Ido Cohen 
  
Guy Gilboa 
  
Shape Preserving Flows and the p-Laplacian Spectra

   

Introduction and main results

A main principle in image and signal processing is to represent the data in a meaningful manner, which allows effective processing for the type of signals and application at hand. Usually, a compact and sparse representation is desired. In filtering applications, we would often prefer a representation which well distinguishes between signal and noise. Linear transforms were extensively employed for this purpose. For example, Fourier transform represents harmonic functions in the time domain by delta functions in the frequency domain.

Fourier developed his theory while investigating the solution of the heat equation (or homogeneous linear diffusion), [START_REF] Fourier | Theorie analytique de la chaleur[END_REF] u t = ∆u, u(t = 0) = f. It is well known that the solution u(t) in an unbounded domain is a convolution of f with a Gaussian kernel of standard deviation σ = √ 2t, for a review see e.g. 1 [START_REF] Weickert | A review of nonlinear diffusion filtering[END_REF]. Moreover, if f is an eigenfunction, namely, admits the linear eigenvalue problem ∆f = λf, λ ∈ R, the variables x and t of the solution are separated, where u(x, t) = e λt • f (x).

(

) 1 
We note that the heat equation is a gradient descent process with respect to the Dirichlet energy,

J D (u) = 1 2 |∇u| 2 dx.
The Dirichlet energy and its associated flow smooth sharp transitions. Therefore, non-quadratic energies and non-linear flows are more useful for image processing tasks. A widely used edge preserving functional in image processing is the Total Variation (TV) energy,

J T V (u) = |∇u| dx.
It can be perceived as the L 1 analog of the Dirichlet energy. The associated gradient descent, known as TV-flow [START_REF] Andreu | Minimizing total variation flow[END_REF], is a nonlinear diffusion process of the form,

u t = div ∇u |∇u| , u(t = 0) = f. (2) 
It can be shown ( [START_REF] Steidl | On the equivalence of soft wavelet shrinkage, total variation diffusion, total variation regularization, and sides[END_REF][START_REF] Burger | Spectral decompositions using one-homogeneous functionals[END_REF]) that in the discrete 1D case the solution at time t coincides with the minimizer of the ROF model [START_REF] Rudin | Nonlinear total variation based noise removal algorithms[END_REF],

arg min

u 1 2 u -f 2 + tJ T V (u).
In an analog manner to the linear case, we can define a nonlinear eigenfunction with respect to the TV subdifferential by, q = λf, -q ∈ ∂J T V (f ),

where ∂J(u) denotes the subdifferential of the functional J at u. Similarly to linear diffusion, if the initial condition admits (3) we obtain a simple analytic solution of the flow, where x and t are separated [START_REF] Andreu | Minimizing total variation flow[END_REF],

u(x, t) = (λt + 1) + • f (x). ( 4 
)
The linear decay over time of ( 4) is the key to data representation by the TVtransform [START_REF] Gilboa | A total variation spectral framework for scale and texture analysis[END_REF], where a nonlinear eigenfunction (3) becomes a delta in the TV transform domain.

One can generalize the aforementioned energies to a the p-Dirichlet functional:

J p (u) = 1 p |∇u| p dx, ( 5 
)
where p is classically in the range (1, ∞). The gradient descent with respect to [START_REF] Burger | Spectral representations of one-homogeneous functionals[END_REF] is the nonlinear diffusion flow (hereinafter p-flow):

u t = ∆ p u, u(0) = f, (6) 
where ∆ p u is the p-Laplace operator defined by,

∆ p u = div |∇u| p-2 ∇u . (7) 
We would like to investigate whether there are solutions to [START_REF] Burger | Spectral decompositions using one-homogeneous functionals[END_REF] in which x and t are separated, as in Eqs. ( 1) and (4). To address this issue we first consider a more general nonlinear flow

u t = P (u(t)), u(t = 0) = f, (P)
where P is a general nonlinear bounded operator. We seek conditions where the solution is in the form:

u(x, t) = a(t) • f (x). (ShP)
We denote these type of solutions as shape preserving flows, since there is no spatial change in u and the flow only modifies the contrast. The change of contrast is dictated by a(t). The function a(t) is induced by the operator P and can be arbitrary. In our study we are interested in flows that vanish with time.

