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Abstract

There exist several clustering paradigms, leading to different tech-
niques that are complementary in the analyst toolbox, each having its own
merits and interests. Among these techniques, the K-medians approach
is recognized as being robust to noise and outliers, and is an important
optimization task with many different applications (e.g., facility location).
In the context of subspace clustering, several paradigms have been investi-
gated (e.g., centroid-based, cell-based), while the median-based approach
has received less attention. Moreover, using standard subspace clustering
outputs (e.g., centroids, medoids) there is no straightforward procedure
to compute the cluster membership that optimizes the dispersion around
medians. This paper advocates for the use of median-based subspace clus-
tering as a complementary tool. Indeed, it shows that such an approach
exhibits satisfactory quality clusters when compared to well-established
paradigms, while medians have still their own interests depending on the
user application (robustness to noise/outliers and location optimality).
This paper shows that a weight-based hill climbing algorithm using a
stochastic local exploration step can be sufficient to produce the clusters.

1 Introduction
Clustering is a data mining task that aims to group objects sharing similar
characteristics over the whole data space. There exist various clustering algo-
rithms relying on different similarity measures and paradigms. They provide
complementary tools to the analyst, each having its own merits and interests.
Among the major categories, clustering-oriented approaches [13] group objects
mainly using distance-based similarities and tend to build center-based hyper-
spherical shaped clusters. For example the very well known K-means algorithm
relies on the Euclidean distance and produces clusters around centroids. Other
techniques known as the K-medians approaches [4], use the Manhattan dis-
tance to group data objects around medians that are less sensitive to unusual
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and extreme values and more robust to noise and outliers [12]. Moreover ac-
cording to [1] the use of the Manhattan distance should be preferred for high
dimensional data mining applications, since this metric is less impacted by the
problem known as the curse of dimensionality. Beside these interesting prop-
erties, the K-medians problem is an important optimization task with many
different applications.

Given a set of objects in a D-dimensional space, K-medians clustering aims
to partition the given objects into K clusters so as to minimize the sum of the
Manhattan distances between each object and the median of its cluster [4]. This
technique has been applied for instance to facility locations (e.g., finding optimal
location for resource storage). K-medians have also been used to clusterize
histograms and then retrieve consensus histograms [9]. More recently K-medians
have also been used for data allocation in communication networks [15].

Various concepts have been investigated in the subspace clustering commu-
nity. However despite their importance, medians seem to have received less
attention than other clustering paradigms. Literature reviews (e.g., [8, 14]) do
not report subspace clustering algorithms based on medians and such an ap-
proach has not been investigated in more recent works either (e.g., [18, 10]). In
addition, even if various subspace clustering techniques have been developed to
build groups of objects around centroids or medoids, there is no straitforward
procedure to use these groups to compute cluster memberships that optimize
the dispersion around medians.

The main contribution of this paper is to show that a pure median-based sub-
space clustering exhibits satisfactory clusters when compared to well-established
paradigms (using the evaluation framework of [13]). This advocates for its use
as a complementary tool in the family of the subspace clustering approaches,
since medians have their own interests depending on the user application, no-
tably their robustness to noise/outliers and their inherent location optimality
(e.g., for facility location).

This paper shows that even an easy to implement strategy is promising
to find such subspace clusters. Indeed a simple hill climbing algorithm based
on stochastic local exploration steps can be used to produce the clusters. As
many algorithms that aim at producing hyper spherical clusters (or subspace
clusters) by minimizing dispersion (e.g., K-means, PROCLUS [2]), the algorithm
presented here, can be stuck in local minima and different clusterings can be
obtained for different executions (due to some stochastic steps). So, as for the
other algorithms, the one presented in this paper needs to be launched several
times.

The presented algorithm relies on three key hints: 1) New guesses for candi-
date median locations can be obtained directly from the data objects themselves.
2) The algorithm uses a weight-based strategy to guide its local search towards
promising subspace clusters. 3) In order the guide the search and build the
candidate median locations, it turns out that using a dynamic sample of the
dataset is sufficient. This allows thus to reduce the amount of data to handle at
each iteration, while the appropriateness of sampling based strategies remains
an open question for many subspace clustering approaches.
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2 Related works

2.1 Median-based clustering
The K-medians problem (e.g., [4]) is a well defined and NP-hard problem that
is a research topic of interest for both the computational geometry and the
clustering communities. This problem has been studied in the computational
geometry domain with the aim to find optimal locations for centers and facilities
in order to minimize costs. We refer the reader to [6] for examples of real world
applications of K-medians. On the other hand the clustering community stud-
ied the K-medians problem in order to develop techniques to find clusters that
are robust to noise and outliers. The K-medians clustering and facility location
tasks have been investigated from the perspective of combinatorial optimiza-
tion, approximation algorithms, worst-case and probabilistic analysis (e.g., [5]).
However, locating centers having optimal locations or partitioning the objects
of the dataset to form center-based clusters are two different ways to see the
same problem.

2.2 Subspace clustering
The purpose of subspace clustering is not only to partition a dataset into groups
of similar objects, this technique also aims to detect the subspaces where sim-
ilarities occur. Therefore each cluster is associated to a particular subspace.
Many approaches have been investigated for subspace clustering in the liter-
ature using various clustering paradigms. The reader is referred for instance
to [7, 13, 14] for detailed reviews and comparisons of the methods, including the
main categories: Cell-based, density based, clustering-oriented approaches and
also pattern-based clustering or biclustering approaches (e.g., [17]).

