for Free.
92.05% of jobs have a single task. 95.75% have fewer
than 10 tasks. But 12 jobs have 5000 tasks and 114 jobs
have around 1000 tasks.

With regard to resource requests, 0.11% of jobs have a
memory request and a CPU request higher than or equal
to 10%.

94.25% of jobs wait less than 10 seconds before being
scheduled. However, some of them wait for more than
1000 seconds. Such large values could be explained
by the existence of placement constraints for the jobs,
making them harder to place and schedule. 49% of jobs
have an execution time less than 100 seconds.

These features should be reflected in the job sets and the
models used to evaluate the performances of scheduling place-
ment algorithms in data centers.
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