
HAL Id: hal-01870199
https://hal.science/hal-01870199

Submitted on 1 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A double proposal normalized importance sampling
estimator

Roland Lamberti, Yohan Petetin, François Septier, François Desbouvries

To cite this version:
Roland Lamberti, Yohan Petetin, François Septier, François Desbouvries. A double proposal normal-
ized importance sampling estimator. SSP 2018: IEEE Statistical Signal Processing Workshop, Jun
2018, Freiburg, Germany. pp.238 - 242, �10.1109/SSP.2018.8450849�. �hal-01870199�

https://hal.science/hal-01870199
https://hal.archives-ouvertes.fr


A DOUBLE PROPOSAL NORMALIZED IMPORTANCE SAMPLING ESTIMATOR

Roland Lamberti1, Yohan Petetin1, François Septier2, François Desbouvries1

(1) Samovar, Telecom Sudparis, CNRS, Université Paris-Saclay, 91011 Evry, France
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ABSTRACT

Monte Carlo methods are widely used in signal processing for

computing integrals of interest. Among Monte Carlo meth-

ods, Importance Sampling is a variance reduction technique

which consists in sampling from an instrumental distribution

and reweighting the samples in order to correct the discrep-

ancy between the target and proposal distributions. When ei-

ther the target or the proposal distribution is known only up

to a constant, the moment of interest can be rewritten as a ra-

tio of two expectations, which can be approximated via self-

normalized importance sampling. In this paper we show that

it is possible to improve the self-normalized importance sam-

pling estimate by approximating the two expectations in this

ratio via two importance distributions. In order to tune them

we optimize the variance of the final estimate under a reason-

able constraint. Our results are validated via simulations.

Index Terms— Monte Carlo integration, (self-normalized)

importance sampling, variance minimization

1. INTRODUCTION

1.1. Importance Sampling (IS)

Let x be a random variable (r.v.) with density π(.). As far

as notations are concerned we do not make a distinction be-

tween r.v. and their realizations. In many signal processing

problems we are interested in computing the expectation of

some function f(x) w.r.t. π:

µ =

∫
f(x)π(x)dx = Eπ(f(x)). (1)

In practice (1) can be very difficult to compute, so one often

needs to resort to approximations. In this paper we focus on

Monte Carlo (MC) integration methods (see e.g. [1]) which

aim at approximating Eπ(f(x)) with a (possibly weighted)

set of random samples. The variance of the estimate depends

on the number N of samples, on function f and pdf π, and on

the distribution from which the points are sampled from.

As far as this last point is concerned, a natural distribution

to sample from is the target distribution π, which results in the

crude MC estimate µ̂MC = 1
N

∑N

i=1 f(x
i) with xi i.i.d.∼ π.

However i) it is generally difficult to sample directly from π;

ii) the crude MC estimate can give poor results, particularly

when the regions where π is large do not coincide with those

where f is large. IS is a well established technique [2] [3] [4,

§5.4] for bypassing these difficulties. Rewriting (1) as

µ =

∫
f(x)

π(x)

q(x)
q(x)dx = Eq(f(x)

π(x)

q(x)
), (2)

where q is some importance distribution, leads to the IS es-

timator (the dependency in pdf q is stressed via the notation

µ̂IS(q)):

µ̂IS(q) =
1

N

N∑

i=1

π(xi)

q(xi)
f(xi), xi i.i.d.∼ q. (3)

As far as variance reduction is concerned, one can easily

show that Nvar(µ̂IS(q)) =
∫

π2f2

q
− µ2 and that the impor-

tance density qISopt which minimizes var(µ̂IS(q)), and associ-

ated (scaled) minimal variance, are

qISopt(x) ∝ |f(x)|π(x), (4)

Nvar(µ̂IS(qISopt)) = (

∫
|f(x)|π(x)dx)2 − µ2. (5)

Even if in practice the optimal estimator µ̂IS(qISopt) cannot

be computed (we know qISopt up to the unknown constant∫
|f(x)|π(x)dx), this result tells us that the regions where it

is important to sample from (whence the term ”importance

distribution”) are not those where π is large, but rather those

where |f |π is large (see point ii) above).