A subspace clustering technique based on medians belongs to the family
of clustering-oriented approaches. These approaches are based on parameters
specifying properties of the targeted clustering such as the expected number of
clusters or the cluster average dimensionality. According to these constraints,
the objects are grouped together mainly using distance-based similarities. Most
of these methods tend to build hyper-spherical shaped clusters around centers
(e.g., centroids, medoids). No subspace clustering technique based on medians,
as the one presented in this paper, has been reported in relevant reviews, e.g., [7,
13] nor in recent subspace clustering proposals, e.g., [18, 10].

3 Problem statement
This section recalls some preliminary definitions and specifies the task consid-
ered in the paper.
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3.1 Dataset and preprocessing
Let a set of objects S = {s1, s2 . . . } denote a dataset. Each object in S has a
unique identifier and is described in RD by D features (the coordinates of the
object). Let D denote the number of dimensions (i.e., the dimensionality) of
S. Each dimension is represented by a number from 1 to D and the set of all
dimensions of the dataset is denoted D = {1, . . . , D}.

To avoid being impacted by the original offsets and scales of the features,
we suppose that the data have been standardized, as in many clustering frame-
works. We rely here on the usual z-score standardization, leading to a mean of
zero and a standard deviation equal to one for each feature.

3.2 K-medians problem
Given a dataset S in a space D, let H = {m1, . . . ,mk} be a non-empty set
of centers where each center m ∈ H is an element in RD. The Manhattan
(L1) distance between two objects u and v in space D is defined as ||u, v||1 =∑
d∈D |ud − vd|. The Manhattan distance between an object s and its closest

center defines the so-called Absolute Error associated to s for H: AE(s,H) =
minm∈H(||s,m||1). The K-medians problem can be formulated as the optimiza-
tion problem that aims to find a set H of K centers that minimizes the Sum of
Absolute Errors of the objects in S defined as SAE(S,H) =

∑
s∈S AE(s,H).

Such a set H defines a partition of S into K clusters C = {C1, . . . , CK}, where
a cluster Ci contains the objects of S for which mi ∈ H is the closest center
(using the Manhattan distance).

3.3 Subspace clustering based on medians
A subspace clusteringM, called hereafter a model , is a set of centers where each
center mi ∈ M is associated to a subspace Di of D. From the point of view of
center-based subspace clustering, a cluster center described in a given subspace
can be perceived informally as a summary of the cluster objects. Indeed this
set of objects can be represented in a more abstract way simply by the location
of the center along the dimensions considered in the cluster subspace. For a
dimension d that is not in Di, the intended meaning is that, along d, the objects
of the cluster follow the same distribution as the other objects of the dataset. For
an object s, the Absolute Error is then AE(s,M) = minm∈M dist(s,m), where
dist(s,mi) =

∑
d∈Di |sd −mi,d|+

∑
d∈D\Di |sd − µd|, with mi,d the coordinate

of mi in dimension d, and with µd the mean of the location of all objects in S
along d. Notice that, since the dataset is supposed to be normalized using a
z-score, then µd = 0 for all d.

The SAE is still defined as SAE(S,M) =
∑
s∈S AE(s,M). Each object is

associated to the cluster Ci such that dist(s,mi) is minimized. If several clusters
minimize this expression then the object is non-deterministically associated to
one of them. Finally, the size of a model M, noted Size(M), is defined as
the sum of the dimensionalities of all subspaces associated to the centers in
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M, and is interpreted as the level of detail captured by the clustering. To
perform such a median-based subspace clustering, the core task considered in
this paper is then to find a set of centersM that minimizes the SAE and such
that Size(M) ≤ SDmax, where SDmax is a parameter denoting the maximum
Sum of Dimensions used inM to define all the subspaces.

4 Algorithm
This section introduces the SubCMedians algorithm to handle the medians-
based subspace clustering task.

4.1 General hill climbing procedure
Let S be a dataset and M a model (a set of centers each being defined in its
own subspace). The algorithm presented in this paper is a hill climbing oriented
technique that aims to minimize the objective function SAE(S,M). It updates
iteratively a model using a stochastic optimization approach, while keeping the
maximum model size constraint satisfied.

The hill climbing process can be perceived as a local search process on a
graph of models. Each vertexM in the graph is a model such that Size(M) ≤
SDmax and there is an edge from M to a vertex M′ if M′ ∈ N eighbors(M),
where N eighbors(M) is a function that defines the set of neighbors ofM.

The algorithm takes as initial vertex the empty model (a model containing
no center), denoted M∅, and for which the definition of AE is extended as
follows: AE(s,M∅) =

∑
d∈D |sd − µd|, all µd being still equal to 0 due to the

dataset standardization.
At each iteration the algorithm evaluates the SAE for a random neighbor

of the current vertex, whenever the SAE associated to the new node is smaller
or equal to the current SAE, the algorithm moves towards the neighbor. The
algorithm uses the data objects themselves to generate the neighborhood of a
model M. Indeed, a neighbor of a model M is a model that can be obtained
fromM by inserting/removing a dimension in a subspace, and setting a center
coordinate to a value equal to a coordinate of an existing object. The neighbors
generation is fully described in Section 5.2.