We therefore term the function a(t) as the decay profile. We begin by formulating necessary and sufficient conditions for solutions of (P) to be in the form of (ShP). It turns out that the initial condition u(t = 0) = f has to be an eigenfunction of P , i.e. admits

P (f ) = λf, λ ∈ R.
Moreover, we found that at t = 0 the directional derivative of P (in the f direction) is proportional to f . When P is an homogeneous operator we can formulate analytic solutions for the flows. In the case of the p-Laplace operator, the decay profile is:

a(t) = [(2 -p)λt + 1] 1 2-p .
This decay profile holds for any value of p in the range [1, ∞), for any eigenfunction f and any eigenvalue λ. As an immediate consequence, the p-flow has a finite extinction time T for 1 ≤ p < 2,

T = 1 (p -2)λ .
Following these results, a new family of nonlinear transforms is introduced. These transforms connect between eigenfunctions of the homogeneous operator and delta functions in the transform domain. Definitions for spectrum, filtering and data representation are formulated. Preliminary experiments illustrate this framework.

The plan of the paper is as follows: In Section 2 necessary and sufficient conditions are given for (P) to be shape preserving. Then we focus our discussion on homogeneous operators and show they can induce shape preserving flows. For these flows we formulate their decay profile and extinction time. In Section 3 we generalized the spectral one homogeneous representation [START_REF] Burger | Spectral decompositions using one-homogeneous functionals[END_REF] to p-homogeneous spectral representation for 1 < p < 2. In Section 4 some numerical results are presented.

The theory of shape preserving flows

In this section we develop the theoretical basis for the p-spectra. We begin by formulating necessary and sufficient conditions for the flow (P) to be shape preserving. Then we show that operators of any homogeneity address these conditions.

Necessary and sufficient conditions for shape preserving flows

In the following theorem we define precise conditions for shape preservation under the assumption that in some initial time range the flow is infinitely differentiable, with respect to time.

Theorem 1 (Shape preserving flow -necessary and sufficient condition). Given a (non)linear scale-space flow, Eq. (P), which exists for all t ∈ R + . We assume u(t) is infinitely differentiable with respect to t in the range D = [0, T ) ⊆ R + . The solution u(t) is shape preserving (Eq. (ShP)) in the range D iff for any n = 0, 1, .. we obtain

d n dt n P (u(t)) t=0 = c n • f, (8) 
where c n ∈ R is some constant.

Proof.

⇒ [We assume the solution is shape preserving (admits Eq. (ShP)) and prove Eq. ( 8)]. Let us note that P (u(t)) is infinitely differentiable in the range D using Eq. (P) and the fact that u(t) is infinitely differentiable. By substituting (P) and (ShP) in Eq. ( 8) we can calculate the nth derivative of P . For any n = 0, 1, .. we get:

d n dt n P (u(t)) t=0 = d n+1 dt n+1 u(t) t=0 = a (n+1) (t) t=0 • f = c n • f (x).
⇐[We assume Eq. ( 8) and prove the solution is in the form of (ShP)]. The solution u(t) can be represented as a Taylor series at any time t in D because it is infinitely differentiable. Without loss of generality, we express u(t) at t = 0:

u(t) = ∞ n=0 1 n! d n dt n u(t) t=0 t n =f + ∞ n=0 1 (n + 1)! d n dt n P (u(t)) t=0 t n+1 =f + ∞ n=0 c n f (n + 1)! t n+1 = 1 + ∞ n=1 α n t n f = a(t)f. (9) 
Let us discuss some implications of the above theorem. If the flow is shape preserving then (8) holds for any natural n, in particular for n = 0,