1.2. Normalized IS (NIS)

From (3) we see that µ̂IS can be computed only if π is known

exactly, or π and q are known up to a common constant. If

this is not the case one can resort to self-normalized (NIS).

More precisely, let π(x) = p(x)∫
p(x)dx

where p is known but the

normalization constant is not. Then (2) can be rewritten as

µ =

∫
f(x)p(x)

q(x)q(x)dx∫
p(x)
q(x)q(x)dx

=
Eq(f(x)

p(x)
q(x) )

Eq(
p(x)
q(x) )

; (6)

next each expectation can be approximated by a crude MC

estimate from the same set of N i.i.d. samples {xi}Ni=1 drawn



from q. The NIS estimate µ̂NIS(q) of µ reads

µ̂NIS(q) =

N∑
i=1

p(xi)
q(xi)f(x

i)

N∑
j=1

p(xj)
q(xj)

=

1
N

N∑
i=1

π(xi)
q(xi) f(x

i)

1
N

N∑
j=1

π(xj)
q(xj)

. (7)

The first expression in (7) is used to compute the estimate in

practice, while the second one is used to analyze its statistical

properties.

The properties of µ̂NIS(q) are well understood [5, Chap-

ter 2] [6] [7]. First, it is well-established [6] that under mild

assumptions,

µ̂NIS(q)
a.s.→ µ; (8)

the bias of µ̂NIS(q) is asymptotically null in 1/N ; its vari-

ance can be approximated at first-order by applying the delta-

method to the ratio (7) [8, p.35]:

N v̂ar(µ̂NIS(q)) = var(π(x)f(x)
q(x) ) + µ2var(π(x)

q(x) )

−2µcov(π(x)f(x)
q(x) , π(x)

q(x) ); (9)

finally the following Central Limit Theorem (CLT) [6] (see

also [7]) holds:

√
N(µ̂NIS(q)− µ)

D→ N (0, σ2,NIS(q)), (10)

σ2,NIS(q) = Eq[
π2(x)

q2(x)
(f(x) − µ)2]. (11)

Note that the first-order approximated variance in (9) and

asymptotic variance in (11) coincide:

N v̂ar(µ̂NIS(q)) = σ2,NIS(q).

The choice of the importance distribution q(.) in (7) has

been the subject of a vast literature, see e.g. [1, 6, 8–12]

(and [13] specifically in the non-normalized case) When the

objective is to approximate µ for a large class of functions

f , the importance distribution q is often chosen close to π.

Now for a specific function f , the IS distribution which min-

imizes σ2,NIS(q) in (11), and associated minimal asymptotic

variance, are [6]

qNIS
opt (x) ∝ |f(x)− µ|π(x), (12)

σ2,NIS(qNIS
opt ) = (

∫
|f(x)− µ|π(x)dx)2. (13)

1.3. Scope of the paper

In this paper we start from the observation that the minimum

variance var(µ̂IS(qISopt)) in (5) is zero for all positive functions

f , while in the normalized case σ2,NIS(qNIS
opt ) in (13) is strictly

positive whatever function f (except of course in the degener-

ate situation where f(x) is constant). Heuristically, the reason

why is that µ̂NIS approximates the ratio (6), so both integrals

should be estimated as precisely as possible; but even though

qNIS
opt (x) in (12) is the best compromise between

|f |p∫
|f |p

and
p∫
p

, it is impossible for one single set of points {xi}Ni=1 to be

both in regions where |f |π is large, and in regions where π is

large (- unless, again, if f is a constant);

In this paper we thus revisit the NIS mechanism by con-

sidering two importance distributions q1 and q2, which leads

to the Double Proposal Importance Sampling (DPIS) estima-

tor µ̂DPIS(q1, q2). We next discuss on how to tune these im-

portance distributions in order to improve the classical esti-

mate µ̂NIS in terms of asymptotic variance while keeping its

computational attractiveness. The rest of this paper is orga-

nized as follows. Section 2.1 is devoted to the DPIS estimator

and its properties. In section 2.2 we discuss the choice of

importance distributions q1 and q2 and we propose a simple

solution. Section 3 deals with simulations and we end the

paper with a conclusion.