4.2 Sampling the dataset
An advantage of a median based subspace clustering is that the location of the
median can be estimated using a sample. This is the case for other approaches
(for example centroid based ones), but remains an open question for subspace
clustering techniques in general. Let X be a continuous random variable with a
density function f(x) and a median θ. The median of a sample of n independent
realizations of X is an estimator (noted θ̂) of the median of X and is normally
distributed around θ with a standard deviation σθ̂ = 1

2f(θ)
√
n

[11, 16]. This
approximation derives from the central limit theorem and holds for large enough
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1: function SubCMedians(S,SDmax,N ,NbIter)
2: S̃ ← {s1, . . . , sN} uniformly drawn from S without replacement
3: M←M∅ the empty model
4: err ← SAE(S̃,M)
5: repeat
6: Draw s ∈ S̃ uniformly
7: S̃ ← S̃\{s}
8: Draw s∗ ∈ S\S̃ uniformly
9: S̃ ← S̃ ∪ {s∗}

10: err∗ ← err −AE(s,M)
11: err∗ ← err∗ +AE(s∗,M)
12: if err∗ ≥ err then
13: M′ ← One-Neighbor(M,S̃,SDmax)
14: err

′ ← SAE(S̃,M′)
15: if err∗ ≥ err′ then
16: M←M′
17: err∗ ← err

′
;

18: end if
19: end if
20: err ← err∗;
21: until NbIter iterations achieved
22: return BuildSubspaceClusters(S,M)
23: end function

Figure 1: SubCMedians algorithm.

samples. Let us suppose that X follows a Gaussian distribution X ∼ N (µ, σ),
where µ and σ denote respectively the mean and standard deviation of X.
The density function of the distribution is f(x) = 1

σ
√

2π
e−

1
2 ( x−µσ )

2

. Since the
mean and the median of a Gaussian distribution are equal, f(θ) simplifies to
f(θ) = 1

σ
√

2π
, and we have σθ̂ = σ

√
π
2n . So θ̂ ∼ N (µ, σ

√
π
2n ), and thus a

subspace clustering algorithm based on medians does not require to use the
entire dataset. Indeed, a dataset sample S̃ ⊆ S, should allow the algorithm
to build a model without important degradation of the clustering quality, while
reducing the amount of data to handle. This choice is retained in SubCMedians,
but to limit the negative effects of a possible bad sample choice, the algorithm
will modify dynamically the sample along the iterations.

4.3 Lazy hill climbing procedure
The algorithm is given in Figure 1. It takes as input a dataset S described in
a space D and three parameters: the maximum model size SDmax, the sample
size N and the number of iterations NbIter. The setting of these parameters
is presented in Section 6.3 (technical details provided in Appendix A.3). The
first step of the algorithm is to initialize the modelM, the sample S̃ (N objects
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randomly chosen in S) and to compute the error err corresponding toM.
At each iteration, a data object picked at random in S̃ is replaced by an

object uniformly drawn from S\S̃ in order to change dynamically the sample.
Then (lines 10 and 11) the SAE err∗ on the new sample is computed incremen-
tally by substracting the AE associated to the object that has been removed
and adding the AE for the new object.

Next, the algorithm performs a lazy hill climbing step. Indeed, if the SAE
on the new sample is better (i.e., lesser) than the SAE on the previous sample
the algorithm does not try to improve the model itself during this iteration.
Otherwise a new model M′ is computed using the function One-Neighbor()
(detailed in the next section) andM′ is retained if it improves the SAE.

Finally, the algorithm outputs a subspace clustering in the form of a set
of disjoint clusters and their corresponding subspaces using a call to function
BuildSubspaceClusters(). This function is very simple and not detailed
further, it simply associates each data object to its closest center (the one min-
imizing AE). If several centers give the same minimal AE, then one is chosen
in a nondeterministic way. At the end, if a center has no associated object then
it does not lead to a cluster and BuildSubspaceClusters() discards it.

5 Neighborhood exploration heuristic
The local exploration can be guided by the expected gain in SAE associated
to the optimization of the location of a given center. Intuitively adjusting the
center of a cluster containing many objects and having high dispersion is likely
to have a higher effect on the the SAE (see Appendix A.1 for technical details).

5.1 Weighted candidate model
Since the clusters and their standard deviations are not known beforehand,
SubCMedians uses two heuristics to favor some of the centers that could be
most promising. The first one is to guide the local exploration by modifying
the current model with a coordinate of a uniformly chosen object in the sample.
Therefore coordinates drawn from clusters with more objects in the sample are
more likely to be used for exploration.

The second heuristic to favor promising centers consists in counting for each
dimension of each center the number of adjustments that have led to a reduc-
tion of the SAE. The algorithm keeps track of weights reflecting these counts.
The weight of a center (sum of the weights of its dimensions) is then used as
an evidence to encourage further the improvement of its location. In the opti-
mization process the weights should not only increase, since when a promising
center has already been optimized sufficiently it is then likely to lead to minor
gains, and then should receive less attention. The weights of the dimensions in
the clusters are thus decreased during the exploration, using a random selection
with a probability proportional to the weights. A weight of zero for a dimension
in a cluster is an evidence that it is not important to keep or adjust it, and thus
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that it should not be retained to form the subspace associated to this cluster.
A non-zero weight is then interpreted as denoting a dimension being potentially
meaningful for that cluster. To permit to encode a model of size SDmax, but
no more, the maximum sum of all weights is set to SDmax.

In SubCMedians, a candidate model M is defined as a pair of matrices
〈L,W〉. L and W describe respectively to the locations and to the weights
of the centers along each dimension, both matrices having SDmax rows and
D columns. An element Li,d represents the coordinate of a center mi along
dimension d, and an element Wi,d denotes the weight of dimension d for mi.
The subspace associated to a center mi is Di = {d ∈ {1, . . . , D}|Wi,d > 0}.
Valid centers are those for which at least one dimension is defined. Their set of
indices is simply Γ = {c ∈ {1, . . . , SDmax}|

∑D
d=1Wc,d > 0}. The total model

weight, noted ω, is
∑
i,jWi,j and the model size is simply

∑
c∈Γ |Dc|.

