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Abstract

In the context of more electrical aircraft and reduction of fuel consumption, aircraft manufacturers are
moving towards more complex and transient ice protection systems. The operating of these systems involves
several unsteady heat and mass transfer phenomena. Modelling and numerical simulation play an important
role in the investigation of these unsteady phenomena. In this paper, a model for unsteady ice build-up and
melting is presented. The model is based on a triple layer assumption. In addition, a tailored numerical
methodology for solving the governing partial differential equations is also described. It is based on a
Galerkin finite element method and a Gauss-Seidel like implicit time marching scheme. The global method
is validated and its capabilities are demonstrated on several cases.
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Nomenclature

∂p
∂x Aerodynamic tangential pressure gradient [N.m−3]

Γk Mass transfer term for the k-th layer [kg.m−2.s−1]

T̂f Mean temperature of the running liquid film [K]

v̂x Mean velocity of the running liquid film [m.s−1]

λk Thermal conductivity of the material in layer k [W.m−1.K−1]

µw Viscosity of water [Pa.s]

Φf Energy transfer term for the liquid running film [J.m−2.s−1]

ρk Density of the material in layer k [kg.m−3]

τ Aerodynamic shear stress [N.m−2]

ak Position of the lower boundary of the k-th layer in the z direction [m]

bk Position of the upper boundary of the k-th layer in the z direction [m]

ck Specific heat of the material in layer k [J.kg−1.K−1]

gx Gravity component along the curvilinear direction [m.s−2]
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hf Running liquid film thickness [m]

Tk Temperature field in the k-th layer [K]

α Angle of attack [◦]

ṁev(T ) Rate of evaporation at temperature T [kg.s−1]

ṁice,bottom Liquid/solid phase change rate at the bottom surface of an ice block [kg.s−1]

ṁice,top Liquid/solid phase change rate at the top surface of an ice block [kg.s−1]

ṁimp Rate of impacting droplets [kg.s−1]

ṁin Mass flow rate of running liquid film entering a cell [kg.s−1]

ṁout Mass flow rate of running liquid film exiting a cell [kg.s−1]

ṁs(T ) Rate of sublimation at temperature T [kg.s−1]

Ψj j-th basis function for the Galerkin method

θk,j j-th Galerkin degree of freedom associated to the k-th layer [K]

Lf Latent heat of fusion [J.kg−1]

Ls Latent heat of sublimation [J.kg−1]

Lv Latent heat of vaporization [J.kg−1]

M∞ Freestream Mach number

MVD Mean Volumetric Diameter [µm]

P∞ Freestream pressure [Pa]

rH∞ Freestream relative humidity

T∞ Freestream temperature [K]

Tfe Skin temperature in the full evaporative case [K]

T totimp Total temperature of impacting droplets [K]

TWC Total Water Content [g.m−3]

1. Introduction

Ever since the pioneering days of flight, the icing phenomenon, or the ”ice problem” as it was called
in the early days, has been reckognized as a serious threat [30, 31]. Typical icing conditions are due to
the presence in clouds of supercooled water droplets. Upon impacting an aircrafts surface, the metastable
supercooled state of the droplets is broken. At that point, the droplets undergo a liquid-solid phase change,
leading to ice bluid-up on the impinged surface. Increased mass, degradation of aerodynamic performances
and handling qualities or blocked air intakes, those are some of the many undesirable consequences one has
to face when dealing with icing. Indeed, in the aeronautical world, icing is one of the most serious hazards
that can be encountered.

Aircraft manufacturers must therefore comply with certifications and regulations regarding flight safety in
icing conditions. In order to achieve that goal, several ice protection technologies may be used. A commonly
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employed system for large airliners is the bleed-air anti-icing system. However, in the context of more
electrical aircraft and reduction of fuel consumption, alternative systems are currently under consideration
for large airliners. The main idea is to use a system which would be able to function in de-icing mode. That is
to say that a reasonable amount of ice is allowed to build up. Periodically, the system is activated and the ice
is shed from the surface or melted. Such a system would have an unsteady cyclic operating mode, enabling a
more optimized use of energy. These systems operate in complex environments and involves many physical
processes. In order to study such systems and assist their design phase, models and numerical simulation
methodologies are an important asset.

Historically, one of the first models devised to study ice build up on a surface was Messinger’s model
[17]. It has served as the basis for many icing simulation tools [12, 23, 14, 26, 13, 32] and is still in wide use
to this day.

However, it is a steady state model and is not well suited if one wishes to take into account the in-
teraction with an unsteady system. Moreover, an important underlying hypothesis to the model is that
the temperature does not vary in the ice block in the direction normal to the surface. As a consequence
the heat fluxes are not taken into account and the model is not well suited to applications involving ice
protection systems. For example, Messinger’s model is not able to capture the melting dynamics of an ice
block when an ice protection system is activated. In addition, the operating of ice protection systems can
involve freezing runback films which are not well accounted for by Messinger’s model.

In order to model and simulate unsteady icing phenomena, several issues must be addressed. First,
one must account for the dynamics of the liquid film. This issue has been studied by many researchers.
For example, Al-Khalil et al. have proposed a macroscopic runback model applied to the study anti-icing
systems [1]. In addition, Tsao and Rothmayer have performed theoretical work using matched asymptotic
expansions [28, 27]. In particular, their analysis gives a possible explanation to the formation of roughness
at the surface of glaze ice. Furthermore, in order to perform unsteady simulations, Bourgault et al. proposed
an unsteady three dimensional ice accretion model based on a lubrication theory assumption [6]. Although
more sophisticated approaches have been developed and researched [21, 10], lubrication theory is still widely
used and sufficient for most applications [29, 16].