P (f ) = λ • f, (10) 
where λ = c 0 . Therefore, f being an eigenfunction of P is a necessary condition for a shape preserving flow. Let us further examine [START_REF] Cohen | Energy dissipating flows for solving nonlinear eigenpair problems[END_REF] for n = 1,

d dt P (u(t)) t=0 = lim dt→0 P (u(t + dt)) -P (u(t)) dt t=0 .
When dt → 0 we can substitute P (u(t + dt) by P (u(t) + dt • u t ),

d dt P (u(t)) t=0 = lim dt→0 P (u(t) + dt • u t ) -P (u(t)) dt t=0 .
Substituting u t by using (P) yields:

d dt P (u(t)) t=0 = lim dt→0 P (u(t) + dt • P (u(t))) -P (u(t)) dt t=0 .
Evaluating the above expression at t = 0 we get,

d dt P (u(t)) t=0 = lim dt→0 P (f + dt • P (f )) -P (f ) dt .
But according to Eq. ( 10) f is an eigenfunction of P , therefore

d dt P (u(t)) t=0 = lim dt→0 P (f + λdt • f ) -P (f ) dt . (11) 
One can observe that Eq. ( 11) is the directional derivative of the operator P at point f in the direction f (multiplied by λ). From Theorem 1 it is linearly dependent of f . That conclusion is valid for derivative of any order. It turns out that eigenfunctions play a crucial rule in shape preserving flows.

As to the Taylor series at t = 0 (Eq. ( 9)). This series uses the time derivatives of P (u) of any order at t = 0. These derivatives must be right-hand-sided since t ∈ [0, T ). The Taylor series is valid as u(t) is infinitely differentiable in D. The rest of this section is dedicated to a family of operators for which Theorem 1 holds.

Homogeneous operators

Here we focus on homogeneous operator of any positive degree. We show that if the operator P is homogeneous the solution of (P) is a shape preserving flow if and only if the initial condition u(t = 0) = f is an eigenfunction in the form of [START_REF] Fourier | Theorie analytique de la chaleur[END_REF].

We begin by examining the general scale space flow (P), showing that if the operator P is homogeneous then its time derivatives of any order are homogeneous as well (Lemma 1). We conclude that when the initial condition is an eigenfunction of P the conditions of Theorem 1 hold. Moreover, we obtain an analytic expression for the decay profile of the flow (P) (Theorem 2). Consequently, a simple expression for the extinction time for any eigenfunction is formulated for homogeneous operators of degree in the range (0, 1) (Prop. 2).

The homogeneity of the operator can be written in a general manner by,

P (au) = g(a) • P (u), ∀a ∈ R, (12) 
given some function g(a). However, since we should require restrictions such as g(ab) = g(a)g(b) (∀a, b) and that the sign of a is preserved, we assume g(a)

takes the simple polynomial form,

g(a) = a|a| p-2 , (13) 
where p -1 is the degree of homogeneity. We use this definition as it coincides with the homogeneity of the p-Laplacian operator, which will be investigated more thoroughly later.

Lemma 1. Given the scale-space (P) and u(t) exists and infinitely differentiable. If P is a g(a) homogeneous operator then

(d n /dt n )P is a homogeneous operator with g(a) • g(a)
a n -homogeneity.

Proof. Let us first show the homogeneity of the operator ∂P (u)/∂u. On one hand we know that:

∂P (au) ∂u = g(a) ∂P (u) ∂u .
On the other hand:

∂P (au) ∂u = a ∂P (au) ∂au .
Thus we get:

∂P (au) ∂(au) = g(a) a ∂P (u) ∂u . (14) 
Another identity, which holds for u(t) admitting (P), based on the chain rule, is,

d dt P (u) = ∂P (u) ∂u • u t = ∂P (u) ∂u • P (u). ( 15 
)
We can now proceed and prove our claim by induction. According to Eqs. ( 14) and ( 15) we have,

d dt P (au) = ∂P (au) ∂(au) • P (au) =g(a) g(a) a ∂P (u) ∂u • P (u) =g(a) g(a) a • d dt P (u). (16) 
Therefore, the homogeneity of the first order time derivative of P is g(a)

• g(a)
a . We note that a is in general a function of time, a(t). According to the assumption of the induction, the homogeneity of d n-1 /dt n-1 P is g(a) • (g(a)/a) n-1 . Let us denote the (n -1)th time derivative of P (u) as Q(u). Then, in a similar manner to Eq. ( 15), we have

d dt Q(u(t)) = ∂Q(u) ∂u • P (u).
Also, based on the assumption of the induction and similarly to Eq. ( 14) we get that the homogeneity of ∂Q/∂u is (g(a)/a) n . We therefore have,

d n dt n P (au) = d dt Q(au) = ∂Q(au) ∂(au) P (au) = g(a) a n • ∂Q(u) ∂(u) P (au) =g(a) g(a) a n • ∂Q(u) ∂(u) P (u) =g(a) g(a) a n • d dt Q(u),
which proves the assertion of the lemma.