Example Let us consider two matrices L and W defined for SDmax = 6 and
D = 2:

L =

1 2


0.5 0 1

0 −0.8 2

0 0 3

0 0 4

−0.3 0.2 5

0 0 6

W =

1 2


2 0 1

0 1 2

0 0 3

0 0 4

2 1 5

0 0 6

Rows 3, 4 and 6 describe no valid center (all weights equal to zero in W), while
rows 1, 2 and 5 represent the centers m1, m2 and m5 and their subspaces: D1 =
{1}, D2 = {2} and D5 = {1, 2}. The respective coordinates in their associated
subspaces are given by L: m1 = (0.5), m2 = (−0.8) and m5 = (−0.3, 0.2).

In the algorithm given in Figure 1, the model M = 〈L,W〉 is initialized
line 3 by filling all rows of the two matrices with zeros, to represent an initial
empty model. The heuristic based neighborhood exploration is performed by
the successive calls to function One-Neighbor() detailed in the next section.

5.2 One neighbor computation function
The function One-Neighbor() is given in Figure 2. First, it computes ω the
total current model weight. Then operations carried out from lines 4 to 10
decrease the model weight when the total weight reaches the maximum model
size (i.e., SDmax). This is performed by picking at random a pair of indices 〈i, j〉
with a probability proportional toWi,j (line 5). Then the corresponding weight
Wi,j is decreased (line 6). For the sake of clarity the associated coordinate Li,j
is set to zero if Wi,j = 0 (line 8), even though this is not useful for the rest of
the process. Next, the algorithm draws uniformly an object s in the sample and
a dimension d in the space D (lines 11 and 12). Line 13 computes the set Γ of
the indices of the valid centers. Then the algorithm chooses a random center
index c that corresponds either to an unused center with probability 1

ω (lines
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1: function One-Neighbor(〈L,W〉, S̃, SDmax)
2: 〈L′,W ′〉 ← 〈L,W〉
3: ω ←

∑SDmax
i=1

∑D
j=1W ′i,j

4: if ω = SDmax then
5: Draw 〈i, j〉 ∈ {1, . . . , SDmax} × {1, . . . , D} with probability of each
〈i, j〉 equals to W

′
i,j

ω
6: W ′i,j ←W ′i,j − 1
7: if W ′i,j = 0 then
8: L′i,j ← 0
9: end if

10: end if
11: Draw s ∈ S̃ uniformly
12: Draw d ∈ {1, . . . , D} uniformly
13: Γ = {i ∈ {1, . . . , SDmax}|

∑D
j=1W ′i,j > 0}

14: Draw p uniformly in [0, 1]
15: if ω = 0 or p ≤ 1

ω then
16: Draw c ∈ {1, . . . , SDmax}\Γ uniformly
17: else
18: Draw c ∈ Γ, with for each c a probability P (c) proportional to∑D

j=1W
′
c,j

ω
19: end if
20: W ′c,d ←W ′c,d + 1
21: L′c,d ← Coordinate of s along dimension d
22: return 〈L′,W ′〉;
23: end function

Figure 2: Generation of one neighbor.

15 and 16), or one of the current valid centers (line 18). In the latter case, the
valid center is picked with a probability proportional to its total weight. Finally
the weight Wc,d is increased and the location encoded in Lc,d is replaced by the
coordinate of s along dimension d.

5.3 Complexity
Consider one iteration of SubCMedians using sample S̃ and let NbCenters
denote the number of centers currently used (the valid centers). It can be easily
derived (see Appendix A.2) that the complexity of an iteration in SubCMedians
is then O(|S̃| ×NbCenters×D) and its memory requirement is simply O(D×
(|S̃|+ SDmax)).
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6 Experimental Setup

6.1 Experimental protocol
The SubCMedians algorithm extends the subspace clustering tool family to-
wards medians based clustering. Even if cluster center locations based on medi-
ans can be interesting on their own (depending on the targeted task), an open
question is to what extent the clusters obtained make sense with respect to those
given by other paradigms? We used the evaluation framework of reference de-
signed for subspace clustering described in [13] that reports the results obtained
by well-established approaches for different evaluation measures, on both real
and synthetic datasets. The method presented in [13] relies on a broad ex-
ploration of the parameter space for each algorithm in order to find the best
parameter setting on each data set and then compare the best results obtained
by the different methods (see Appendix A.4). However such parameter tuning
is most of the time a difficult task and these high quality subspace clustering
models are likely to be difficult to obtain. For SubCMedians, for each dataset,
a single parameter setting was used based on a default setting presented in Sec-
tion 6.3. Since SubCMedians is nondeterministic (as many subspace clustering
approaches), it can achieve different results on different runs. Consequently
the algorithm was executed 10 times independently using the same parameter
setting. The results obtained after each run were assessed with the same crite-
ria as in [13]: the coverage, the number of clusters found, the average cluster
dimensionality and different quality measures (F1, accuracy, CE, RNIA and
entropy).

All experiments were run on an Intel 2.67GHz CPU running Linux Debian
8.3, using a single core and less than 150 MB of RAM. The SubCMedians
algorithm has been implemented in C++ (as a Python library) and is available
upon request.

6.2 Datasets
The performances of SubCMedians are reported on real world data using the
seven benchmark datasets selected in [13] for their representativity: breast, di-
abetes, liver, glass, shape, pendigits and vowel (most of them coming from the
UCI archive [3]). These datasets have different dimensionalities and contain
different numbers of objects. These objects are already structured in classes,
and the class membership is used by quality measures to assess the cluster pu-
rity. However, the number of classes does not necessarily reflect the number of
subspace clusters, and the objects of a class can form different groups in space
and/or strongly overlap with the objects of other classes.