Secondly, one must take into account the unsteady heat and mass transfer phenomena. To do so, Myers
has proposed to extend Messinger’s model by using a multi-layered approach (one layer of ice and two layers
of liquid water) [18, 20]. In each layer, a linear temperature profile is assumed (in the direction normal to
the surface) and the evolution of the temperature field is treated in a quasi-steady framework. These ideas
were used in more recent work in a quasi-steady framework [29, 33, 11]. Later, Myers et al. extended this
idea to unsteady one dimensional cases by assuming a cubic temperature profile in each layer [19]. The
cases addressed in [19] were of fixed total thickness. Phenomena such as evaporation or ice build up due
to impacting droplets were not treated. Moreover, the problem of creation/vanishing of a layer was not
addressed.

The goal of the present work is to extend the previously mentioned research to develop a unified model
and numerical method, enabling to take into account all unsteady phenomena encountered during ice build-
up on a surface (eventually heated by a system). The proposed approach allows to take into account the
necessary unsteady physics (water runback, dynamic phase change interfaces, unsteady temperature fields,
creation/vanishing of a layer, etc) while remaining computationally tractable. Moreover, the method allows
numerical coupling with simulation tools for thermal ice protection systems.

The present paper is articulated as follows. In the first section, the general context of the approach is
presented. After that, the main physical models, which constitute the building blocks of the three-layer
approach, are introduced. Then, the spatial finite element discretization and implicit time marching scheme
are described. Finally, some validations and applications of the method are shown.

2. General Context

The simulation of icing phenomena in aeronautics involves several coupled physical phenomena. State of
the art icing codes are articulated around specialized modules which are coupled during the computation.
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For example, a widely used approach to compute an ice shape is illustrated in Figure 1. An inviscid flow
solver is used to obtain the external flow field. This field is used as an input for a droplet trajectory module
and a boundary layer module. These two modules in turn provide the inputs for the ice accretion module.

Inviscid flow solver

Boundary layer solver

Droplet 
trajectory solver Ice accretion solver

MiLeS
Multi-Layer Ice Solver

- Running film
- Ice shape
- Melted areas

Figure 1: State of the art icing code architecture. The work presented in this paper focuses on the ice accretion solver.

As stated earlier, classic ice accretion solvers are based on Messinger’s model. The idea is to partition the
airfoil into cells and to consider each cell as an open thermodynamic system. The equations of conservation
of mass and energy in steady state are solved, but by considering a uniform state on the cell. As shall be
described in the rest of the paper, the model introduced here is unsteady and considers three layer so as to
account for the running film dynamics and the temperature gradients within the ice and the melted water
regions.

The work presented here is focused on the ’ice accretion solver’ block of Figure 1. The unsteady ice
accretion solver is called MiLeS and its numerical implementation is part of a larger simulation framework,
developed at ONERA, called IGLOO2D and IGLOO3D [22, 24]. In what follows, the model and numerical
method will be presented in a two dimensional framework.

As shown in Figure 1, the inputs of the ice accretion solver are the (local) droplet impingement rate
noted ṁimp, their total temperature T totimp, the heat transfer coefficient htc, the recovery temperature Trec,
the shear stress τ and the inviscid flow quantities. The ice accretion solver outputs the local running film
height, height of ice, height of melted water and the temperature fields in each layer.

3. Physical Model of MiLeS2D

In order to construct the three-layer model, let us consider the illustrative icing situation shown in Figure
2. In this situation, the physical process may be described by considering six distinct modes (labeled 1− 6
in Figure 2):

1. Full evaporative: the whole mass of impacting droplets is evaporated (for example, due to heat provided
by an ice protection system).

2. Running wet: only a liquid water film is present. Under the action of the aerodynamic forces, the
liquid film runs back along the surface.

3. Rime accretion: the droplets freeze almost instantaneously leading to ice build up with no liquid water.

4. Glaze accretion: the droplets freeze, but at a slower rate than in the rime case. Therefore, a running
liquid water film is present on top of the ice layer.

5. Rime accretion with melting at the surface (due to heat provided by an ice protection system for
example).

6. Glaze accretion with melting at the surface (due to heat provided by an ice protection system for
example).
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Figure 2: Illustration of a generic icing situation

In each mode, one can distinguish the presence (or abscence) of one or more layers. The term three-layer
model comes from the fact that in the most general case one has to deal with three layers:

1. Running film: this is the water layer directly in contact with the airflow. It is sheared by the aerody-
namic flow and runs back downstream.

2. Ice: this layer represents the ice that may build up in icing conditions.

3. Static film: when a system is activated, a part of the ice layer may melt. This has the effect of forming
a static film layer (it is not in contact with the external aerodynamic flow).

The three layers, as well as some geometric quantities which characterize them, are represented in Figure 3.
Subscript f is used to denote the running film layer, i for the ice layer and s for the static film layer. For
each layer k (k = i, s), ak is the position of the lower boundary and bk is the position of the upper boundary
(in the z direction, normal to the surface).

Static Film

Ice

Running Film

Figure 3: Illustration of the three layers: hf , hi and hs are the heights of the running film, ice and static (melted) film. The
ak’s and bk’s represent the positions of the boundaries between each layer in the z direction (normal to the surface)

The whole model may be fully expressed in terms of PDEs [7]. However, this requires to consider each
mode shown in Figure 2 because specific boundary conditions and source terms correspond to each one.
In order to present the approach in a more concise way, while not losing much in generality, it shall be
presented as follows. First, the main equations used to model heat and mass transfer will be presented.
Secondly, the ways of combining them to describe each of the six modes are given with the corresponding
set of boundary conditions and source terms. Then, in the following section, the spatial discretization will
be presented. Finally, the implicit time integration scheme is described.
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3.1. Equations for the running film layer

In order to obtain an unsteady formulation, the dynamics of the liquid film need to be modelled. The
unknowns are the film thickness hf and the mean temperature T̂f . To do so, as the film is very thin, an
integral approach is used combined with a closure relation from lubrication theory [7].

