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SOLUTIONS FOR A NONLINEAR NEUMANN PROBLEM IN
THREE-DIMENSIONAL EXTERIOR DOMAINS

SOLUTIONS POUR UN PROBLEME DE NEUMANN
NON-LINEAIRE DANS DES DOMAINES EXTERIEURS EN
DIMENSION 3

ADELAIDE OLIVIER AND OLIVIER REY

ABSTRACT. We prove the existence of multipeak solutions for an nonlinear
elliptic Neumann problem involving nearly critical Sobolev exponent, in three-
dimensional exterior domains.

RESUME. Nous démontrons, pour un probleme elliptique de Neunmann avec
non-linéarité presque critique, dans un domaine extérieur en dimension trois,
I’existence de solutions qui se concentrent en plusieurs points de la frontiere
lorsque la non-linéarité devient critique.

To Prof. Norman Dancer

1. INTRODUCTION AND RESULTS

There have been innumerable articles devoted over the last three decades to the
study of elliptic partial differential equations of second order with critical nonlin-
earity. One thing, however, is to be noticed: virtually all articles consider problems
in bounded domains. A work like Yan’s one [15] is an exception. In that paper,
Yan considers the following Neumann problem:

“Au=u?"1" u>0 in RV\ Q

1.1
(L) % =0 on 0f)
v

where © is a smooth and bounded domain in RV, N > 3, such that RN \ Q is
connected, 2* = 2N/(N — 2) is the limiting Sobolev exponent for the embedding
of the Sobolev space W12(Q) into the LP(2)-spaces, and ¢ is a strictly positive
number assumed to be small. Although formally, the problem is subcritical, it is
asymptotically critical, and the techniques to be used to study it as £ goes to zero
are the same as those to be used in the case of critical nonlinearities.

Considering exterior domains is all but arbitrary. Indeed, various models lead
to study the equation —Awu = uP in domains with small holes. As the size of these
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2 ADELAIDE OLIVIER AND OLIVIER REY

holes goes to zero, the limiting problem which is obtained through a rescaling cen-
tered on one of the holes looks precisely as (1.1).

In order to state the results proved by Yan, as well as those that we propose to
establish, some notations have first to be introduced. For A € R} and = € RY ., we
denote by Uy, the function defined in R by

N—2
N—2 A2

(1.2) Una(y) = [N(N=2)] '~ pr
(1+ My —zf?) >

The U, ;’s are the only nontrivial solutions to the equation —AU = U=t U>0
in RY (see for example [1], [13] or [7]) and induce, as A goes to infinity, a lack of
compactness of the embedding of W12 into L?". In the following, DV?(RN \ Q)
refers to the completion of the set of smooth functions with compact support in
RY \ Q for the norm

ul] =< u,u >'/?

< U, v >= / Vu.Vu.
RN\Q

Lastly, we denote by H (y) the mean curvature of 9 at a point y of this boundary.
Yan proves:

Theorem 1.1. [15]. Assume that N > 4.

(1) [Case of a positive local maximum of H.] Suppose that S is a connected subset
of O satisfying: H(y) = H,, > 0 for any y € S; and there exists 6 > 0 such
that H(y) < H,, for any y € S5\ S, and H has no critical point in S5\ S, with
Ss ={y € 00 st. d(z,y) < é}. Then, for any positive integer k, there exists
g > 0 such that for any e € (0,ep), (1.1) has a solution

with

k
(13) Ue = ZQE,iUAs,i,Is,i + Ue

i=1

where, as € goes to zero
05571‘ — 1
€Xei — ¢"H,, c"a positive constant depending on N only
z:.,€8 and z.; —x;, €S

foranyi,i<i<k, and

ve— 0 in DM(RN\ Q).
(2) [Case of a positive local minimum of H.] Suppose that S is a connected subset
of 00 satisfying: H(y) = Hpy > 0 for any y € S; and there exists § > 0 such
that H(y) > H,, for any y € S5\ S, and H has no critical point in S5\ S, with
Ss ={y € 00 s.it. d(z,y) < 6}. Then, there exists g > 0 such that for any
g0 € (0,€0), (1.1) has a solution

(1.4) Ue = Uy, . + Ve
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where ae; — 1, eXe — ¢*Hy,, 1. — 29 € S and v. — 0 in DL2(RY \ Q) as e goes
to zero.