SubCMedians was also executed on the 16 synthetic benchmark datasets
provided by [13]. These datasets are particularly useful to study the algorithm
performances, as the true clusters and their subspaces are known. Each dataset
contains 10 hidden subspace clusters laying in subspaces made by 50%, 60%
and 80% of the total dimensions of the dataset. Seven synthetic datasets allow
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to study scalability with respect to the dataset dimensionality (5, 10, 15, 20,
25, 50 and 75 dimensions). These datasets contain about 1500 objects each and
are extended with about 10% of noise objects. Five other synthetic datasets
permit to analyse the scalability with respect to the dataset size (1500, 2500,
3500, 4500 and 5500 objects), over 20 dimensions, also with about 10% of noise
objects. Finally four datasets allow to study the capacity to cope with noise,
containing 10%, 30%, 50% and up to 70% of noise objects.

All datasets are made available by the authors of [13] at http://dme.rwth-
aachen.de/openSubspace/evaluation. We applied a z-score standardization
to all real and synthetic datasets in a preprocessing step.

6.3 Parameter values
The SubCMedians algorithm has three parameters: SDmax, NbIter, and N .
The most important is SDmax, the maximum model size, constraining the level
of detail of the subspace clustering performed. The number of iterations NbIter
is also important but it should be noticed that its setting could be avoided since
the user could monitor the value of the SAE during the clustering and stop the
process when this value does no longer improve. The third one, the sample size
N is a way to reduce the computing resources needed, and of course if possible
it makes sense to use the full dataset instead of a sample.

In this section, we provide guidelines for easy default parameter setting. In
this context, the user only needs to provide an expected or suggested number
of clusters NbExpClust. Let D denote the dimensionality of each particu-
lar dataset. The default setting is SDmax = NbExpClust × D, NbIter =
10 × SDmax × NbExpClust and N = 25 × NbExpClust (see Appendix A.3
for justification and technical details). For the synthetic datasets the num-
ber of expected clusters is about 10, thus the maximum model size was set to
SDmax = D × 10, the sample size was set to N = 25 × 10 and the number
of iterations was set to NbIter = 10 × 10 × SDmax. A weaker setting, not
based on the true number of clusters, but based on 20 expected clusters, was
also used, and as reported in Section 7 still permitted to exhibit structures of
about 10 clusters. For the real world datasets, the only information available
about the structure of the datasets is the number of classes. However, as al-
ready mentioned, the number of classes may not correspond to the number of
clusters. Indeed, according to the results provided by [13], in these datasets the
state-of-the-art algorithms exhibit most of the time structures composed of more
clusters than the number of classes. The setting of SubCMedians parameters is
thus based on an expected number of clusters equal to three times the number
of classes and we let the algorithm regulate itself the number of output clusters.
Hence the maximum model size was set to SDmax = 3 × NbClasses ×D, the
sample size was set to N = 25 × 3 × NbClasses and the number of iterations
was set to NbIter = 10× 3×NbClasses× SDmax.
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6.4 Evaluation measures
In order to compare our algorithm to the others, we used the same standard
evaluation measures for clusters and subspace clusters as in [13]: entropy (the
normalized entropy), accuracy, F1, RNIA and CE. We performed also the
same simple transformation on entropy and RNIA, by computing RNIA = 1−
RNIA and entropy = 1−entropy to have all evaluation measures ranging from
0 (low quality) to 1 (high quality). The three first measures (entropy, accuracy
and F1) reflect how well objects that should have been grouped together were
effectively grouped. The two last measures (RNIA and CE) take into account
the way the objects are grouped and also the relevance of the subspaces found
by the algorithm. For these measures, when the true dimensions of the subspace
clusters were not known (for real datasets), then as in [13] all dimensions were
considered as relevant, but then the interpretation of these two measures should
remain cautious since the true sets of dimensions are likely to be smaller. Of
course this does not apply to the synthetic datasets, since for them the reference
clusters and their dimensions are known. We refer the reader to [13] for the
detailed recall of the evaluation measures.

7 Experimental Results
Because of the large number of results (23 datasets and 11 algorithms) used in
the comparison, aggregated figures reflecting the real detailed results are given.
However, there is no ever winning paradigm or clustering method, each having
its own advantages or interest.

7.1 Real dataset
This section presents the results obtained on the 7 representative real datasets
selected in [13]. In order to assess if SubCMedians produced decent results with
respect to well-established methods, we ranked the different methods with re-
spect to their quality measures, their coverage (fraction of objects of the dataset
that were grouped into clusters) and the number of clusters they produced (see
Appendix A.5 for a detailed presentation of this procedure).

The average rank of each algorithm regarding the cluster quality measures,
the coverage and the number of clusters found are given in Figure 3 (highest
ranks meaning best results). In addition, two tables representative of the results
at a more detailed level are presented in Figure 4. These tables report on two
of the real world datasets the values for the coverage, the number of clusters
found, their average dimensionality and the runtimes. Runtimes are given only
as complementary information since for SubCMedians they were obtained on a
computer (2.67GHz CPU) different from the one used by [13] (2.3GHz CPU).
At the bottom of these tables, we grouped the results obtained by methods
belonging to the same family as SubCMedians (clustering-oriented techniques),
results for the other algorithms are provided for the sake of completeness.
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Figure 3: Average rankings over all datasets regarding the quality, the coverage
and the number of clusters.

Figures 3 and 4 show evidence that the robustness of the medians still op-
erates in this subspace clustering task since competitive cluster qualities can
be obtained without discarding any object (100% coverage). In all experiments
SubCMedians was run using the default parameter setting. For the number of
clusters found, SubCMedians is above the average, and it seems that it does not
tend to split the dataset into too many clusters. However, the true numbers of
clusters are not known here, in contrast to the synthetic datasets.

