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Monte Carlo methods are widely used in signal processing for computing integrals of interest. Among Monte Carlo methods, Importance Sampling is a variance reduction technique which consists in sampling from an instrumental distribution and reweighting the samples in order to correct the discrepancy between the target and proposal distributions. When either the target or the proposal distribution is known only up to a constant, the moment of interest can be rewritten as a ratio of two expectations, which can be approximated via selfnormalized importance sampling. In this paper we show that it is possible to improve the self-normalized importance sampling estimate by approximating the two expectations in this ratio via two importance distributions. In order to tune them we optimize the variance of the final estimate under a reasonable constraint. Our results are validated via simulations.

INTRODUCTION 1.Importance Sampling (IS)

Let x be a random variable (r.v.) with density π(.). As far as notations are concerned we do not make a distinction between r.v. and their realizations. In many signal processing problems we are interested in computing the expectation of some function f (x) w.r.t. π:

µ = f (x)π(x)dx = E π (f (x)). (1) 
In practice (1) can be very difficult to compute, so one often needs to resort to approximations. In this paper we focus on Monte Carlo (MC) integration methods (see e.g. [START_REF] Robert | Monte Carlo Statistical Methods[END_REF]) which aim at approximating E π (f (x)) with a (possibly weighted) set of random samples. The variance of the estimate depends on the number N of samples, on function f and pdf π, and on the distribution from which the points are sampled from. As far as this last point is concerned, a natural distribution to sample from is the target distribution π, which results in the crude MC estimate μMC = 1 N N i=1 f (x i ) with x i i.i.d.

∼ π. However i) it is generally difficult to sample directly from π;

ii) the crude MC estimate can give poor results, particularly when the regions where π is large do not coincide with those where f is large. IS is a well established technique [START_REF] Kahn | Methods of reducing sample size in Monte Carlo computations[END_REF] [3] [4, §5.4] for bypassing these difficulties. Rewriting [START_REF] Robert | Monte Carlo Statistical Methods[END_REF] as

µ = f (x) π(x) q(x) q(x)dx = E q (f (x) π(x) q(x) ), (2) 
where q is some importance distribution, leads to the IS estimator (the dependency in pdf q is stressed via the notation μIS (q)):

μIS (q) = 1 N N i=1 π(x i ) q(x i ) f (x i ), x i i.i.d. ∼ q. (3) 
As far as variance reduction is concerned, one can easily show that N var(μ IS (q)) = π 2 f 2 q µ 2 and that the importance density q IS opt which minimizes var(μ IS (q)), and associated (scaled) minimal variance, are

q IS opt (x) ∝ |f (x)|π(x), (4) 
N var(μ

IS (q IS opt )) = ( |f (x)|π(x)dx) 2 -µ 2 . ( 5 
)
Even if in practice the optimal estimator μIS (q IS opt ) cannot be computed (we know q IS opt up to the unknown constant |f (x)|π(x)dx), this result tells us that the regions where it is important to sample from (whence the term "importance distribution") are not those where π is large, but rather those where |f |π is large (see point ii) above).

Normalized IS (NIS)

From (3) we see that μIS can be computed only if π is known exactly, or π and q are known up to a common constant. If this is not the case one can resort to self-normalized (NIS). More precisely, let π(x) = p(x) p(x)dx where p is known but the normalization constant is not. Then (2) can be rewritten as

µ = f (x) p(x) q(x) q(x)dx p(x) q(x) q(x)dx = E q (f (x) p(x) q(x) ) E q ( p(x) q(x) ) ; (6) 
next each expectation can be approximated by a crude MC estimate from the same set of N i.i.d. samples {x i } N i=1 drawn from q. The NIS estimate μNIS (q) of µ reads

μNIS (q) = N i=1 p(x i ) q(x i ) f (x i ) N j=1 p(x j ) q(x j ) = 1 N N i=1 π(x i ) q(x i ) f (x i ) 1 N N j=1 π(x j ) q(x j )
. ( 7)

The first expression in [START_REF] Cappé | Inference in Hidden Markov Models[END_REF] is used to compute the estimate in practice, while the second one is used to analyze its statistical properties.