The arguments developed by Yan to prove Theorem 1.1 allow him to consider
also the problem

“Au+pu=u>"1 Ju>0 in Q
(1.5)
% =0 on 0f)
v

where p is a positive number assumed to be large. Yan proves, for N > 5 and
a positive local minimum of H, an equivalent of Theorem 1.1 (1) as u goes to
infinity (1/p plays a role similar to that of ¢ previously). Such a result has been
extended to the cases N = 3,4 by Wei and Yan in [14]. On the other hand, it has
never been demonstrated until now that the statement of Theorem 1.1 itself is valid
in the case N = 3. As Brezis and Nirenberg [6] have shown, there are problems
involving elliptic equations with critical nonlinearity where cases N = 3 and N > 4
are qualitatively different. This is not the case here, and we are able to prove:

Theorem 1.2. Let N = 3.

(1) [Case of a positive local maximum of H.] Suppose that S C 0 is such that
0 < supyecps H(y) < supyes H(y) = Hp. Then, for any positive integer k, there
exists g > 0 such that for any g € (0,e90), (1.1) has a solution

k
(1.6) Ue = Zas’iUAa,iaxa,i + Ve
i=1
where, as € goes to zero
Qe j — 1
In A ; T . 16H,, . 1
—_— €. Aey ™~ In ~
EXe i - 16H,, (Z € Ae, e . 5)
Te; — x; €S such that H(x;) = max H(y)
ye

foranyi, 1 <i<k, and

ve — 0 in DLY2RN\ Q).
(2) [Case of a positive local minimum of H.] Suppose that S C 9Q is such that
0 < infyes H(y) < infycos H(y) = Hp. Then, there exists eg > 0 such that for
any o € (0,e90), (1.1) has a solution

(1.7) u, = a U, + v

erTe

, IEAA; Ter» Te — To € S such that H(z;) = minyes H(y)and

ve — 0 in DY2(RN \ Q) as € goes to zero.

where a; — 1

Remark 1. As 05 is closed and bounded, sup,cys H(y) and infyeps H(y) are
achieved. The same holds for sup,cg H(y) in case (1) and inf,es H(y) in case
(2). Indeed, let us consider in case (1) a maximizing sequence (y,) in S for H. A
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subsequence of (y,) converges to some limit § which satisfies H(y) = H,,. As, by
assumption, sup,csg H(y) < Hp,, § has to be in the interior of S. Consequently,
there exist one or several points y € S such that H(y) = H,,, and which are local
maxima of H. We conclude in the same way in case (2).

Remark 2. As Q is assumed to be bounded in RY, H has a strictly positive
maximum on 92, and case (1) always occurs (in the particular case of a ball, we
can take S = 9, 0S = @).

Remark 3. The method we use to prove Theorem 1.2 allows us to get rid of the
unessential assumption in the statement of Theorem 1.1, that H has no critical
point in Ss \ S. Our argument to eliminate such an assumption applies as well to
the case N > 4.

Problem (1.1) can be formulated in a variational way: formally, u € D*2(RV\Q)
solves (1.1) if and only if w is a nontrivial critical point of the functional

1 1 *
1.8 I =< Vul* — e
(18) =5 ST [
with u* = max(u,0). Indeed, a critical point of I. satisfies
(1.9) —Au=wH?FinRV\Q, ; % =0 on 09.

Multiplying the equation by u~ = max(—u,0) and integrating on RY \ Q, we see
that u~ = 0, whence v > 0 in RN \ Q. If u # 0, the strong maximum principle
implies that u > 0 in RY \ Q; as a consequence, u is a solution of (1.1).

However, a difficulty arises: I. is not defined in whole D%2(RYN \ Q) for, as
RN\ © is not bounded, this space does not embed into L2 ~¢(RN \ Q). Our first
task will therefore be, in the next section, to build a functional I. well defined in
DY2(RN \ ), and whose critical points which write as in Theorem 1.1 or 1.2 are
solutions of (1.1).

In Section 3 we shall perform a parametrization of the problem in a neighbour-
hood of the solutions of type (1.3) (1.6) we look for, in order to obtain a functional
depending on the «;’s, A;’s, x;’s and v.