7.2 Synthetic data
In this section, we report the results obtained on the 16 synthetic datasets
of [13], each one containing 10 known clusters. For each dataset, SubCMedi-
ans was executed 10 times and the model having the lowest SAE was retained
(no use of external labeling). These models are depicted as red circles in Fig-
ure 7 (blue triangles correspond to models obtained with an unweighted version
of SubCMedians discussed here after). The green shapes represent the areas
where are located the best models found by the 10 other algorithms over their
parameter spaces (optimized using external ground truth labeling). Here again,
the results show evidences that a median based approach is an interesting com-
plementary tool for subspace clustering, and in particular that SubCMedians
reaches a competitive quality for the measures that take into account not only
the objects grouping, but also the dimensions associated to the clusters (RNIA
and CE). Runtimes as functions of the size of the sample and the dimensional-
ity of the dataset are provided in Figure 6. In these experiments the parameters
where set according to the guidelines of Section 6.3 using an expected number
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Pendigits: 16 dimensions, 10 classes, 7494 objects
Coverage Cluster Number Average Dim Runtime (seconds)
max min max min max min max min

CLIQUE 1.00 1.00 1890.0 36.0 3.10 1.50 67891 219
DOC 0.91 0.91 15.0 15.0 5.50 5.50 178358 178358
MINECLUS 1.00 1.00 64.0 64.0 12.10 12.10 780167 692651
SCHISM 1.00 0.93 1092.0 290.0 10.10 3.40 500000000 21266
SUBCLU Runtime exceeding the maximal runtime allowed
FIRES 0.94 0.94 27.0 27.0 2.50 2.50 169999 169999
INSCY 0.91 0.82 262.0 106.0 5.30 4.60 2000000 1000000
PROCLUS 0.90 0.74 37.0 17.0 14.00 8.00 6045 4250
P3C 0.90 0.90 31.0 31.0 9.00 9.00 2000000 2000000
STATPC 0.99 0.84 4109.0 56.0 16.00 16.00 50000000 3000000
SUBCMEDIANS 1.00 1.00 41.0 34.0 12.21 10.51 556 523

Diabetes: 8 dimensions, 2 classes, 768 objects
Coverage Cluster Number Average Dim Runtime (seconds)
max min max min max min max min

CLIQUE 1.00 1.00 349.0 202.0 4.20 2.40 11953 203
DOC 1.00 0.93 64.0 17.0 8.00 5.10 1000000 51640
MINECLUS 0.99 0.96 39.0 3.0 6.00 5.20 3578 62
SCHISM 1.00 0.79 270.0 21.0 4.20 3.90 35468 250
SUBCLU 1.00 1.00 1601.0 325.0 4.70 4.00 190122 58718
FIRES 0.81 0.03 17.0 1.0 2.50 1.00 4234 360
INSCY 0.83 0.73 132.0 3.0 6.70 5.70 112093 33531
PROCLUS 0.92 0.78 9.0 3.0 8.00 6.00 360 109
P3C 0.97 0.88 2.0 1.0 7.00 2.00 656 141
STATPC 0.97 0.75 363.0 27.0 8.00 8.00 27749 4657
SUBCMEDIANS 1.00 1.00 16.0 13.0 3.69 2.87 3 3

Figure 4: Details of the cluster structures and of the runtimes on Pendigits and
Diabetes.

of clusters of 10, but no constraint on the sizes of their subspaces. Interestingly,
a weaker setting based on an expected number of clusters of 20 still permitted
to SubCMedians to exhibit most of the time a good quality clustering of about
10 clusters (not shown, very similar to Figure 7).

Figure 5 illustrates the clustering quality in terms of RNIA for increasing
percentages of noise points in the dataset (respectively 10, 30, 50 and 70% of
the data points were noise points). Even if the quality of the subspace clusters
obtained tends to decrease when the amount of noise in the dataset increases,
the degradation is not severe. Here again, this seems to indicates that the
robustness to noise of the medians still operates in a subspace clustering task.

In order to assess the impact of the weighted neighborhood exploration of
the model space used by SubCMedians, the algorithm was compared to an
unweighted version. In this version, the candidate center undergoing the mod-
ification is uniformly drawn by modifying line 18 in Figure 2, and in the same
figure line 20 is replaced by W ′c,d ← 1 to have weight matrices that contain
simply a 1 for a dimension that is used and a 0 otherwise.

The results of the more naïve unweighted version of SubCMedians are rep-
resented in Figure 7 by blue triangles (same procedure used, retaining also the
lowest SAE over 10 runs). The unweighted-SubCMedians outputted slightly
more clusters than expected, and has another more important drawback, that
is the lower quality obtained with respect to the dimensions found (RNIA
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Figure 5: Mean RNIA vs percentage of noise points in the dataset.

and CE graphics). As targeted by the design of the neighborhood explo-
ration in Section 5, the weighted strategy of SubCMedians could focus on
more promising clusters while unweighted-SubCMedians produced more (use-
less) candidate centers (Figure 8) and failed to develop sufficiently the center
dimensionalities when the hidden cluster dimensionalities increased (Figure 9).
Moreover, SubCMedians turned out to be slightly faster (see Figure 6), and
unweighted-SubCMedians suffered from a small overhead likely to be caused by
its handling of more candidate centers in the models.