As a conclusion of Theorem 1 and Lemma 1 we are able to state the following theorem.

Theorem 2. If P is a p -1 homogeneous operator, where g(a) as in [START_REF] Gilboa | Semi-inner-products for convex functionals and their use in image decomposition[END_REF], and u(t) is infinitely differentiable at t = 0, then:

1. The solution of the scale space Eq. (P) exists for all t ∈ [0, T ) and is shape preserving iff the initial condition u(t = 0) = f is an eigenfunction in the sense [START_REF] Fourier | Theorie analytique de la chaleur[END_REF].

2. The flow has the following analytic solution (for t ∈ [0, T )):

u(t) =a(t) • f, a(0) = 1, (17a) 
a(t) = [(2 -p)λt + 1] 1 2-p (17b)
as long as a(t) = 0. Or equivalently, it is the solution of the following ODE,

d dt a(t) = g(a(t)) • λ, a(0) = 1.
Proof.

1. According to Theorem 1 a shape preserving flow and Eq. ( 8) are equivalent. ⇒ [We assume [START_REF] Cohen | Energy dissipating flows for solving nonlinear eigenpair problems[END_REF] and prove u(t = 0) = f is an eigenfunction].

Trivially, by assigning n = 0 in [START_REF] Cohen | Energy dissipating flows for solving nonlinear eigenpair problems[END_REF].

⇐ [We assume the initial condition is an eigenfunction and prove [START_REF] Cohen | Energy dissipating flows for solving nonlinear eigenpair problems[END_REF]].

We prove (8) by induction. The assumption of the induction is trivially valid for n = 0, as f is an eigenfunction.

For any n, we assume (d n /dt n )P (u(t)) t=0 = c n • f and compute the (n + 1)th time derivative of P (u(t)). Let us denote P (n) (u(t)) := (d n /dt n )P (u(t)). P (n) (u(t)) is differentiable since u(t) is infinitely differentiable and using Eq. (P), thus we can directly compute P (n+1) at t = 0 by

P (n+1) (u(t)) t=0 = lim dt→0 P (n) (u(t + dt)) -P (n) (u(t)) dt t=0 = lim dt→0 P (n) (u(t) + P (u(t))dt) -P (n) (u(t)) dt t=0 = lim dt→0 P (n) ((1 + λdt)f ) -P (n) (f ) dt .
Using Lemma 1 we have

P (n+1) (u(t)) t=0 = lim dt→0 g(1 + λdt) • g(1+λdt) 1+λdt n • P (n) (f ) -P (n) (f ) dt = lim dt→0 g(1 + λdt) • g(1+λdt) 1+λdt n -1 dt c n f.
Recall that g(1) = 1 and therefore g(1) g( 1)

1 n = 1
and we have = lim

dt→0 g(1 + λdt) • g(1+λdt) 1+λdt n -g(1) g(1)
1

n dt c n f.
The above can be expressed by the following derivative

= d dτ g(τ ) g(τ ) τ n τ =1 • λc n f = [(n + 1)g (1)
-n] λc n f, and using g (1) = p -1 yields

c n+1 = [(n + 1)(p -1) -n] λc n .
2. Using the expression for c n+1 we can directly compute the decay profile and reach (17b) (see Appendix A). However, a simpler approach is to view the solution as a first order ODE. Since the solution is in the form of (ShP), we can express the first time derivative as,

u t = d dt a(t) • f.
In addition, u(t) admits the scale space equation,

u t =P (a(t) • f ) =g(a(t))λf.
Thus, we get d dt a(t) = g(a)λ.