In the framework of lubrication theory, the mean velocity of the running liquid (v̂x) only depends on its
thickness hf and the external flow conditions:

v̂x(hf ) =
τ

2µw
hf +

1

3µw

(
−∂p
∂x

+ ρwgx

)
h2
f (1)

where τ is the air shear stress, ∂p
∂x is the tangential pressure gradient and gx is the tangential gravity. In

this framework, surface tension and wettability effects are neglected.
One obtains the following system of PDEs:

• Mass conservation

∂ρwhf
∂t

+
∂ρwhf v̂x

∂x
= Γf (2)

where Γf is the mass transfer term (which will be detailed later and is specific to each mode).

• Energy conservation: as the liquid film is very thin, the temperature profile is assumed uniform in the
normal direction. The energy equation is given by:

∂ρwcwhf T̂f
∂t

+
∂ρwcwhf v̂xT̂f

∂x
= Φ̇f (3)

where Φ̇f is the energy transfer term (which will be detailed later and is specific to each mode).

In the case where the liquid film is (locally) running over ice, equation (3) degenerates to T̂f = Tm.
Indeed, at an interface between running film and ice, phase change is occurring. Hence the temperature
at the interface is the melting temperature. As the liquid film is assumed to be very thin and of uniform
temperature on the normal direction, the whole film is at the melting temperature.

3.2. Heat conduction in the ice layer and melted film layer

Both the ice and melted film layers are assumed motionless. Here, the subscript k will be used to
generically denote these two layers (k = i or k = s). Furthermore, heat transfer in the tangential direction
is neglected (see Appendix A for an assessment of this approximation). Heat transfer is considered in the z
(normal) direction only.

• Mass conservation (at each curvilinear abscissa x):

∂ρkhk
∂t

= Γk (4)

where Γk is the mass transfer term (which will be detailed later).

• Energy conservation (at each curvilinear abscissa x)

∂ρkckTk
∂t

= λk
∂2Tk
∂z2

For z in ]ak(t), bk(t)[

fa

(
Tk,

∂Tk
∂z

)
= 0 For z = ak(t) (5)

fb

(
Tk,

∂Tk
∂z

)
= 0 For z = bk(t)

where for each layer k = i or s, ρk is the density, ck the specific heat and Tk the temperature. fa
and fb denote in a generic way the boundary conditions at the moving boundaries of each layer, as
explained in the next paragraph.
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3.3. The six modes: boundary conditions, source terms and coupling between layers

In the previous subsection, the main governing equations for each layer (running film, ice or static film)
were described. In order to obtain a complete model, these equations are combined so as to describe the six
possible modes shown in Figure 2.

Before describing each mode, let us first discuss some general aspects. The convective heat transfer with
the outer boundary layer and internal surface heating are independent of any given mode. The convective
heat transfer flux is given by the relation:

Φ̇conv(T ) = htc [Trec − T ] (6)

where htc is the boundary layer heat transfer coefficient and Trec is the recovery temperature. They are
inputs of the model.

The heating flux at the lower boundary is given by

Φ̇wall(T ) = hwall [Tint − T ] + Φ̇0 (7)

where hwall is the wall heat transfer coefficient, Tint is the temperature on the inside of the surface and Φ̇0

a given flux (in the case of a Neumann condition for example). These are again inputs of the model.
In what follows, ṁev denotes the evaporation mass rate and ṁs the sublimation mass rate. They are

both computed using the Chilton-Colburn analogy [9].
At interfaces where phase change occurs the rate of phase change is governed by a Stefan condition. For

example, at the interface between the ice and the static water layers, ṁice (rate of phase change of the ice
layer) is given by:

ṁiceLm = λw
∂Ts
∂z

∣∣∣∣
interface

− λi
∂Ti
∂z

∣∣∣∣
interface

(8)

In addition, recall that the temperature profile in the running film is assumed to be uniform. In the
modes were a liquid running film layer is present, the computation of the temperature gradient in the
running liquid film layer is not possible. However, this term is required in order to compute the rate of
melting/freezing (governed by the Stefan condition as just stated). So as to overcome this limitation, the
temperature gradient is also assumed constant (and different from zero) as if the temperature profile was in
fact linear.

Note that the uniform temperature and constant gradient assumptions are not incompatible in the
present case. The uniform temperature assumption is a closure hypothesis for the energy equation for the
running film [7]. It is a reasonable assumption given the small characteristic thickness of the running film in
the targeted applications of this work. The characteristic thickness of the running film is of a few microns.
A temperature difference of 0.1K across the film thickness, which is coherent with a uniform temperature
assumption, would yield a temperature gradient of 105K/m (assuming a linear profile). Therefore, the
uniform temperature and constant gradient assumptions are coherent (in our context).

When the heat flux at the running film/ice interface is required, it is computed by assuming that it is
equal to the heat flux at the upper boundary of the running film. This is used for example in equation (17)
for the glaze mode.

We now proceed to the description of each mode and their specific boundary conditions, source terms
and coupling terms.

1 - Full evaporative
In this mode, the whole quantity of water in the cell is evaporated. No layer is present in this mode.
The unknown is the temperature at the wall Tfe. The full evaporative case is governed by equations

(2) and (3) with hf = 0,
∂ρwhf

∂t = 0 and
∂ρwcwhf T̂f

∂t = 0. The source terms for (2) and (3) are given by:

Γfe = ṁimp − ṁev(T̂fe) (9)
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Φ̇fe = ṁimpcw
[
T totimp − Tfe

]
− ṁev(T̂fe)Lv(Tfe) + Φ̇conv(Tfe) + Φ̇wall(Tfe) (10)

2 - Running wet
In this mode, only the liquid running film layer is present. The unknowns are the running liquid film
height hf and the mean film temperature T̂f . The source terms for (2) and (3) are given by:

Γf = ṁimp − ṁev(T̂f ) (11)

Φ̇f = ṁimpcwT
tot
imp + ṁev(T̂f )

[
cwT̂f − Lv(T̂f )