8 Conclusion
In this paper we presented SubCMedians, a median-based subspace clustering
method, and assessed it on real and synthetic benchmark datasets, using the
evaluation framework of [13]. These results showed that a median-based sub-
space clustering approach can exhibit satisfactory results when compared to
well-established subspace clustering paradigms, and is thus a good candidate
as a complementary tool, in particular for users interested by the properties of
medians themselves (facility location, robustness to noise and outliers). We also
proposed some guidelines for easy default parameter setting. These guidelines
were effective when dealing with all the datasets of the benchmark. Since the
median-based subspace clusters seem to be obtained in rather short runtimes,
promising future work includes the use of these clusters as initial guesses to
guide other techniques that could be more time consuming.

A Appendix

A.1 Expected gain in SAE to guide local exploration
Consider a cluster C and a dimension d. Let us suppose that the coordinates
Xd of the objects in C along d follow a Gaussian distribution N (µd, σd). Let us
consider that a badly placed center m is simply an object in C taken randomly.
Along dimension d, the difference between the location of an object X chosen
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Figure 6: Runtimes (avg. 10 runs) for SubCMedians vs sample sizes (|S̃|) for the
synthetic dataset of size 5500 (6a), and vs the synthetic dataset dimensionalities
(6b). Runtimes of the unweighted version of SubCMedians as blue triangles.
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Figure 7: Quality measures and number of clusters obtained on synthetic
datasets by SubCMedians (red circles) and the other algorithms (green areas).
Results of the unweighted version of SubCMedians as blue triangles.
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randomly in C and the location of m, is (Xd−md) and follows the distribution
N (µ′d, σ

′
d) with µ′d = 0 and σ′d = σd

√
2 since Xd and md follows N (µd, σd).

Let us consider that a well placed center m∗ is the median of the n objects
of C contained in the current sample S̃. Using the distribution followed by such
a median estimator and obtained in Section 4.2 we have m∗ ∼ N (µd, σd

√
π
2n ).

Thus the difference between the locations of objectX andm∗ along d, (Xd−m∗d),
follows the distribution N (µ∗d, σ

∗
d) with µ∗d = 0 and σ∗d = σd

√
π
2n + 1.

For m the contribution of X to the AE value (and thus to SAE) is |Xd −
md|. As (Xd − md) ∼ N (µ′d, σ

′
d), then |Xd − md| follows the corresponding

folded normal distribution and the expected value of |Xd − md| is given by
σ′d

√
2/π exp(−µ′2d /2σ′2d ) + µ′d [1− 2Φ(−µ′d/σ′d)], where Φ denotes the normal

cumulative distribution. Since µ′d = 0 and σ′d = σd
√

2, we have E(|Xd−md|) =
2σd/

√
π. In a similar way we can derive the expected value of the contribution

of X to AE for the optimized center m∗, E(|Xd −m∗d|) = σd

√
1
n + 2

π .
If we consider γ = E(|Xd −m∗d|) − E(|Xd −md|) as reflecting the gain due

in the optimized case, then γ = σd(2/
√
π −

√
1
n + 2

π ). This means that larger
gains are likely to be obtained for clusters having a high σd and having many
of their elements belonging to the sample S̃.

A.2 Complexity
Consider one iteration of SubCMedians using sample S̃ in a D dimensional
space. Let NbCenters denote the number of centers currently used (the valid
centers). Operations in non-constant time are the calls to AE, SAE and One-
Neighbor(). AE computes the distance of one object to each center and is
in O(NbCenters ×D). SAE does the same for each object in the sample and
then has a complexity O(|S̃|×NbCenters×D). The computation cost of One-
Neighbor() lies in part in the computation of weights: the total weight of the
model ω (line 3) and the weights in the probabilities used line 18. These values
can be maintained incrementally when W is modified resulting in a constant
cost for ω and in a cost proportional to NbCenters for the probabilities line
18. The remaining cost is due to the non-uniform random selections (lines
5 and 18), having a cost proportional to the number of possible outcomes.
Line 5 there are at most NbCenters × D possible outcomes with a non-zero
probability (other pairs 〈i, j〉 having a weight of zero). And for line 18 there
are NbCenters possible outcomes. The cost of one call to One-Neighbor() is
thus in O(NbCenters×D). The complexity of an iteration in SubCMedians is
then O(|S̃| ×NbCenters×D).

The memory requirement of one iteration of SubCMedians corresponds to
the storage of the sample S̃ and the two matrices L and W of size SDmax ×D
and thus is simply in O(|S̃| ×D + SDmax ×D).
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A.3 Parameter Setting
The easy default parameter setting (for preliminary exploration of the data) re-
quires to provide only one value: the expected number of clusters NbExpClust.
Notice that this is not a crisp constraint, but only a suggested number of clus-
ters that the algorithm should adjust to build a structure. Notice also that a
hard part of the subspace clustering task is to determine the subspaces and that
this aspect is not directly constrained by NbExpClust.

Maximum model size SDmax The intuition to set SDmax is very simple,
the value of SDmax should allow to build a model containing NbExpClust
even if all dimensions are useful, leading to a default SDmax value equal to
NbExpClust×D. Of course, as for any subspace clustering algorithm, obtain-
ing very satisfactory results are likely to require from the user finer parameter
tuning.

From NbExpClust and SDmax we now derive minimum recommended val-
ues for the number of iterations and for the sample size. These settings are the
ones used in the experiments reported Section 7, but of course the statistical
thresholds used in the setting method could be enforced in order to have more
conservative recommended parameter values.

Number of iterations NbIter Let C be any expected cluster and d be any
of its dimensions. Let k be the number of attempts to set the coordinate of the
center of C along d to a reasonable approximation of the median value, during
NbIter iterations in SubCMedians. The default value proposed for NbIter is
the minimum number of iterations such that the expected value of k is at least
1.