In Section 4, an optimization of that functional with respect to the «;’s and v will
provide us with a function now dependent only on the A;’s and the x;’s. Then we
will be able, in the last section (Section 5), to deduce from the assumptions of The-
orem 1.2, that the reduced function has a critical point — whence, by construction,
the existence of a solution of (1.1) with the properties specified in Theorem 1.2.

The proof of a number of technical results necessary for the exposition of the
main argument is given in Appendix.

2. THE VARIATIONAL FORMULATION

Although this article is intended to establish Theorem 1.2, and is therefore con-
cerned only with space dimension N = 3, we consider in this section any dimension
N > 3 — insofar the argument is identical in all dimensions. Moreover, we shall
make explicit some points which are sketched in [15]. To obtain, from I. defined
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by (1.8), a functional I. well defined in DY2(RN \ Q), the nonlinearity has to be
truncated at infinity. By adapting Yan’s strategy in [15], we proceed as follows.

We choose R > 0 such that Q C Bg/2(0), and 7 > 0. Let ¢ : Ry xR — R,
0 < ¢ <1, ¢smooth in Ry x R4, such that

o(s,t) =0 if t<0
(2.1) o(s,t) =1 if 0<s<Randt>0, ors>Rand0<sN2t<r
o(s,t) =0 if s>R+1and sV 2t >7+1.
Then, we define g. : RY x R — R as

(2.2) 9e(y.t) = [t 7 (lyl 1)

which, for ¢ small enough, is C!, and we consider the problem
—Au=g.(y,u) in RN\ Q

(2.3) Ou
v
By construction, g.(y,u) = (u™)? ~17¢ for |y| < R, or |y| > R and |y|N " 2ut <
7; ge(y,u) = 0 for |y| > R+ 1 and |y|Y~2u* > 7 + 1. We notice that, according to
definition (1.2) of the U, ,’s, when 2 € 9Q (whence |z| < R), |y|¥ ~2Ux.(y) goes
to zero as A goes to infinity, uniformly with respect to y, |y| > R. Consequently,
when the z;’s belong to 01, the a;’s are close to 1 and the \;’s are large enough,

we have
2% —1—¢
yvza Uv)\l,a:1 (ZazUx\ zl )

in all RM\Q : the truncation does not affect the nonlinearity when u = Zz 106U 4
in the neighborhood of which we look for a solution of (1.1). We set now

- 1 )
(2.4) L(u) = Q/RN\QW —/RN\QGS(y,u)

with

=0 on Of).

nyﬂo=3£“ggy¢yu

According to the definition of g., Ge(y,u) = 0 if u < 0, Ge(y,u) = z—u? — if
u>0and |y| < R, and |Ge(y,u)| < 2*7€|u|2 ~¢ everywhere. Moreover, (2.1) and

(2.2) imply that if |y| > R+1 and |y|N ~2|u| > 7+1, g-(y,u) = 0, and if |y| > R+1
and |y|VN2|ul < T +1

9e(y, u)

|2*—2—s < (r+1)¥=2—°
u

(2.5) >~ W.

< |u

Then, using Young’s inequality, we can write, for |y| > R+ 1,

w(r 4+ 1)v2 e PR
0< Gl < DT <y

1
> 2|y|47(N72)5 9* N|y|2NN(A;2)E).

As D2(RN \ Q) embeds into L2 (RN \ ), we sce that I is well defined in this
functional space.
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Arguing as we did before for the solutions of (1.8), we know that a nontrivial
solution of (2.3) is strictly positive in RY \ Q. Let us show that a solution u. of
(2.3), writing as (1.3) (1.6), is actually a solution of (1.1). To this end, we shall
show that |y|¥ ~2u.(y) goes uniformly to 0 in RY \ Bx(0) as € goes to zero — this
entails, by definition of g, that g.(y,u.) = u2 ~'=% in RN \ ©, whence the result.

Setting
1 ]
wely) = IyIN‘2u€<|yl2>

this amounts to showing w. goes uniformly to 0 in Bl/R(O). As u, is assumed to
solve (2.3), w, satisfies, in By/r(0) \ {0}

1 Y 1 Y N—
= () = ()
S N2 Ty ly[N+275\ Jy|? :

We may also write
(2.6) — Aw, = a.(y)w. in By r(0)\ {0}
where, according to the definition (2.1) (2.2) of g., a. satisfies

1 o .
(27) 0 < ae(y) S Ww? 2—e in BQ/R(O)
and also, because of (2.5)

C .
(28) 0< as(y) S W m Bl/(R+1)(0)

where C is a constant depending only on 7 and N.