]
+ Φ̇conv(T̂f ) + Φ̇wall(T̂f ) (12)

3 - Rime accretion
This mode corresponds to the case where all the water arriving in the cell freezes instantaneously. The
unknowns are the ice layer height hi and the temperature field in the ice Ti. The equations describing
this mode are (4) and (5). The source terms and boundary conditions are:

Γi = ṁimp − ṁs(Ti(hi))−
∂ρwhf v̂x

∂x
(13)

− λi
∂Ti
∂z

∣∣∣∣
z=0

= hwall [Twall − Ti(0)] + Φ̇0 (14)

λi
∂Ti
∂z

∣∣∣∣
z=hi

=htc [Trec − Ti(hi)]− ṁs(Ti)Ls(Ti)

+ ṁimp

[
cw
[
T totd − Tm

]
− ci [Ti(hi)− Tm] + Lf

]
(15)

− ∂ρwcwhf v̂x(T̂f − Tm)

∂x
− ∂ρwhf v̂x

∂x
[ci [Ti(hi)− Tm] + Lf ]

where the two last terms of equation (15) represent respectively the energy flux brought by the running
film and the energy accounting for the freezing of this mass of water.

4 - Glaze accretion
This mode describes the case where an ice layer is present with a liquid running film on top. The
unknowns are hf , hi, and Ti. As in this mode, there is a liquid layer on top of the ice layer, equation

(3) degenerates to T̂f = Tm. This mode is governed by equations (2), (4) and (5) with the following
source terms and boundary conditions:

Γf = ṁimp − ṁev(Tm)− ṁice,top (16)

where ṁice,top is the rate of phase change at the interface between the running liquid film and the ice.

ṁice,topLm = λi
∂Ti
∂z

∣∣∣∣
z=hi

−
[
ṁimpcw

[
T totimp − Tm

]
+ Φ̇conv − ṁev(Tm)Lv(Tm)

− ∂ρwcwhf v̂xT̂f
∂x

] (17)

where the last four terms are due to the uniform temperature gradient assumption in the running film

8



flowing over a block of ice.

Γi = ṁice,top (18)

Ti(hi) = Tm (19)

− λi
∂Ti
∂z

∣∣∣∣
z=0

= hwall [Twall − Ti(0)] + Φ̇0 (20)

5 - Rime accretion with static film
In this mode, two static layers are present, the ice layer and a static melted film layer. The unknowns
are hi, Ti, hs and Ts. This mode is governed by equations (4) and (5) with the following source terms
and boundary conditions:

Γi = ṁimp − ṁs(Ti(hs + hi)) + ṁice,bottom −
∂ρwhf v̂x

∂x
(21)

where ṁice,bottom is the rate of phase change at the interface between the static layer and the ice.

ṁice,bottomLm = λw
∂Ts
∂z

∣∣∣∣
z=hs

− λi
∂Ti
∂z

∣∣∣∣
z=hs

(22)

Ti(hs) = Tm (23)

λi
∂Ti
∂z

∣∣∣∣
z=hs+hi

=htc [Trec − Ti(hi)]− ṁs(Ti)Ls(Ti)

+ ṁimp

[
cw
[
T totd − Tm

]
− ci [Ti(hi)− Tm] + Lf

]
(24)

− ∂ρwcwhf v̂x(T̂f − Tm)

∂x
− ∂ρwhf v̂x

∂x
[ci [Ti(hi)− Tm] + Lf ]

Γs = −ṁice,bottom (25)

− λs
∂Ts
∂z

∣∣∣∣
z=0

= hwall [Twall − θs,1] + Φ̇0 (26)

Ts(hs) = Tm (27)

6 - Glaze accretion with static film
This is the three-layer mode, a film is running on top of an ice layer with a static melted film layer
underneath. The unknowns are hf , hi, Ti, hs and Ts. This mode is governed by equations (2), (4) and
(5) with the following source terms and boundary conditions:

Γf = ṁimp − ṁev(T̂f )− ṁice,top (28)

Γi = ṁice,top − ṁice,bottom (29)
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Ti(hs + hi) = Tm (30)

Ti(hs) = Tm (31)

Γs = −ṁice,bottom (32)

− λs
∂Ts
∂z

∣∣∣∣
z=0

= hwall [Twall − Ts(0)] + Φ̇0 (33)

Ts(hs) = Tm (34)

4. Numerical Method

The next step is to discretize the problem at hand so as to numerically obtain a solution. The spatial
discretization is performed as follows:

i The airfoil is discretized into Nx control volumes.

ii Using this x-wise mesh, the spatial derivatives in equations (2) and (3) are discretized with a finite
volume Roe scheme [25]. Moreover, in order to obtain a scheme enforcing the maximum principle, a
method inspired by the one proposed by Larrouturou is used [15]. These schemes are well established
and will not be described in further detail.

iii The z-wise derivatives in the (eventual) ice layer or static film layer are discretized using a Galerkin
method.

In the following subsections, the spatial discretization for the heat equation and the implicit time inte-
gration scheme are described.

4.1. Finite element spatial discretization in the z direction for the heat equation

If in a given mode, the cell contains an ice layer and/or a static film layer, the heat equation (5) needs to
be solved. The main difficulty here is that this equation is written in a moving interface domain delimited
by ak(t) and bk(t). The change in boundary position is due to phase change phenomena, impingement and
evaporation.