This is separable equation and using (13) yields,

d dt a(t) = a|a| p-2 λ.
Under the assumption a > 0 we have

a(t) 2-p = (2 -p)λt + C.
Based on the initial condition a(0) = 1 gives

a(t) = [(2 -p)λt + 1] 1 2-p .
Let us examine the conditions for a shape preserving flow to blow up in finite time. From the analytic solution (17b) we can state the following corollary:

Corollary 1 (Flows with finite blowup time). If the conditions of Theorem 2 hold, p > 2 and λ > 0, then the solution blows up in finite time T , where

T = 1 (p -2)λ .
This is an immediate consequence of (17b) for a negative power as the base tends to zero. As an example, the p-Laplacian (7) is a negative semidefinite operator. Therefore, its eigenvalues are negative, where the existence of eigenfunctions was proved in [START_REF] García Azorero | Existence and nonuniqueness for the p-laplacian[END_REF]. Consequently, the negative p-Laplacian induces positive eigenvalues and the inverse p-flow, u t = -∆ p (u), for p > 2, blows up in finite time.

Moreover, we can check when the flow vanishes. We refer to the first time T for which u(T ) = 0 as the extinction time. In a similar manner to Cor. 1 we can state a corollary for the extinction time.

Corollary 2 (Flows with finite extinction time). If the conditions of Theorem 2 hold, p < 2 and λ < 0, then the solution has a finite extinction time

T = 1 (p -2)λ . ( 18 
)
In the conditions of Cor. 2, the power in Eq. ( 17b) is positive and the base is zero for t = T . As for any positively homogeneous operator P (0) = 0 we get that u is identically zero for t ≥ T . Following the above discussion, the p-flow vanishes in finite time for 1 < p < 2. In addition, if p → 2 Eq. (17a) becomes a(t) = e λt , and the extinction time is infinite as expected for the heat equation. If p > 2 the solution does not reach a steady state. This coincides with results in [START_REF] Xin | Extinction and positivity of the solutions for a -laplacian equation with absorption on graphs[END_REF].

Another interesting case for the p-flow is when p = 1, where we obtain the TV-flow. For the case p = 1 we get a linear decay profile (as proved in [START_REF] Bellettini | The total variation flow in rn[END_REF]). This is a subgfradient flow and the conditions of Theorems 1 and 2 do not hold. However, we see that [START_REF] Li | Numerical methods for fractional calculus[END_REF] still holds. Based on the decay profile of the T V -flow a new concept of nonlinear transform was introduced in [START_REF] Gilboa | A total variation spectral framework for scale and texture analysis[END_REF]. This transform was defined as a second time derivative of u(t),

φ T V (t) = t • u tt , (19) 
for which an eigenfunction becomes a delta in the transform domain. This concept was extended to any absolutely one-homogeneous functionals (which have zero-homogeneous subgradients, p = 1) in [START_REF] Burger | Spectral decompositions using one-homogeneous functionals[END_REF] or to the weighted problem introduced in [START_REF] Bungert | Solution paths of variational regularization methods for inverse problems[END_REF]. This was used in several image-processing applications, e.g. for denoising [START_REF] Moeller | Learning nonlinear spectral filters for color image reconstruction[END_REF], segmentation [START_REF] Zeune | Multiscale segmentation via bregman distances and nonlinear spectral analysis[END_REF] and image fusion [START_REF] Hait | Spectral total-variation local scale signatures for image manipulation and fusion[END_REF].

3 The p-Laplace Spectra

In the last decade there is a rising interest in p-flows for 1 < p < 2 (see e.g. [START_REF] Kuijper | p-laplacian driven image processing[END_REF][START_REF] Wei | A p-laplace equation model for image denoising[END_REF][START_REF] Chen | Variable exponent, linear growth functionals in image restoration[END_REF]). Therefore, it would be beneficial to develop a representation method based on these flows.