2. DOUBLE PROPOSAL IS (DPIS)

2.1. The DPIS estimator

In this section we start again from µ =
∫
fp∫
p

, and we introduce

two importance distributions, q1 for the numerator and q2 for

the denominator. So µ can be rewritten as

µ =

∫
f(x) p(x)

q1(x)
q1(x)dx

∫ p(x)
q2(x)

q2(x)dx
=

Eq1(f(x)
p(x)
q1(x)

)

Eq2(
p(x)
q2(x)

)
. (14)

An MC estimate of µ based on (14) can be obtained with N
i.i.d. samples {xi

1, x
i
2}Ni=1 where xi

1 ∼ q1 and xi
2 ∼ q2 (note

that for the moment, we do not make any assumption on the

dependency for a given i between xi
1 and xi

2). The resulting

estimate µ̂DPIS reads

µ̂DPIS(q1, q2) =

N∑
i=1

p(xi
1
)

q1(xi
1
)
f(xi

1)

N∑
j=1

p(xj
2
)

q2(x
j
2
)

=

1
N

N∑
i=1

π(xi
1
)

q1(xi
1
)
f(xi

1)

1
N

N∑
j=1

π(xj
2
)

q2(x
j
2
)

.

(15)

The following proposition describes the statistical properties

of µ̂DPIS(q1, q2) and generalizes those recalled in Section 1.2

(the proofs are omitted but follow the same line as those of

the results presented in Section 1.2).

Proposition 1 (First-order variance and CLT for DPIS)

Let x1 ∼ q1 and x2 ∼ q2. A first-order approximation of

var(µ̂DPIS) reads

N v̂ar(µ̂DPIS(q1, q2) = var(π(x1)f(x1)
q1(x1)

) + µ2var( π(x2)
q2(x2)

)

−2µcov(π(x1)f(x1)
q1(x1)

, π(x2)
q2(x2)

). (16)

In addition, let us assume that

σ2(q1, q2) = E[(
π(x1)

q1(x1)
f(x1)−

π(x2)

q2(x2)
µ)2] (17)



is finite. Then the following CLT holds:

√
N(µ̂DPIS − µ)

D→ N (0, σ2(q1, q2)) (18)

and the (scaled) first-order approximated variance N× v̂ar(
µ̂DPIS)(q1, q2) in (16) coincides with the asymptotic variance

σ2(q1, q2) in (17).

2.2. A linear sample adjustment solution

Proposition (1) holds whatever q1, q2, and the dependency be-

tween the samples {xi
1} drawn from q1 and {xi

2} drawn from

q2. In this section let us discuss how to tune the samples xi
1

and xi
2. We begin with two simple remarks: i) µ̂DPIS(q1, q2)

coincides with µ̂NIS when q1 = q2 and xi
1 = xi

2 for all i,
1 ≤ i ≤ N ; ii) by contrast with the classical NIS mecha-

nism, the variance of µ̂DPIS(q1, q2) reduces to 0 when q1 =
qDPIS
1,opt ∝ |f |p and q2 = qDPIS

2,opt ∝ p.

Of course, neither qDPIS
1,opt nor qDPIS

2,opt are computable in

practice. Techniques to approach such distributions have

been proposed in the context of unnormalized IS and could

be adapted here, but in this paper we follow another di-

rection; we observe that the presence of two (potentially

different) importance densities q1 and q2 introduces more

flexibility as compared to NIS, which leads us to the problem

of minimizing the variance term (16), but at the price of a

reasonable computational effort. To that end, remember that

a computational advantage of the NIS mechanism is that one

only needs to draw N samples from a single q. In this paper

we do want to depart from this unique importance density

q = q1 = q2, but as a compromise between sampling diver-

sity and sampling cost we will assume that xi
2 is determinist

given xi
1.