Actually, we can check that (2.6) holds in whole By/z(0). To this end, we
consider 1 € C®(RM,R) such that ¢ (y) = 0 if |[y| < 1/2 and ¢(y) = 1 if |y| > 1,
and we set, for n € N*, 4,(y) = (ny). For any ¢ € C§°(B2/r(0)), Ynyp €
C5°(B2/r(0) \ {0}), and (2.6) yields

<—Aw€, wn<ﬂ> = / aa(y)wawnw-

B, r(0)

Through dominated convergence, it is easily checked that the right hand side goes
to fB2/R(O) as(y)wep as n goes to infinity. On the left hand side we have

(—Awe, Ynp) = —(we, YnAp + 2V Vo + 0Athy)

and

—<U)5, @A¢n> = / wESDAwn
1/2n< ]yl <1 /n

1 N42
2\ 2F N
=0 nQ(/ w? ) </ dy) .
1/2n <yl <1/n 1/2n<y|<1/n

« 1 . < Yy > / .
2 2 2
we = —w: | =5 | = u
/1/2n<y|<1/n : /n<|y<2n lylPY % Nyl n<lyl<an

we see that

As

N—-2

7<wsa§0A'¢)n>:0(ni 2 )
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The term involving V,,.Vy may be treated in the same way, so that
lim <—Aws,¢n¢> = — lim <U)a,1/)nA¥7> = —<w57A90> = <—AU}E,(P>
n—oo n—oo

and (2.6) holds in whole By, (0), as announced.

Now, in view (2.7)and(2.8), for any yo € Bs/2r)(0) and any §, 0 < <
can write

/ aéV/2:/ aév/z—l-/ aév/Q
Bs(yo) Bé(yo)ﬂB1/(R+1)(0) B5(y0)\Bl/(R+l)(0)

< cl/ =2y + Co(R+ 1) *”f/ wE 729
Bs(yo) B7,ar)(0)

1—NZ28
NN-2) .
< C30N T f+c4(/ w?)
Bz, (4r)(0)

TR We

where C1,...,Cy are constants depending only on 7, R and N. Furthermore, we
have
(2.9) / w? :/ u?

Br/4r)(0) RN\Byr,7(0)

and, when u. write as (1.3) (1.6), the last integral goes to zero as £ goes to zero
(remember that the Uy, , .. ,’s concentrate at points located on the boundary of €2,
with Q C Bg/2(0), and v. goes to zero in DV2(RN\ Q) whence also in L2" (RN \ Q)).
Consequently, we see that for every n > 0 we can choose & > 0 such that, for e
small enough,

(2.10) / a2 <
Bs(yo)

uniformly with respect to yo € Bs/2r)(0). This will imply that w. goes to zero in
L>*(By/r(0)).

Indeed, let us consider &', 0 < &’ < 4, and 1 € C®(R™) such that 0 < ¢ < 1
and ¢ = 1 in By (0), ¢ = 0 in RV \ B5(0). For yo € Bs/(2r)(0), let 1, € C=(R?)
be the function defined by ¥, (y) = ¥(y — yo). Multiplying (2.6) by ¢§0wg, v > 1,
and integrating in Bs(yo), we obtain

(2.11) —/ Aw,. gowz :/ a5w2 w)
Bs(yo) Bs(yo)

provided that the integrals are well defined. On the one hand, integrating by parts,
we have

4y / 2
- Aw P2 w) = —— V( we )
~/B(;(yo) v (v+1)2 Bg(yo) [V (o™ )|
41

'7 + 1 / ( ) v"/}yo (wyow?)
Bs(yo
4 / 2
- Viby, | “wl .
(v+1)2 JBs(yo) V4]



8 ADELAIDE OLIVIER AND OLIVIER REY

On the other hand, Holder’s inequality yields

N—2

2 N-2
/ aEwQ w’)’+1 (/ aév/2> N (/ wQ* N— 2(’Y+1)> N )
Bs(yo) Bs(yo) Bs(yo)

Coming back to (2.11), we deduce from (2.10) and Cauchy-Schwarz inequality
4y / aEL 2
Y TREET V(tyowe* )
(v + 12 JBs0) [V |