The properties of μNIS (q) are well understood [5, Chapter 2] [6] [START_REF] Cappé | Inference in Hidden Markov Models[END_REF]. First, it is well-established [START_REF] Geweke | Bayesian inference in econometric models using Monte Carlo integration[END_REF] that under mild assumptions, μNIS (q) a.s.

→ µ;

the bias of μNIS (q) is asymptotically null in 1/N ; its variance can be approximated at first-order by applying the deltamethod to the ratio (7) [8, p.35]:

N var(μ NIS (q)) = var( π(x)f (x) q(x) ) + µ 2 var( π(x) q(x) ) -2µcov( π(x)f (x) q(x) , π(x) q(x) ); (9) 
finally the following Central Limit Theorem (CLT) [START_REF] Geweke | Bayesian inference in econometric models using Monte Carlo integration[END_REF] (see also [START_REF] Cappé | Inference in Hidden Markov Models[END_REF]) holds:

√ N (μ NIS (q) -µ) D → N (0, σ 2,NIS (q)), (10) 
σ 2,NIS (q) = E q [ π 2 (x) q 2 (x) (f (x) -µ) 2 ]. (11) 
Note that the first-order approximated variance in [START_REF] Veach | Optimally combining sampling techniques for monte carlo rendering[END_REF] and asymptotic variance in [START_REF] Douc | Convergence of adaptive mixtures of importance sampling schemes[END_REF] coincide:

N var(μ NIS (q)) = σ 2,NIS (q).

The choice of the importance distribution q(.) in [START_REF] Cappé | Inference in Hidden Markov Models[END_REF] has been the subject of a vast literature, see e.g. [START_REF] Robert | Monte Carlo Statistical Methods[END_REF][START_REF] Geweke | Bayesian inference in econometric models using Monte Carlo integration[END_REF][START_REF] Liu | Monte Carlo Strategies in Scientific Computing[END_REF][START_REF] Veach | Optimally combining sampling techniques for monte carlo rendering[END_REF][START_REF] Cappé | Population Monte Carlo[END_REF][START_REF] Douc | Convergence of adaptive mixtures of importance sampling schemes[END_REF][START_REF] Owen | Monte Carlo theory, methods and examples[END_REF] (and [START_REF] Kroese | Chapter 2 -the cross-entropy method for estimation[END_REF] specifically in the non-normalized case) When the objective is to approximate µ for a large class of functions f , the importance distribution q is often chosen close to π. Now for a specific function f , the IS distribution which minimizes σ 2,NIS (q) in ( 11), and associated minimal asymptotic variance, are [START_REF] Geweke | Bayesian inference in econometric models using Monte Carlo integration[END_REF] 

q NIS opt (x) ∝ |f (x) -µ|π(x), (12) 
σ 2,NIS (q NIS opt ) = ( |f (x) -µ|π(x)dx) 2 . ( 13 
)

Scope of the paper

In this paper we start from the observation that the minimum variance var(μ IS (q IS opt )) in ( 5) is zero for all positive functions f , while in the normalized case σ 2,NIS (q NIS opt ) in ( 13) is strictly positive whatever function f (except of course in the degenerate situation where f (x) is constant). Heuristically, the reason why is that μNIS approximates the ratio [START_REF] Geweke | Bayesian inference in econometric models using Monte Carlo integration[END_REF], so both integrals should be estimated as precisely as possible; but even though q NIS opt (x) in ( 12) is the best compromise between |f |p |f |p and p p , it is impossible for one single set of points {x i } N i=1 to be both in regions where |f |π is large, and in regions where π is large (-unless, again, if f is a constant);

In this paper we thus revisit the NIS mechanism by considering two importance distributions q 1 and q 2 , which leads to the Double Proposal Importance Sampling (DPIS) estimator μDPIS (q 1 , q 2 ). We next discuss on how to tune these importance distributions in order to improve the classical estimate μNIS in terms of asymptotic variance while keeping its computational attractiveness. The rest of this paper is organized as follows. Section 2.1 is devoted to the DPIS estimator and its properties. In section 2.2 we discuss the choice of importance distributions q 1 and q 2 and we propose a simple solution. Section 3 deals with simulations and we end the paper with a conclusion.