The first step is to write the variational formulation of (5). To do so, let v(z) be a test function. The
variational formulation of (5) reads:∫ bk

ak

ρkck
∂Tk
∂t

v dz −
∫ bk

ak

λk
∂2Tk
∂z2

v dz = 0 (35)

The second step of this method is to introduce the change of variables:

z̄(t, z) =
2(z − ak(t))

bk(t)− ak(t)
− 1 (36)

This allows to define the problem on [−1, 1] instead of [ak, bk]. Under this change of variables, the variational
formulation takes the form:∫ 1

−1

ρkck

[
∂Tk
∂t

+
∂z̄

∂t

∂Tk
∂z̄

]
v̄
bk − ak

2
dz̄ −

∫ 1

−1

λk
∂2Tk
∂z̄2

v̄
2

bk − ak
dz̄ = 0 (37)
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The third step is the discretization of (35) in a subspace of finite dimension. Let En = (Ψj)
n
j=1 be a set

a linearly independent functions. The temperature field is projected onto this subspace:

∀t ≥ 0,∀z̄ ∈]− 1, 1[, Tk(t, z̄) =

n∑
j=1

θk,j(t)Ψj (z̄) (38)

Then one can project the equation (35) onto En. This yields, ∀i = 1, . . . , n:

ρkck
n∑
j=1

∫ 1

−1

[
θ̇k,jΨj(z̄) + ∂z̄

∂t θk,jΨ
′
j(z̄)

]
Ψi(z̄)

bk−ak
2 dz̄

− 2λk

bk−ak

n∑
j=1

∫ 1

−1
∂2

∂z̄2 [θk,jΨj(z̄)] Ψi(z̄)dz̄
= 0 (39)

By developing this expression and using integration by parts for the second term, one gets:

ρkck

n∑
j=1

{
θ̇k,j

bk − ak
2

∫ 1

−1

Ψj(z̄)Ψi(z̄) dz̄

}
+ ρkck

n∑
j=1

{
θk,j

∫ 1

−1

(
Ψ′j(z̄)

∂z̄

∂t

)
Ψi(z̄)

bk − ak
2

dz̄

}

−

 2λk
bk − ak

n∑
j=1

θk,jΨ
′
j(z̄)Ψi(z̄)

1

z̄=−1

+
2λk

bk − ak

n∑
j=1

{
θk,j

∫ 1

−1

Ψ′j(z̄)Ψ
′
i(z̄) dz̄

} = 0

(40)
By using this procedure one obtains the following matrix expression (details can be found in [7, p.78]):

ρkck

(
bk − ak

2
Aθ̇k − 1

2

[
(ȧk + ḃk)Π + (ḃk − ȧk)Γ

]
θk

)
+

2λk
bk − ak

Λθk = fk(θk) (41)

where 

θk = (θk,1 . . . , θk,n)T

Aij =

∫ 1

−1

Ψj(z̄)Ψi(z̄) dz̄

Λij =

∫ 1

−1

Ψ′j(z̄)Ψ
′
i(z̄) dz̄

Πij =

∫ 1

−1

Ψ′j(z̄)Ψi(z̄) dz̄

Γij =

∫ 1

−1

z̄Ψ′j(z̄)Ψi(z̄) dz̄

fk,i(θk) =
2λk

bk − ak

n∑
j=1

θk,jΨ
′
j(1)Ψi(1)− 2λk

bk − ak

n∑
j=1

θk,jΨ
′
j(−1)Ψi(−1)

(42)

Note that the matrices A, Π, Γ and Λ only depend on the functions Ψj . So as to reduce the compu-
tational cost they are evaluated once at the beginning of the computation. Moreover, fk,i(θk) is computed
using the boundary conditions.

Finally, the functions Ψj remain to be chosen. In this work polynomial functions are considered. They
are chosen so that the first and second degree of freedom yield the value of the temperature at the lower and
upper boundaries respectively. In addition they are constructed so as to be orthonormal. The constructions
of those polynomials reads:

1. ∀x ∈ [−1, 1], Ψ1(x) =
1− x

2
, Ψ2(x) =

1 + x

2
2. For i ≥ 3, Ψi is the polynomial of degree i− 1 such that

(a) Ψi(−1) = Ψi(+1) = 0
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(b)

∫ 1

−1

(Ψi(z̄))
2
dz̄ = 1

(c)

∫ 1

−1

Ψi(z̄)Ψj(z̄)dz̄ = 0, ∀j = 3, . . . , i− 1

One may note that conditions 1. and 2.(a) allow to easily manage a Dirichlet boundary condition since
Tk(ak) = θk,1 and Tk(bk) = θk,2.

4.2. Implicit time marching algorithm

To insure robustness and a lower computational cost, an implicit Euler time marching scheme is used.
The time interval is discretized into Nt discrete instants and superscript n is used to denote the n-th time
step.

Let’s assume that the computational domain has been split into Nx cells (as illustrated in Figure 4).
Then, for a given cell k in mode md, the general shape of equation to solve to go from time step n to time
step n+ 1 reads:

Mmd
Un+1
k −Un

k

∆t
+Gmd(U

n+1
L ,Un+1

k ,Un+1
R ) = Smd(U

n+1
k ) (43)

where for all k ∈ J1, NxK, the unknown vector is denoted Un+1
k . As an example, in the glaze mode,

Un+1
k = (hf , hi, θi,1, ..., θi,ng) (where ng is the number of degrees of freedom of the Galerkin method).

Subscripts L and R denote the left and the right neighbouring cells of cell k, respectively. Gmd is a non-
linear function defined by the spatial discretization of the running liquid film (Roe finite volume scheme).
Finally, Smd is a local function (it only depends on the variable inside the local cell) which models heat
transfer in the normal direction including phase change as well as source terms (previously described Galerkin
method). It is worth noting that the dimension of Un+1

k depends on k, md and n since layers may appear
or disappear during a time step.