4(71)( o +>( . )
(v+1)? /Bs<yo)| Yol 2 /135(y0)| Waoroe™ )l

N
4 / 2 2 o No(y+1)\ 2
< Ve w””“?”(/ Yy w )
(v+1)? Bs(y0)| wl ez Bstwo) "

Therefore, there exists a constant C' such that

N-2

- # R 1 ea s VAN
/ |V(wy0w52 )|2 < C|:/ w;hLl +77N </ wgowé\r 5 (v )> :|
Bs(yo) Bs(yo) Bs(yo)

41
Still assumlng that the integrals are well defined, vy, w:> € Wy'*(Bs(yo)), and as
Wy (Bs(yo)) embeds continuously into L? (Bs(yo)), we have

N-—2
et 21 CESA
(/ Ypywd ) =3 |V (yowe? )
Bs(yo) Bs(yo)

where S is a strictly positive constant (which depends only on N). We see that,
choosing 7 small enough, there exists a constant C’, depending only on ¢ and N,

such that
N_2
2(74‘1)) 2 SC«// w;erl.
Bs(yo)

« N
(2.12) ( / Yo w
Bs(yo)
N-2
2.13 %2* 2 < O/ 2%
( . ) We < wg .
By (yo) Bs(yo)

With v = 2* — 1, we obtain
The right hand side integral is well defined, which proves that the left hand side
is also well defined. (Actually, to make the previous argument perfectly rigorous,
we should have multiplied (2.11) by 42 w? ,, where, for n € Nx, we ,(y) = we(y) if
we(y) < m, we n(y) = n otherwise. Then all the integrals in the previous compu-
tations are well defined and, letting n go to infinity, we obtain (2.13).)

The right hand side of (2.13) goes to Z€T0 as € goes to zero, as (2.9) proves. As

a consequence, ws goes to zero in L¥-22 (Bg/ (yo)), uniformly with respect to yo,

and thus in L~¥22 (BB/(QR)(O)). Iterating the process, we find through (2.12) that
we goes to zero in every LP(Bs/ar)(0)), p < co. This implies, taking into account
(2.7), that a. goes to zero in L7(Bs/2r)(0)) for some ¢ > N/2 (actually, for any
¢ < 00). Then, standard theory for elliptic equations (see e.g. Theorem 8.24 in [9])
ensures that w. goes to zero in L*°(By,g(0)). Therefore, g.(y,u.) = u? ~17¢ in
RN\ Q and wu, is a solution of (1.1).
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3. PARAMETRIZATION OF THE VARIATIONAL PROBLEM

In this section, we shall still consider the general case N > 3. Let k € N*. We
set

(3.1) D.= {(A,X) € (RY)" x (O)F st. fi(e) < A < fale)
and |z; — 2] > h(e),1 <i,j < ki ;éj}

where A = (M\,...,\n), X = (21,...,2,) and f1, fo, h are positive functions
such that fi(e) and fa(e) go to infinity, h(e) goes to zero as € goes to zero, and
whose precise expression will be determined later. We define also, for (A, X) €
(R)* x (9)*

oU;
’ 8>\1> o <U’ (97'1'7j>

1<i<k1<j<N-1}

(3.2) Epx = {v € DY2(RN\ Q) st. (0,U;) = (v =0,

where U; = U, ,, and (7i1,...,7;;) is an orthogonal system of coordinates of the
tangent space to 00 at x;. Lastly, for 6 > 0, we define

(3.3) Moy = {(A,A, X,v) € R* x (R})" x (0Q)F x DV2(RN \ Q)
st oy — 1] <8,1<i<k;(AX)eD. ;ve Eax,|v] < 5}

where A = (aq,...,ax), and we consider on M, s the functional

(3.4) Jo(A A X, v) = f(zk:aU +v>.

i=1
According to [3, 4], we know that for £ and § small enough, (A, A, X,v) is a
critical point of J. in M, ; if and only if u = Zle o;U; + v is a critical point of
I. in DY2(RN \ Q). Let us remark that, in consideration of (3.2), (4, A, X,v) is a
critical point of J. in M, ; if and only if there exists Lagrange multipliers A;, B;,
Cij; 1 <1<k, 1<j< N —1such that

o).
(3.5) =0
o). U,
(8:6) o <8>\2 )+ Z Ciel orar !
0.
(3.7 oy <8>\ oy Z Cie{ afwam v)
k N-1
(3.8) ZAU+ZB +ZZCM
i=1 (=1