Extinction time for the p-flow

In the previous section an expression for the time of extinction of the p-flow was given for eigenfunctions, (1 < p < 2). We address now the issue of finite extinction time for arbitrary initial conditions f . Upper bounds on the extinction time were proposed in several studies. For example, in [START_REF] Vázquez | Smoothing and decay estimates for nonlinear diffusion equations: equations of porous medium type[END_REF] the authors establish an upper bound (for 1 < p < 2) based on Barenblatt solution [START_REF] Barenblatt | On self-similar motions of a compressible fluid in a porous medium[END_REF] . In [START_REF] Dibenedetto | Degenerate parabolic equations[END_REF] (see pages 188,189) the authors provide a bound for the continuous setting in a bounded domain in R N . In Proposition 3.12 in [START_REF] Burger | Spectral decompositions using one-homogeneous functionals[END_REF] an upper bound is derived for p = 1 (T V -flow). In addition, it is worth mentioning that in [START_REF] Vázquez | The dirichlet problem for the fractional p-laplacian evolution equation[END_REF] the behavior of the p-flow near the time of extinction is presented as an open problem. In Appendix B we show a different approach to proving finite extinction time of the p-flow using arguments similar to the ones of [START_REF] Burger | Spectral decompositions using one-homogeneous functionals[END_REF] in a semi-discrete setting.

The p-Transform

In a similar manner to the T V -transform [START_REF] Gilboa | A total variation spectral framework for scale and texture analysis[END_REF] and to the one-homogeneous transform [START_REF] Burger | Spectral decompositions using one-homogeneous functionals[END_REF], we would like to express an eigenfunction as a delta in time by applying a linear operator to the flow. We propose to take the time derivative of order α for the p-flow, where

α = 1 2 -p + 1. ( 20 
)
As α is not necessarily a natural number, fractional derivatives are required. There are many different definitions of the fractional calculus operators, see e.g. [START_REF] Li | Numerical methods for fractional calculus[END_REF][START_REF] Ortigueira | Fractional calculus for scientists and engineers[END_REF][START_REF] Luchko | Fractional fourier transform and some of its applications[END_REF][START_REF] Khalil | A new definition of fractional derivative[END_REF]. All definitions coincide with derivatives in the classical sense (of integer orders) but can differ for non-integer orders. We chose to use a well known definition of Sonin and Laurent (see [START_REF] Ortigueira | Fractional calculus for scientists and engineers[END_REF]), which is a generalization of Cauchy integral.

Definition 1 (Fractional derivative). The fractional derivative of order α of the function u at point t is given by,

D (α) {u(t)} := Γ(α + 1) 2πj c u(τ ) (τ -t) 1+α dτ ( 21 
)
where c is a closed curve around t, Γ is the extension of the factorial function where Γ(n) = (n -1)! when n is natural.

We can now define the p-transform and the inverse p-transform as follows:

Definition 2 (The p-transform). The p-transform is defined by,

φ(t) = (-1) α-1 t α-1 Γ(α) D α {u(t)}, (22) 
where u(t) is the solution of (6), p ∈ (1, 2), α is as in (20) and • is a ceil operator.

Definition 3 (Inverse p-transform).

f = ∞ 0 φ(t)dt. (23) 
Let us show the reconstruction property for α ∈ N .

Proposition 1 (Reconstruction). The function f can be reconstructed by the inverse transform (Eq. ( 23)), for α ∈ N .

Proof. In this proof we limit ourselves to natural α = n, i.e. p = 2n-3 n-1 where n ∈ N . In this case the p-transform is:

φ(t) = (-1) n-1 t n-1 (n -1)! u (n) (t), n = 2, 3, ...
Then using integration by parts we have

∞ 0 φ(t)dt =(-1) n-1 ∞ 0 t n-1 (n -1)! u (n) (t)dt =(-1) n-1     t n-1 (n -1)! u (n-1) (t) ∞ 0 =0 - ∞ 0 t n-2 (n -2)! u (n-1) (t)dt     =(-1) n     t n-2 (n -2)! u (n-2) (t) ∞ 0 =0 - ∞ 0 t n-3 (n -3)! u (n-2) (t)dt     =... =(-1) 2n-3 ∞ 0 u (t)dt =(-1) 2n-2 f =f 3.3 The p-Spectra Definition 4 (The p-Spectrum). S(t) = f, φ(t) .
The Parseval-type theorem holds,

S(t)dt = f, φ(t) dt = f, φ(t)dt = f, f = f 2 .
Theorem 3 (Spectral response of an eigenfunction). The p-transform, [START_REF] Rudin | Nonlinear total variation based noise removal algorithms[END_REF], of an eigenfunction f with eigenvalue λ, when α ∈ N , is:

φ(t) = δ t + α -1 λ • f. (24) 
Proof. The solution of ( 17) can be written as,

u(t) =    λ α-1 t + 1 α-1 f t ≤ T 0 t > T.
When α ∈ N we can formulate the α-th time derivative of u(t) as

D (α) {u(t)} = (α -1)! λ α -1 α-1 δ t + α -1 λ • f.
Assigning this in [START_REF] Rudin | Nonlinear total variation based noise removal algorithms[END_REF] gives,

φ(t) =(-1) α-1 t α-1 (α -1)! (α -1)! λ α -1 α-1 δ t + α -1 λ • f =(-1) α-1 t α-1 λ α -1 α-1 δ t + α -1 λ • f.
As the delta function is non zero for t = -(α -1)/λ, this is equivalent to

φ(t) =(-1) α-1 - α -1 λ α-1 λ α -1 α-1 δ t + α -1 λ • f =δ t + α -1 λ • f.

Filtering

The filtering is identical to the previous work on TV-transform (see e.g. [START_REF] Burger | Spectral representations of one-homogeneous functionals[END_REF]).

The filtering is done in the time domain, as follows,

φ(t) = φ(t) • h(t), (25) 
where LP, HP, BP and BS are defined as in [START_REF] Gilboa | A total variation spectral framework for scale and texture analysis[END_REF]. The filtered signal is respectively defined: 

f h = ∞ 0 φ(t)dt. (26) 

Experiments

In this section we demonstrate numerically some of the theoretical findings presented earlier. The p-flow is implemented by simple explicit method using a standard 3 × 3 spatial stencil. The step size is different for different values of p. Unless stated otherwise, our experiments are for p = 1.5. In this case the order of derivative is α = 3 and the step size is dt = 10 -3 . For p = 1.3 the step size is dt = 5 • 10 -4 .

Decay profile. In Fig. 1 we demonstrate the validity of the analytic solution of the decay profile, Eq. (17b) in one-and two-dimensions. On the left, two eigenfunctions of the p-Laplacian are shown, (with eigenvalues λ = -0.017 (top) and λ = -0.0587 (bottom)). On the right, the corresponding theoretical and experimental decays are plotted for a randomly selected point x 0 . One can observe that the experimental results coincide well with the theoretical predictions.

Transform and Spectrum. We illustrate the application of the p-transform on eigenfunctions. Several eigenfunctions were generated (with different values of p), using the algorithm of [START_REF] Cohen | Energy dissipating flows for solving nonlinear eigenpair problems[END_REF], see Fig. 2. We expect that the spectrum of a numerical eigenfunction will be composed of essentially one dominant peak, approximating a delta response at t = 1 (p-2)λ . In Fig. 3 we show the decay profile for p-flow for the eigenfunction whose eigenvalue λ = -0.216. One can see in the different subfigures the decay profile 

a) | f, u(t) | (b) f, d dt u(t) (c) f, d 2 dt 2 u(t) (d) f, d 3 dt 3 u(t)
Figure 3:

(a) f, d 3 dt 3 u(t)
Figure 4: and its time derivatives. As expected, the decay profile is a polynomial of second order, its first order derivative is linear, the second derivative is a step function and the third is an isolated peak. In Fig. 4 we show the third order derivative of the p-flow and again, as α = 3, we get an isolated peak. For p = 1.5, the extinction time is T = -2/λ, following [START_REF] Luchko | Fractional fourier transform and some of its applications[END_REF]. It can be seen that the experimental results coincide with the analytic solution i.e. the extinction times are 9.24 and 0.667, as expected. We would like to note that for the eigenfunction with eigenvalue λ = -3 we obtained numerically an almost exact eigenfunction and therefore the extinction time is predicted with very high accuracy. In general, these results fit the analytic solutions formulated in [START_REF] Li | Numerical methods for fractional calculus[END_REF].