There are two main difficulties in the construction of the implicit method. First, as all the cells of the
mesh are coupled with their left and right neighbouring cells through the running liquid film, it is complicated
to devise a global implicitation of the method (i.e. a method which would simultaneously yield Un+1

k in
every cell). To overcome this problem, a fixed point algorithm is used. The general idea is to perform a local

implicitation and iterate over the cells until convergence so as to construct a sequence

({
U

(l)
k

}
k∈J1,NxK

)
l

that converges to
({

Un+1
k

}
k∈J1,NxK

)
. More precisely, the first step is to chose a numbering for iterating over

the cells. In order to enhance convergence, the idea is to run through the cells in the direction of propagation
of information. It is given by the direction of shearing of the film, which determines the main direction of
propagation of the film downstream. For the present targeted icing applications, the numbering starts at
the stagnation point (in red in Figure 4). Then one firstly numbers the lower surface and then the upper
one, as illustrated in Figure 4. The left and right neighbouring cells relative to a given cell k are defined
with respect to this numbering direction.
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Figure 4: Illustration of the numerical discretization into Nx cells (in this illustration Nx = 10. The optimal numbering is
performed according to the shearing directions (direction of propagation of information downstream). The red dot denotes the
stagnation point

The sequence is then initialized using the values Un
k :

U
(0)
k = Un

k , k ∈ J1, NxK (44)

On both parts (upper and lower) the iterative process proceeds from downstream. At a given cell k,

U
(l+1)
L is know, while U

(l+1)
R is not. U

(l+1)
k is computed using U

(l+1)
L and U

(l)
R using equation (45).

Mmd
U

(l+1)
k −Un

k

∆t
+Gmd

(
U

(l+1)
L ,U

(l+1)
k ,U

(l)
R

)
= Smd

(
U

(l+1)
k

)
(45)

The second difficulty is to manage the appearance or disappearance of a layer and the switching between

modes. In a given mode md, solving equation (45) may yield a solution U
(l+1)
k which is incompatible with

this mode. For example, assume the cell is in a rime mode at tn and that solving equation (45) yields

T
(l+1)
i (z = 0) > Tm. This solution is clearly incompatible with the rime mode. Indeed, it means that the

ice should be melting and that a liquid layer should appear. Hence the mode of the cell at iteration (l + 1)
can’t be rime. The mode at iteration (l+ 1) should be changed and the corresponding equation (45) should
be solved (and so on until one finds a compatible mode). In a more general way, the trial process of different
modes is illustrated in Figure 5.
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Full evaporative

Running wet

Glaze ice

Rime ice

Glaze ice + static film

Rime ice + static film

Figure 5: Illustration of the trial process during implicit time marching. A mode is assumed and the resulting solution is
checked for consistency

These considerations lead to the formulation of the following algorithm:

[Initializing using values at the previous time step]
For k from 1 to Nx do

U
(0)
k ← Un

k
end For
l← −1
Repeat

l← l + 1
[Loop on control volumes]
For k from 1 to Nx do

Assume cell is in same mode md as at previous time step
Repeat

solve the equation

Mmd
U

(l+1)
k −Un

k

∆t
+Gmd

(
U

(l+1)
L ,U

(l+1)
k ,U

(l)
R

)
= Smd

(
U

(l+1)
k

)
(46)

If (U
(l+1)
k is not a compatible mode (as defined by Figure 5)) then

Change mode according to Figure 5 and solve (46) again
end If

until (Compatible mode is found)

end For

until (∀k ∈ J1, NxK,
∥∥∥∥U

(l+1)
k −U(l)

k

U
(l+1)
k

∥∥∥∥ < ε)

Algorithm 1: Fixed point for the implicitation of time integration
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5. Validation: The Stefan Problem

In this section, a Stefan problem [2] is considered so as to assess and validate the Galerkin method.
Consider a block of ice, initially at 250K, as in Figure 6. The block is heated for 5 s from beneath with an
imposed temperature of TL = 300K. As the imposed temperature is greater than the melting temperature
(273.15K) the block of ice will undergo a solid-liquid phase change and a melting front will propagate from
beneath.

Liquid

Solid

Figure 6: Illustration of the one dimensional Stefan problem: a block of ice is heated from beneath at a temperature TL. Both
lateral sides are adiabatic (q = 0).

For a semi-infinite block, this problem has an analytical solution [2]. However, when performing the
numerical simulation, the ice block has a finite size. Therefore, the length of the block is taken large enough
so that the main heat transfer is confined to the bottom of the domain. In the present case the length of
the block is 0.01m. The physical properties used for this case are given in table 1.

cs (J.kg−1.K−1) cl (J.kg−1.K−1) Lf (J.kg−1) λs (W.m−1.K−1) λl (W.m−1.K−1) Tm (K)
2060 4185 330000 2.1 0.6 273.15

Table 1: Physical properties of ice used for solving the Stefan problem

The previously described method is used to solve the Stefan problem. Therefore, the initial mode is
”rime”. When the melting front starts to propagate, the mode switches to ”rime with static film”. The
problem is solved using 2, 4, 6 and 8 degrees of freedom in the Galerkin expansion and a time step of 0.01s.
Figure 7a shows the melting front position as a function of time. With 2 degrees of freedom, the numerical
solution is overestimated. The solution is improved with increasing number of degrees of freedom. With 4
or more degrees of freedom the results are in good agreement with the analytical solution.

In addition, Figure 7b shows the sensitivity of the solution obtained with 8 degrees of freedom to the
time step. The agreement with the analytical solution is very good. The solution obtained with ∆t = 0.1s
is slightly less accurate. Solutions obtained with ∆t = 0.01s and ∆t = 0.001s are almost identical.
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(a) Comparison between the analytical solution and nu-
merical solutions obtained with increasing number of
degrees of freedom (fixed time step ∆t = 0.01s)

0 1 2 3 4 5
Time (s)

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

x Γ
(m

)

∆ t = 0.1 s
∆ t = 0.01 s
∆ t = 0.001 s
Analytical

(b) Comparison between the analytical solution and
numerical solutions obtained with different time
steps (fixed DoF=8)

Figure 7: Melting front position as a function of time

So as to get a better idea of the validity of the method, one may also compare the numerical and
analytical temperature fields. Here, the temperature fields are compared at the very first instants of the
melting front propagation (t = 0.1s) and at a later time (t = 5s). As shown in Figure 8b, at t = 5s, except
when using only 2 degrees of freedom, the agreement between analytical and numerical solutions is excellent.
However, Figure 8a shows that at t = 0.1s, the numerical temperature fields tend to oscillate. This is due
to the truncation operated by the Galerkin procedure. These oscillations tend to be lessened when a higher
number of degrees of freedom is used. With 8 degrees of freedom, the results are in good agreement with
the analytical solution. In the rest of this work, 8 degrees of freedom will be used for the Galerkin method.