So let us now consider an importance distribution q and N
initial i.i.d. samples {xi}Ni=1 drawn from q. Our basic idea is

to transform the samples from q into samples {xi
1}Ni=1 from q1

in order to approximate the numerator of (14), and next into

samples {xi
2}Ni=1 from q2 in order to approximate the denom-

inator of (14). Here we will focus on linear transformations

of the initial samples {xi}Ni=1 relying on scaling parameters

(α1, α2) and translation parameters (β1, β2):

xi
1 = α1x

i + β1, xi
2 = α2x

i + β2. (19)

It means that collections {xi
1}Ni=1 and {xi

2}Ni=1 are drawn

i.i.d. from distributions q1(·) = | 1
α1

|q( ·−β1

α1

) and q2(·) =

| 1
α2

|q( ·−β2

α2

), respectively but are dependent. The linear re-

lationship between xi
1 and xi

2 for all i is given by xi
2 =

α2

α1

(xi
1 − β1) + β2.

It remains to compute the optimal parameters (α1, α2, β1,
β2). Under this constraint (16) can be expressed as

N v̂ar(µ̂DPIS) =
1

C2
(Eq[

1

q2(x)
(|α1|p(α1x+ β1)×

f(α1x+ β1)− |α2|p(α2x+ β2)µ)
2] (20)

where C =
∫
p(x)dx. Note that if the minimization is per-

formed correctly, the resulting estimate µ̂DPIS necessary out-

performs µ̂NIS (providedN is large enough to satisfy the first-

order approximation (16)) which corresponds to the setting

α1 = α2 = 1, β1 = β2 = 0.

Equation (20) cannot be computed exactly because of the

µ factor and of the integrals, but can be approximated via the

available samples {xi}Ni=1 initially drawn from q. An MC

estimate of (20) reads

N ṽar(µ̂DPIS) =
1

C2
(
1

N

N∑

i=1

1

q2(xi)
×

(|α1|p(α1x
i + β1)f(α1x

i + β1)−|α2|p(α2x
i + β2)µ̂

NIS)2).

(21)

To minimize this approximated variance, we use a sub-

gradient descent method with backtracking line search for

determining parameter move steps, using multiple random

initializations over a given area in an effort to avoid local

minima. Moreover, in order to improve the overall approxi-

mation we update our initial estimation of µ (needed in the

first-order variance expression) at every gradient iteration

using samples obtained with the current set of parameters.

3. SIMULATIONS

In this section we compare, given an importance distribution

q, the classical NIS estimate µ̂NIS(q) based on N samples

{xi}Ni=1 from q, to our DPIS estimate µ̂DPIS(q1, q2) in which

the original samples xi are linearly adjusted by minimizing

(20) or (21). The estimates are compared in terms of RMSE

over P = 100 MC runs.

3.1. A toy example

Let us first compute an MC estimate of µ in (1) where f(x) =
x2 and π(x) = N (x, 0, 1) (N (x,m, σ2) denotes the Gaus-

sian distribution with meanm and varianceσ2). For the initial

importance distribution we set q = π. Here v̂ar(µ̂DPIS) can

be computed in closed form as a function of (α1, β1, α2, β2)
because µ = 1 is known and the integrals are computable.

More precisely, N v̂ar(µ̂DPIS) reads

α2
1√

2α2
1 − 1

e
β2

1

2α2
1
−1 [

β4
1

(2α2
1 − 1)4

+
6β2

1α
2
1

(2α2
1 − 1)3

+
3α4

1

(2α2 − 1)2
]

+
α2
2√

2α2
2 − 1

e
β2

2

2α2

2
−1 − 2|α1||α2|√

α2
1 + α2

2 − 1
×

exp(
β2
1(1− α2

2) + β2
2(1 − α2

1) + 2β1β2α1α2

2(α2
1 + α2

2 − 1)
)

× [
α2
1

α2
1 + α2

2 − 1
+

(
β2α1α2 − β1α

2
2 + β1

α2
1 + α2

2 − 1

)2

].

(22)



The optimal parameters are (αopt
1 ≈ 2.2, βopt

1 ≈ 0, αopt
2 ≈

1.25, βopt
2 ≈ 0) which means that only the variance of q is

adjusted.