In order to find crltlcal points of JE in M. s we shall proceed in two steps. Firstly
we shall eliminate the non-significant parameters : the a;’s and v. More precisely,
we shall prove the existence of a C'-map which to every (A, X) € D. associates
A:(A, X) € R*, each a.; close to 1, and v. € Ej x, ||ve|| close to zero, such that
(3.5) and (3.8) are satisfied. It will be left to us, in a second time, to show, using
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a topological argument, that the function (A, X) — J.(A-(A, X), A, X, v:(A, X))
has a critical point in D..

4. THE REDUCED FUNCTIONAL

We first perform a change of variables concerning the parameters «;’s, setting

(4.1) A=A-1
where 1 = (1,...,1), that is A’ = (af, ..., a}), with
(4.2) a,=a;—1, 1<i<k.
We define also, on R* x DV2(RN \ Q), the scalar product
k

(43) < (A).(B.g)»= Y abi+ [ V1V

= RN\Q
and ||-[|| will denote the associated norm. Let us expand J.(A, A, X, v) with respect

to w = (A’,v) in a neighborhood of (1,0) in R* x E x. We can write, using Riesz
representation theorem

1
(44) JE(AaAaX7 U) = JE(17A7X7 O)+ < fE,A7X7w > +§ < QE,A7Xw7w >
+ RE,A,X(w>

where fep x € RF x E\ x is such that

(4.5) < forx,w>= Z [ Zi: /RN\Q Uiga(y,ZUj)]oé

i=1 j=1
k
- ge\Y, U v,
Jo >0
Q< A, x is an endomorphism of R* x E\ x such that
k dg k
€
(4.6) < Qoaxw,w>> = Z [(Ui,Uj> —/RN\QUUJ o (y ,ZUK)}aéa}
3,j=1 =1
dg b
- = Up)U; 4
Z(/RS\Qat 25) vy
dg b
2 e 2
- ) U )
SLCE A (D SLE
and R. z x satisfies
(4.7) RIY (w) = O[] ==3=m) = 0,1,2.

(In the special case N = 3, 2* = 6 and R}  (w) = O(|[w[* ™), m = 0,1,2.) The
fact that equations (3.5) and (3.8) are satisfied is equivalent to

(48) fs,A,X + Qs,A,Xw + R/s,A,X =0.
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In the special case N = 3 we choose in the definition (3.1) of D, (for reasons that
will become clear later)
ar, 1 a 1

(4.9) fie)=2In-, fa(s)zglng, h(e) = b(1n

1, -3/4
e € )

€
where a1, a9, b, with a1 < as, are strictly positive constants which will be de-
termined later. (For N > 4, following [15], we would choose fi(e) = ai/e,
fa(e) = as/e, h(e) = e %% with 6 a small positive number.) Then it is proved in
Appendix B1 that

1/2

(4.10) I fenxll = O(e”z(lné)_ ):

Moreover it is proved in Appendix B2 that Q. A x is invertible and there exists p,
independent of € and (A, X) € D., such that

11 flozhx ]l <

Let us consider now the map F. 5 x, from a neighborhood of (0,0) in (R* x Ex x)?
to R¥ x E\ x defined by

Foax(fiw) = f+ Qeaxw+ Ry x(w).

‘We have
an,A,X

Feax(0,00=0 and
w

=Qenx + R;/,A,X(w)'

From (4.11) and (4.7), we deduce the existence of > 0 such that for € small enough
and |[|w|| < n, a%# is invertible. Then, taking into account (4.10), the implicit

function theorem allows us to state:

Proposition 4.1. There exists ¢g > 0 such that for every ¢ € (0,&9), a Ct-map
exists which to every (A, X) € D, associates we p x = (A’&A,X, Ve A X) € R* x B x
such that Fo o x(fea,x,Wen,x) =0. This means that (3.5) and (3.8) are satisfied
when the o' ’s and v are such that A =1+ AL A x and v = v A x. Moreover, when
N =3,

/ 1/2 —-1/2 .
(4.12) lafe a x| = laieax — 1] =0(e / (Inl) ), 1<i<k,

—1/2
(4.13) Joeax]l = OE2(n2) ™)
as € goes to zero.