(a) Temperature profile at t = 0.1s (b) Temperature profile at t = 5s

Figure 8: Temperature field: comparison between analytical and numerical solutions obtained with increasing number of degrees
of freedom

6. Ice Accretion Cases

This section describes the results obtained for two steady ice accretion cases (rime and glaze). They are
compared with ice shapes predicted with Messinger’s method (implemented in the module MESSINGER2D
of the ONERA icing tool IGLOO2D [22], the present method is implemented in MiLeS2D). In both cases,
the airfoil is discretized using 128 points.
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The icing conditions for both cases are given in Table 2. Rime icing conditions correspond to the case
where the external temperature is well below 273.15K. In this case the supercooled droplets freeze almost
instantly upon impacting the surface. Therefore in rime conditions, there is no water running back. In glaze
icing conditions, the external temperature is below but closer to 273.15K. In this case, the droplets start
to freeze upon impact but a certain amount of water runs back downstream.

Case Airfoil Chord α (◦) P∞ (Pa) T∞ (K) M∞ rH∞ TWC (g.m−3) MVD (µm)
Rime NACA0012 0.5334 4 101325 256.8 0.321 1 0.34 20
Glaze GLC305 0.9144 1.5 101325 263.15 0.395 1 0.54 20

Table 2: Aerodynamic and atmospheric conditions for the rime and glaze icing cases. The droplet size distribution is assumed
to be monodisperse

(a) Rime ice shape (accretion time: 690s) (b) Glaze ice shape (accretion time: 360s

Figure 9: comparison between MiLeS2D, MESSINGER2D and experimental data for rime and glaze cases

Figure 9 shows that the ice shapes predicted with MiLeS2D and MESSINGER2D match very well. This
section shows that in steady icing conditions, the present numerical methodology is able to predict the
same results as Messinger’s method. This section therefore provides a successful benchmark (for steady
configurations) for MiLeS2D before performing a case for which the method is really designed (unsteady
and heated leading edge).

7. Delayed Activation With Runback

We now proceed to show that the method is also able to treat unsteady situations of high interest for
icing applications, which can’t be treated with Messinger’s approach.

Consider the glaze icing conditions of table 3 and assume that after 20s of accretion, an ice protection
system is activated. The heat provided by the system is represented by an internal heat transfer coefficient
of 1500W.K−1.m−2 and an internal temperature of 323.15K. The system is active between s = −0.015m
and s = 0.015m. This corresponds to an illustrative case of delayed activation. Some ice has already had
the time to build up and an internal heating will be activated to eliminate it. Such a case can’t be simulated
using Messinger’s approach. Indeed, it can’t account for the dynamics of the melting process nor can it
account for the dynamics of the running back water film created when all the ice is melted.

Airfoil Chord α (◦) P∞ (Pa) T∞ (K) M∞ rH∞ TWC (g.m−3) MVD (µm)
NACA0012 0.5334 4 101325 263.15 0.321 1 0.34 20

Table 3: Aerodynamic and atmospheric conditions for the delayed activation case. The droplet size distribution is assumed to
be monodisperse
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7.1. Step 1: ice build up

During the first 20s of the case the internal heating is not activated. Unsteady phenomena occur during
this step but only at the very beginning of the build up process.

Figure 10 shows, at t = 0.25s, the liquid running film and ice thickness as well as the droplet impact
rate as functions of the curvilinear abscissa. Different areas of accretion mode (rime or glaze) are visible.
Between approximately s = −0.01m and s = 0.0m droplets are impacting, ice is building up and a liquid
film is flowing on top (glaze mode). On the other hand, for s < −0.02m or in the neighborhood of s = 0.0m,
ice is building-up in rime mode.
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Figure 10: Droplet impact rate, running film and ice build up modes at t = 0.25s. The plotted thicknesses dimensionless. The
maximum thicknesses are hrf,max = 1.9µm for the running film and hi,max = 6.9µm for the ice.

As shown in Figure 11 the film flows downstream under the effect of the aerodynamic forces. The film
flows into regions where ice was growing in rime mode. Therefore the build up process changes downstream
as the liquid film runs back and flows over the ice. Regions which initially started in rime mode switch to
glaze mode. In addition, note that after t = 1s steady state is reached regarding the runback of the liquid
film (whereas ice continues to grow). This unsteady process occurs only during the first instants of the build
up process.
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Figure 11: Unsteady runback process during first instants of the simulation

As shown in Figure 12, this leads to build up of ice at the leading edge. After 20s the maximal ice
thickness is of 0.84mm. From this point on a heating term is activated in the red dotted region. Note that
for representation reasons the dotted region is not plotted exactly at the boundary. However, it is indeed
at the upper boundary of the airfoil that the heating term in applied. That is to say, the heating term is
directly applied as a (lower) boundary condition of the triple layer model.

(a) Two dimensional view of the ice shape and running film.
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(b) Thickness of ice layer and running film layer.

Figure 12: Ice shape at t = 20s
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7.2. Step 2: activation of heating

At t = 20s the internal heating is activated. The layer of ice starts to melt. Figure 13 shows the
temperature field in the ice block at the stagnation point just after the internal heating is applied. The
melting front propagates and a temperature gradient is clearly visible.