DOUBLE PROPOSAL IS (DPIS)

The DPIS estimator

In this section we start again from µ = f p p , and we introduce two importance distributions, q 1 for the numerator and q 2 for the denominator. So µ can be rewritten as

µ = f (x) p(x) q1(x) q 1 (x)dx p(x) q2(x) q 2 (x)dx = E q1 (f (x) p(x) q1(x) ) E q2 ( p(x) q2(x) ) . ( 14 
)
An MC estimate of µ based on (14) can be obtained with N i.i.d. samples {x i 1 , x i 2 } N i=1 where x i 1 ∼ q 1 and x i 2 ∼ q 2 (note that for the moment, we do not make any assumption on the dependency for a given i between x i 1 and x i 2 ). The resulting estimate μDPIS reads

μDPIS (q 1 , q 2 ) = N i=1 p(x i 1 ) q1(x i 1 ) f (x i 1 ) N j=1 p(x j 2 ) q2(x j 2 ) = 1 N N i=1 π(x i 1 ) q1(x i 1 ) f (x i 1 ) 1 N N j=1 π(x j 2 ) q2(x j 2 )
.

(15) The following proposition describes the statistical properties of μDPIS (q 1 , q 2 ) and generalizes those recalled in Section 1.2 (the proofs are omitted but follow the same line as those of the results presented in Section 1.2).

Proposition 1 (First-order variance and CLT for DPIS) Let x 1 ∼ q 1 and x 2 ∼ q 2 . A first-order approximation of var(μ DPIS ) reads

N var(μ DPIS (q 1 , q 2 ) = var( π(x1)f (x1) q1(x1) ) + µ 2 var( π(x2) q2(x2) ) -2µcov( π(x1)f (x1) q1(x1) , π(x2) q2(x2) ). (16) 
In addition, let us assume that

σ 2 (q 1 , q 2 ) = E[( π(x 1 ) q 1 (x 1 ) f (x 1 ) - π(x 2 ) q 2 (x 2 ) µ) 2 ] ( 17 
)
is finite. Then the following CLT holds:

√ N (μ DPIS -µ) D → N (0, σ 2 (q 1 , q 2 )) (18) 
and the (scaled) first-order approximated variance N × var( μDPIS )(q 1 , q 2 ) in ( 16) coincides with the asymptotic variance σ 2 (q 1 , q 2 ) in (17).

A linear sample adjustment solution

Proposition (1) holds whatever q 1 , q 2 , and the dependency between the samples {x i 1 } drawn from q 1 and {x i 2 } drawn from q 2 . In this section let us discuss how to tune the samples x i 1 and x i 2 . We begin with two simple remarks: i) μDPIS (q 1 , q 2 ) coincides with μNIS when q 1 = q 2 and x i 1 = x i 2 for all i, 1 ≤ i ≤ N ; ii) by contrast with the classical NIS mechanism, the variance of μDPIS (q 1 , q 2 ) reduces to 0 when q 1 = q DPIS 1,opt ∝ |f |p and q 2 = q DPIS 2,opt ∝ p. Of course, neither q DPIS 1,opt nor q DPIS 2,opt are computable in practice. Techniques to approach such distributions have been proposed in the context of unnormalized IS and could be adapted here, but in this paper we follow another direction; we observe that the presence of two (potentially different) importance densities q 1 and q 2 introduces more flexibility as compared to NIS, which leads us to the problem of minimizing the variance term ( 16), but at the price of a reasonable computational effort. To that end, remember that a computational advantage of the NIS mechanism is that one only needs to draw N samples from a single q. In this paper we do want to depart from this unique importance density q = q 1 = q 2 , but as a compromise between sampling diversity and sampling cost we will assume that x i 2 is determinist given x i 1 . So let us now consider an importance distribution q and N initial i.i.d. samples {x i } N i=1 drawn from q. Our basic idea is to transform the samples from q into samples {x i 1 } N i=1 from q 1 in order to approximate the numerator of (14), and next into samples {x i 2 } N i=1 from q 2 in order to approximate the denominator of (14). Here we will focus on linear transformations of the initial samples {x i } N i=1 relying on scaling parameters (α 1 , α 2 ) and translation parameters (β 1 , β 2 ):