(a) f, u(t) (b) f, d dt u(t) (c) f, d 2 dt 2 u(t) (d) f, D α u(t)
In Fig. 5 we demonstrate the transform for p = 1.3, α = 2 3 7 . Here the transform is based on fractional derivatives. There are several ways to implement fractional derivatives [START_REF] Petráš | Fractional derivatives, fractional integrals, and fractional differential equations in matlab[END_REF]. The derivative operator is a semigroup, therefore, we choose to separate the fractional derivative to the natural and the fractional parts. For the natural part (in our case 2) we apply standard derivation and for the fractional remainder (in our case 3 7 ) we approximate it via Fast Fourier Transform (FFT). The eigenvalue is λ = -0.2876, yielding a theoretical extinction time of T theory = 4.967. The experimental result is very close where we get T = 4.9665.

Filtering. We implement the filtering process as suggested in Eqs. ( 25) and [START_REF] Wei | A p-laplace equation model for image denoising[END_REF]. Again, we use p-flow where p = 1.5, i.e. 1/(2 -p) is natural. In Fig. 6 we add two eigenfunctions with different eigenvalues. When the signal is composed of two independent eigenfunctions (see [START_REF] Gilboa | Semi-inner-products for convex functionals and their use in image decomposition[END_REF]) we can expect to obtain two distinct groups of peaks. And indeed we get that result in Fig. 6d. Filtering the red marked spectrum out of the signal results in recovering the eigenfunction with the lower eigenvalue. Naturally, subtracting this result from the initial image approximates well the second eigenfunction. Now, we repeat the last experiment but with noise added to an eigenfunction (see Fig. 7). Again the signal is separated into two groups in the time (corresponding to eigenvalue or scale) axis Fig. 7d. We recovered the eigenfunction by filtering out the higher "frequencies". The chosen part to be recovered is the red part in the Fig. 7d.

Conclusions

In this work we formulated necessary and sufficient conditions for general shape preserving flows. We have shown that homogeneous operators admit this condition when the flow is initialized with a nonlinear eigenfunction, with respect to the operator of the flow. Moreover, a closed form solution was formulated for any homogeneous operator and eigenfunction. Consequently, blowup and extinction times were easily derived.

Following these insights, we could extend the TV and one-homogeneous transforms to the p-Laplacian flow, when the flow becomes extinct in finite time, p ∈ (1, 2). It was shown that the flow's decay profile is a polynomial of order 1/(2 -p). Fractional derivatives were suggested to define the nonlinear p-transform. A full theory is still under-way, where currently we have developed results in the classical case of integer derivatives. Numerically, it was shown that the concept extends well to fractional derivatives. We have demonstrated our approach in filtering and reconstruction.

According to the norm equivalence we can write 
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  Figure Eigenfunction decay.On the left, eigenfunctions of the p-Laplacian are shown for p = 1.5 in one and two dimensions. On the right, u(t, x 0 ) vs. time and the theoretical plot a(t)f (x 0 ).
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 32 Figure 2: Eigenfunctions with different values of λ and p.
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 5 Figure 5: A demonstration of the general case where 1/(2 -p) is not natural and accordingly the delta function appears at t = 4.9667.

A An alternative proof of Theorem 2, part 2

We compute the decay profile using the first part of the proof of Theorem 2.

The time derivative of P (u(t)), at t = 0, can be expressed as,

Let us recall that

d n dt n P (u). Since u(t) is infinitely differentiable, we can use a Taylor series to express u(t),

Using Eq. ( 27) and the initial condition u(0) = f we get

Assigning g (1) = p -1 yields [START_REF] Li | Numerical methods for fractional calculus[END_REF].

B Finite extinction time of the p-flow

The finite extinction time was proved in Theorem 2 for an eigenfunction as initial condition. In the following proposition we prove that the p-flow vanishes in finite time for arbitrary initial conditions. We show here a different approach based on [START_REF] Burger | Spectral decompositions using one-homogeneous functionals[END_REF] (Proposition 3.12).

Proposition 2 (Finite extinction time in the semi-discrete setting). Let u(t) be the solution to a semi-discrete scale-space flow (6) (continuous in time and discrete in space) with an initial condition u(0) = f . We assume f does not contain any null-space element of P . Then there exists T > 0 such that u(t) = 0 ∀t ≥ T .

Proof.