We compute two estimates based on a double proposal

distribution: the first one uses the optimal parameters above

while the second one uses the parameters (α1, α2, β1, β2) es-

timated from (21) via a sub-gradient method (the parame-

ters are estimated for each MC run). We compare these two

DPIS estimates to an NIS estimate optimized using the same

method (i.e., only one density q is optimized, which corre-

sponds to setting α2 = α1 and β2 = β1), and finally to an

NIS estimate with density q.

Fig. 1 displays the RMSE of the four estimates as a

function of the number of samples N . We first observe that

our first-order variance minimization produces translated and

scaled samples {xi
1, x

i
2}Ni=1 that are better adapted to the es-

timation of µ than either the original samples {xi}Ni=1 drawn

from the importance distribution q, or the samples {x̃i}Ni=1

adjusted from {xi}Ni=1 in order to fit simultaneously the nu-

merator and the denominator; in other words, adjusting two

densities, one for the numerator and one for the denomina-

tor, is significantly better than adjusting one single density

to both. Next, even if the parameters (α1, α2, β1, β2) are

deduced from an MC approximation of the first-order vari-

ance of µ̂DPIS (see (21)), the corresponding estimate gives

almost the same performance as that which uses the optimal

parameters. This shows that our technique has the potential

to remain relevant in more complex models where the inte-

grals are not available in closed-form. In order to illustrate

this claim, Section 3.2 presents a simple example of such a

model.

N (number of particles)

R
M
S
E

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.005

0.01

0.015

0.02

0.025
Classical NIS
Optimized classical NIS
Optimized DPIS with approximation
Optimized DPIS without approximation

Fig. 1: Non-linear Gaussian model, f(x) = x2, π(x) =
q(x) = N (x, 0, 1). Simulation with 100 MC runs comparing

DPIS estimators, using either exact or approximated integrals

in the first-order variance expressions for minimization, with

classical NIS and optimized classical NIS.

3.2. Bayesian, non-linear Gaussian setting

We now consider a Bayesian problem where x is hidden,

y is observed and the target distribution π(x) = p(x|y) ∝
p(x)p(y|x) with p(x) = N (x, 0, 1), p(y|x) = N (y, x2, 1)
and we want to estimate the moment of f(x) = N (x, 3, 1).
In this setting, in order to compute RMSE values we take as

a reference a classical NIS estimate using 107 samples. Fig.

2 displays the classical NIS estimate based on i.i.d. samples

drawn from q, µ̂DPIS where the parameters have been esti-

mated by the optimization method described in §2.2, and an

NIS estimate optimized over only two parameters (α2 = α1

and β2 = β1). The parameters obtained in this scenario are

(α1 ≈ 1.25, β1 ≈ 1, α2 ≈ 2.45, β2 ≈ −0.1), on average.

N (number of particles)

R
M
S
E

2
×104

1.81.61.41.210.80.6

×10−4

0.4
1

2

3

4

5

6

7
Classical NIS
Optimized classical NIS
Optimized DPIS with approximation

Fig. 2: Bayesian non-linear Gaussian model, f(x) =
N (x, 3, 1), π(x) = q(x) = N (x, 1, 1), p(y|x) =
N (y, x2, 1). Simulation with 100 MC runs comparing the

DPIS estimator using approximated variance integrals with

classical NIS and optimized classical NIS.

4. CONCLUSIONS

In this paper we observed that NIS approximates the ratio

of two expectations with one single set of random samples,

which by construction cannot fit simultaneously the numer-

ator and the denominator. We thus proposed an NIS tech-

nique based on the use of two instrumental distributions. In

order to tune these proposals in practice we adjusted an ini-

tial set of samples drawn from some initial distribution q via

two linear transforms, one targeting the numerator and the

other the denominator. These linear transforms are optimized

by minimizing the first-order variance of our DPIS estimate.

Our simulations show that the resulting DPIS estimate outper-

forms NIS estimates which take into account only one set of

samples, even if this set is adjusted according to the DPIS pro-

cedure. Possible perspectives for future work include improv-

ing the variance approximation provided by the delta method,

which is only of the first order and may thus fail in certain

models if N is insufficiently high, and assessing the empiri-

cal relevance of our optimized proposal density adjustment in

more complex, high-dimensional, models.
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