x i 1 = α 1 x i + β 1 , x i 2 = α 2 x i + β 2 . ( 19 
) It means that collections {x i 1 } N i=1 and {x i 2 } N i=1 are drawn i.i.d. from distributions q 1 (•) = | 1 α1 |q( •-β1 α1 ) and q 2 (•) = | 1 α2 |q( •-β2
α2 ), respectively but are dependent. The linear relationship between x i 1 and x i 2 for all i is given by x i 2 = α2 α1 (x i 1β 1 ) + β 2 . It remains to compute the optimal parameters (α 1 , α 2 , β 1 , β 2 ). Under this constraint (16) can be expressed as

N var(μ DPIS ) = 1 C 2 (E q [ 1 q 2 (x) (|α 1 |p(α 1 x + β 1 ) × f (α 1 x + β 1 ) -|α 2 |p(α 2 x + β 2 )µ) 2 ] ( 20 
)
where C = p(x)dx. Note that if the minimization is performed correctly, the resulting estimate μDPIS necessary outperforms μNIS (provided N is large enough to satisfy the firstorder approximation ( 16)) which corresponds to the setting

α 1 = α 2 = 1, β 1 = β 2 = 0.
Equation ( 20) cannot be computed exactly because of the µ factor and of the integrals, but can be approximated via the available samples {x i } N i=1 initially drawn from q. An MC estimate of (20) reads

N var(μ DPIS ) = 1 C 2 ( 1 N N i=1 1 q 2 (x i ) × (|α 1 |p(α 1 x i + β 1 )f (α 1 x i + β 1 )-|α 2 |p(α 2 x i + β 2 )μ NIS ) 2 ). ( 21 
)
To minimize this approximated variance, we use a subgradient descent method with backtracking line search for determining parameter move steps, using multiple random initializations over a given area in an effort to avoid local minima. Moreover, in order to improve the overall approximation we update our initial estimation of µ (needed in the first-order variance expression) at every gradient iteration using samples obtained with the current set of parameters.

SIMULATIONS

In this section we compare, given an importance distribution q, the classical NIS estimate μNIS (q) based on N samples {x i } N i=1 from q, to our DPIS estimate μDPIS (q 1 , q 2 ) in which the original samples x i are linearly adjusted by minimizing (20) or (21). The estimates are compared in terms of RMSE over P = 100 MC runs.

A toy example

Let us first compute an MC estimate of µ in (1) where f (x) = x 2 and π(x) = N (x, 0, 1) (N (x, m, σ 2 ) denotes the Gaussian distribution with mean m and variance σ 2 ). For the initial importance distribution we set q = π. Here var(μ DPIS ) can be computed in closed form as a function of (α 1 , β 1 , α 2 , β 2 ) because µ = 1 is known and the integrals are computable. More precisely, N var(μ DPIS ) reads

α 2 1 2α 2 1 -1 e β 2 1 2α 2 1 -1 [ β 4 1 (2α 2 1 -1) 4 + 6β 2 1 α 2 1 (2α 2 1 -1) 3 + 3α 4 1 (2α 2 -1) 2 ] + α 2 2 2α 2 2 -1 e β 2 2 2α 2 2 -1 - 2|α 1 ||α 2 | α 2 1 + α 2 2 -1 × exp( β 2 1 (1 -α 2 2 ) + β 2 2 (1 -α 2 1 ) + 2β 1 β 2 α 1 α 2 2(α 2 1 + α 2 2 -1)
)

× [ α 2 1 α 2 1 + α 2 2 -1 + β 2 α 1 α 2 -β 1 α 2 2 + β 1 α 2 1 + α 2 2 -1 2 ]. (22) 
The optimal parameters are (α opt

1 ≈ 2.2, β opt 1 ≈ 0, α opt 2 ≈ 1.25, β opt 2 ≈ 0)
which means that only the variance of q is adjusted.