AirfoilAirfoilAirfoil

Air Air Air

Figure 13: Temperature field in the ice block near the leading edge. A temperature gradient is clearly visible as the melting
front propagates. The dashed line represents the melting front. The film height is scaled x50

Figure 14a shows the temperature profile and the position of the melting front along the normal direction
to the stagnation point. The temperature gradient is clearly visible. The ice melting process is also visible
in Figure 14b. The ice thickness decreases as it melts and is replaced by a layer of static film. Once the ice
layer has completely melted the static layer comes into contact with the running film layer. At this point
the mode switches to ”running wet” and the whole thickness of the static layer is transferred to the dynamic
layer. The dynamic layer is then very rapidly evacuated downstream and returns to its steady thickness.

(a) Temperature profile in the normal direction at
the leading edge
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(b) Thicknesses as function of time

Figure 14: Temperature field and layer thicknesses during the melting process

In addition, during the unsteady melting process, small region of melted water are released and flow
downstream, as shown in Figure 15. The whole process occurs as follows:

• t = 20.03s: in a given cell at the end of the ice block, once the melting front has propagated through
the whole thickness of ice, the local mode switches to ’running wet’.
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• t = 20.08s: The liquid water comes into contact with the external flow field. The liquid film runs back
downstream under the effect of the aerodynamic forces.

• t = 20.21s: however, as the liquid leaves the protected area, it is no longer heated enough. It starts
to freeze under the effect of the cold external conditions.

• t = 20.3s: therefore, a small ice ridge starts build up outside of the heated area.

Static film grows as 
ice block continues 
to melt

Airfo
il Airfo

il

Airfo
il

Airfo
il

Figure 15: A small region of ice is melted. The resulting liquid water runs downstream.

7.3. Step 3: formation of ice ridges

After 10s of internal heating, the protected area is free from ice. The internal heating manages to keep
the leading edge free of ice. However it is not sufficient to be fully evaporative. Figure 16 shows the predicted
ice shapes after 50s. The temperature field in the running liquid film is shown. The water is heated along
the protected area. However, once the water exits the protected area, the cold external conditions rapidly
lead to freezing. Therefore the water runs back and freezes further downstream, generating two runback ice
ridges, one on the pressure side and the other on the suction side.
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Airfoil

Figure 16: Predicted runback ice shapes after 50s (obtained with a mesh size of ∆s = 0.0001m)

7.4. Mesh convergence analysis

All the previous results where obtained with a mesh size of ∆s = 0.0001m. This choice was the result
of a mesh refinement analysis. Figure 17 shows a clear effect of mesh refinement on the runback shapes.
Indeed, for a coarse mesh, the runback ice shapes appear to be more smoothed out. Mesh refinement has
the effect of sharpening the ice shapes.
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(a) Upper ridge

(b) Lower ridge

Figure 17: Runback ice shapes: effect of mesh refinement

8. Conclusion and Perspectives

In this paper, a three-layer model for the simulation of unsteady icing phenomena was proposed. The
methodology models the dynamics of the sheared liquid film with a lubrication assumption. The heat
equation is used to model heat transfer in the normal direction in the static layers. Moreover the dynamics
of the melting front is taken into account with a Stefan condition. The heat and mass transfer equations for
the running liquid film are solved using a Roe scheme. In the static layers, a Galerkin finite element method
is used to solve the heat equation and treat the Stefan condition. These spatial discretization schemes are
embedded into an implicit time marching scheme.

The approach was shown to give good results when compared to analytical solutions for a one dimensional
Stefan problem. It was shown that the melting front and temperature fields could be well predicted.

Secondly, two ice accretion cases where simulated. The results were compared to those obtained with
Messinger’s method and to experimental data. In both cases, rime and glaze icing conditions, the present
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method predicted the same results as Messinger’s approach. However, the results were also in poor agreement
with the experimental data. In order to overcome this drawback, a possible line of improvement would be
to update the aerodynamic field and droplet impingement data. As the present method is fully unsteady,
one could update the aerodynamic field and droplet impingement data in a consistent way.

Finally, the capabilities of the method to treat unsteady cases was demonstrated. A situation of delayed
system activation was considered. Indeed, it is to deal with such unsteady cases that the present method
was developed. The results may be summed up in three steps. Firstly, ice builds up. Secondly, a system
is activated (modelled by an internal heating). The method predicted the propagation of the melting front
inside the ice block. Moreover, the associated temperature gradient was clearly visible. Thirdly, once the
ice block at the leading edge was melted, water flowed downstream. Once out of the heated area, the water
began to freeze, creating two ridges of runback ice, one on the suction side, another on the pressure side. It
is worthwhile to note that Messinger’s method is unable to account for such phenomena as it is based on
steady state assumptions. The lack of experimental data and its high scatter does not at present time allow
for a full validation of the model. However, ongoing research projects aim to fill the experimental data gap.

With these results at hand, the next step is to couple this methodology with a solver for an electro-
thermal ice protection system [8]. Moreover, combining them with recent work on ice shedding mechanisms
[5, 4] would enable the simulation of a full de-icing cycle.
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Appendix A. Neglecting the tangential heat fluxes in the ice and static film layers: approxi-
mation assessment

In the model presented previously,heat conduction is considered in the normal direction only. So as to
assess this approximation, consider the case illustrated in Figure A.18 where an internal heating is applied to
a specific region of an ice block. This case is simulated with an in-house code that solves the two dimensional
heat transfer problem with phase change using an enthalpy method [3]. This way, the temperature gradient
can be computed.

10cm

1cm
ICE

Heated area from -2cm to 2cm

Figure A.18: Two dimensional case

In addition, Figure A.19 shows that the x component of the temperature gradient is non zero only in a
confined region at the edge of the heated area, whereas variations in the y direction are much more present.
The arrows representing the temperature gradient show that it is mainly normal to the boundary.
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Figure A.19: Comparison between x and y components of the temperature gradient at t = 30s. Arrows represent −∇T . The
dashed line represents the position of the melting front.

Therefore, although the x component is not zero strictly speaking, not taking it into account is a rea-
sonable approximation. This allows to reduce the phase change problem to one dimension and to construct
a model that retains the relevant physics while being much cheaper computationally.
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