Let us suppose that all clusters have the same size and that the number of
clusters is equal to NbExpClust. Consider an iteration of SubCMedians. In
One-Neighbor() (Figure 2) the probability to pick an object s belonging to C
(line 11) is 1/NbExpClust and the probability to choose dimension d (line 12)
is 1/D. Let x be the coordinate of s along dimension d, and let us accept as a
reasonable approximation a value x at a distance of less than 1/8 of the standard
deviation away from the median. Then, supposing a Gaussian distribution, this
implies that the median is equal to the mean, and that the probability of x
as being a reasonable approximation is about 0.1 (according to the standard
normal cumulative distribution). At line 15, the probability to jump to line 18
to modify an existing cluster is 1− 1/ω. If we suppose that the current model
contains already NbExpClust clusters, including C (possibly with the presence
of a single dimension of C), and that all clusters have similar weights in matrix
W, then the probability of C to be chosen in line 18 is about 1/NbExpClust.
So the probability p of the center corresponding to C in the current model, to
have its coordinate along dimension d to be set to a reasonable approximation
x in line 21, is p = 1

NbExpClust ×
1
D × 0.1× (1− 1

ω )× 1
NbExpClust . As ω increases

at each iteration (up to SDmax) we quickly have (1− 1
ω ) ' 1, and since we set

SDmax = NbExpClust×D, we have p ' 0.1× 1
SDmax×NbExpClust .
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The expected value of k is E(k) = NbIter × p, thus to have E(k) ≥ 1, the
default minimum NbIter value is set to 10× SDmax ×NbExpClust.

Dataset sample size N Consider a cluster C and a dimension d, supposing
that the coordinates in C along d follow N (µd, σd). As stated in Section 4.2,
θ̂d the median estimator of these coordinates, using a sample of size n, follows
N (µd, σd

√
π
2n ). If we accept a standard error of 1/4 of the original σd then

the minimum sample size satisfies σθ̂d = σd
4 = σd

√
π
2n and we have n = 8π '

25. Such sample allows to estimate the median location of a cluster in the D
dimensions, but if there are NbExpClust clusters, more objects are needed.
Let us suppose that all clusters have the same size, and thus are likely to be
represented by similar numbers of objects in the sample, then the recommended
minimum value for N is 25×NbExpClust.

A.4 Evaluation framework
The evaluation framework of [13] relies on a systematic approach to compare the
results of representative algorithms that address the major subspace clustering
paradigms. The comparison detailed in [13] was made using different evaluation
measures on both real and synthetic datasets, using the following method. Given
that each algorithm requires several parameters (from 2 to 9), for each dataset,
the algorithms were executed with 100 different parameter settings to explore
the parameter space. Then, using an external labeling of the objects, only the
outputs that were among the best with respect to the external labeling (taken
as a ground truth) were retained. So, the results reported in [13] are in some
sense the best possible subspace clusterings that could be achieved if we were
able to find the most appropriate parameter values. More precisely, for each
real world dataset only two outputs were retained: 1) the one computed for
the parameter setting that maximizes the F1 measure, and 2) the one obtained
when maximizing the accuracy. These two outputs led to two values for each
measure, the smallest of the two being called bestMin and the other bestMax.
For each synthetic dataset, all the settings maximizing at least one quality
measures among F1, accuracy, CE, RNIA and entropy were retained. bestMin
and bestMax are reported as min and max in Figure 4.

Since generally no external labeling is available when we search for clus-
ters, parameter tuning is most of the time a difficult task and these high quality
subspace clustering models are likely to be hard to obtain. Instead, for SubCMe-
dians, the parameters were not optimized using any external criteria and were
set to the default values suggested in Section A.3. For each real world dataset,
the highest and lowest values of each evaluation measure over 10 runs were com-
puted, so as to compare them to the bestMax and bestMin values retained by
the evaluation method of [13]. For each synthetic dataset, we simply took the
clustering having the lowest SAE measure (internal criterion of quality).
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Figure 8: Number of candidate centers (avg. 10 runs) for SubCMedians (red
circles) and unweighted-SubCMedians (blue triangles) vs dataset dimensionality.

A.5 Ranking method over real world datasets
The algorithms were ranked over the seven real world datasets using the follow-
ing procedure.

Cluster quality measures For each measure, on each data set, two rankings
of the 11 algorithms were computed: one for the bestMax score and one for the
bestMin score (see Appendix A.4), with ranks ranging from 1 to 11, rank 11
being associated to the algorithm obtaining the highest quality. The overall
ranking of an algorithm was then simply the average of its rank values.

Coverage The same procedure was used to compare the coverages obtained.
The coverage denotes the fraction of objects of the dataset that are associated
to clusters. This measure is less than 1 if some objects are not associated to
one of the output clusters, or if they are identified as outliers or as reflecting
noise. When the coverage decreases, discarding some objects can result in a
direct improvement of several quality measures (because of clusters being more
homogeneous). Of course putting apart too many objects is likely to lead to less
representative models and is most of the time not desirable. For the coverage a
rank value of 11 was associated to the highest coverage.

Number of clusters The rankings were computed using the absolute value
of the difference between the number of clusters found by the algorithm and
the number of classes in the dataset. The rank value 11 is given to the smallest
absolute value. However, as previously mentioned, the number of classes does
not necessarily reflect the number of subspace clusters in the datasets.

The global trade-off is then to reach high quality measures while preserving
a high coverage (except for data containing many outliers or important noise),
and without splitting the data into too many clusters.
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Figure 9: Subspace mean size of the centers (avg. 10 runs) for SubCMedians
(red circles) and unweighted-SubCMedians (blue triangles) vs subspace mean
size of the hidden clusters.
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