We compute two estimates based on a double proposal distribution: the first one uses the optimal parameters above while the second one uses the parameters (α 1 , α 2 , β 1 , β 2 ) estimated from (21) via a sub-gradient method (the parameters are estimated for each MC run). We compare these two DPIS estimates to an NIS estimate optimized using the same method (i.e., only one density q is optimized, which corresponds to setting α 2 = α 1 and β 2 = β 1 ), and finally to an NIS estimate with density q.

Fig. 1 displays the RMSE of the four estimates as a function of the number of samples N . We first observe that our first-order variance minimization produces translated and scaled samples {x i 1 , x i 2 } N i=1 that are better adapted to the estimation of µ than either the original samples {x i } N i=1 drawn from the importance distribution q, or the samples {x i } N i=1 adjusted from {x i } N i=1 in order to fit simultaneously the numerator and the denominator; in other words, adjusting two densities, one for the numerator and one for the denominator, is significantly better than adjusting one single density to both. Next, even if the parameters (α 1 , α 2 , β 1 , β 2 ) are deduced from an MC approximation of the first-order variance of μDPIS (see ( 21)), the corresponding estimate gives almost the same performance as that which uses the optimal parameters. This shows that our technique has the potential to remain relevant in more complex models where the integrals are not available in closed-form. In order to illustrate this claim, Section 3.2 presents a simple example of such a model. Fig. 1: Non-linear Gaussian model, f (x) = x 2 , π(x) = q(x) = N (x, 0, 1). Simulation with 100 MC runs comparing DPIS estimators, using either exact or approximated integrals in the first-order variance expressions for minimization, with classical NIS and optimized classical NIS.

Bayesian, non-linear Gaussian setting

We now consider a Bayesian problem where x is hidden, y is observed and the target distribution π(x) = p(x|y) ∝ p(x)p(y|x) with p(x) = N (x, 0, 1), p(y|x) = N (y, x 2 , 1) and we want to estimate the moment of f (x) = N (x, 3, 1).

In this setting, in order to compute RMSE values we take as a reference a classical NIS estimate using 10 7 samples. Fig. 2 displays the classical NIS estimate based on i.i.d. samples drawn from q, μDPIS where the parameters have been estimated by the optimization method described in §2. 4. CONCLUSIONS In this paper we observed that NIS approximates the ratio of two expectations with one single set of random samples, which by construction cannot fit simultaneously the numerator and the denominator. We thus proposed an NIS technique based on the use of two instrumental distributions. In order to tune these proposals in practice we adjusted an initial set of samples drawn from some initial distribution q via two linear transforms, one targeting the numerator and the other the denominator. These linear transforms are optimized by minimizing the first-order variance of our DPIS estimate. Our simulations show that the resulting DPIS estimate outperforms NIS estimates which take into account only one set of samples, even if this set is adjusted according to the DPIS procedure. Possible perspectives for future work include improving the variance approximation provided by the delta method, which is only of the first order and may thus fail in certain models if N is insufficiently high, and assessing the empirical relevance of our optimized proposal density adjustment in more complex, high-dimensional, models.
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 2 Fig.2: Bayesian non-linear Gaussian model, f (x) = N (x, 3, 1), π(x) = q(x) = N (x, 1, 1), p(y|x) = N (y, x 2 , 1). Simulation with 100 MC runs comparing the DPIS estimator using approximated variance integrals with classical NIS and optimized classical NIS.

  2, and an NIS estimate optimized over only two parameters (α 2 = α 1 and β 2 = β 1 ). The parameters obtained in this scenario are (α 1 ≈ 1.25, β 1 ≈ 1, α 2 ≈ 2.45, β 2 ≈ -0.1), on average.
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