Remark. Actually, estimate (4.12) could be improved: we could prove that

laf| = O(eln 1). However, (4.12) is sufficient for our purposes.

We consider now the reduced functional
(4.14) J-(A, X) = J(ac(A, X), A, X, ve (A, X))

in D.. For js and its derivatives with respect to the \;’s, the following expansion
holds:
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Proposition 4.2. Let N = 3. Fore € (0,g9) and (A, X) € D, we have:

k
(4.15) :];(A, X) = kKl,g + Z (KQH(QJZ)II;\/\l + K3€ In )\z)
i=1 i
k 1 L
- K +0(e(Ini)™),
4 ;%;; VT — (e(mn2) )
i#j
(4.16) g%%Agxy:fkaﬂtmﬂ%gi+Ag§7+cx§(m§y*“)

where K. 1, Ko, K3, K4 are strictly positive constants.

This proposition is proved in Appendix A. We are now able to prove Theorem 1.2.

5. PROOF OF THEOREM 1.2

For sake of simplicity, we always assume now that N = 3. We shall concentrate
our attention on part (1) of Theorem 1.2 (the proof of part (2) will then be straight-
forward). We look for a critical point (A, X) € D. of J.. The z;’s will be supposed
to belong to the subset S which, according to the assumptions of Theorem 1.2, is
such that

0< ;Ié%)éH(y) < I;lgé(H(y) = H,,.

More precisely, the z;’s will be supposed to converge, as € goes to zero, to points
Z; which satisfy H(z;) = H,,. Then according to (4.16), the A;’s should be close
to A(e) defined by
In\(e)  Kze
Me)  KoH,,'
A simple computation yields the expansions
_ KyH,, . 1 KyHp,

2 Ae) = In -
(5.2) €= "t &:

1 1
(5.3) InA(e) = lng —|—lnlng + O(1).

(5.1)

1 1
lnlng +O(g),

Now, we are able to fix a; and az in the definition (4.9) of functions f; and fs
which occur in (3.1): we choose a; and as such that

KyH,,
(5.4) 0<ar < < as.
K3

(For example, in view of (A.23), we may take a; = 15H,,/m and ay = 17H,,,/7.)
In order to prove the theorem, we are going to argue by contradiction. The
general strategy is the following: we define two levels, ¢ 1 and c. 2, cc;1 < ¢c 2, and
assume that je has no critical value between them. Then we use the gradient flow
to deform the level sets of jg corresponding to ¢ 2 and c.,; one into the other. The
difference of topology between the two level sets provides us with a contradiction.

Let us make the argument precise. Firstly, we define the two levels c. ; and c. 2
as follows. In view of (4.15), we set
In \(e)
Ae)

k
(55) Cle = kKe,l + Z (K2Hm

=1

1, -
+Kﬁmxa)—qm5)”?
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Taking into account (5.1), we can also write

(5.6) cre = kK1 + kEKse(InA(e) +1) — e(In %)_” :

Concerning c ., we just set co . = kK. 1 +7 where 7 is some small positive constant.
It is clear that for € small enough, cz . > ¢1,. Next, we have to define the subset
of D. on which the deformation argument will be implemented. We set

1.-
(5.7) S’:{xGS s.t. H(x)>Hm—ao(lng) 1/4}
where ag is a strictly positive constant to be determined later,

1,—
(5.8) M= {X € (0" st. z; €8 and |2; — ;| > b(In E) 3/47

<0< ki)

(b, which already occurs in the definition (4.9), will be determined later) and T is
the interval

1,- 1,-
(5.9) T :] <1 ~D(In?) 1/4>/\(5), (1 +D(In ) 1/4>/\(5){
where D is a large constant which will be chosen later. We note that for £ small
enough, every A € T satisfies %+ ln% <A< “E—zln%, and TF x M C D.. We note
also that for e small enough, Tk x M C jgce'z, where jgw, w € R, is the level set
{(A,X) €D, st. J.(AX) <w}.

We consider now the gradient flow

(@), X(0) =~V (A®), X(1))

(5.10) dt
(A(0), X(0)) € (T* x M)
Arguing by contradiction, we assume :
(H) J. has no critical value between cen and ceo in TF x M.
The following holds:

Lemma 5.1. The flow line (A(t), X(t)) defined by (5.8) and starting from a point
of T* x M does not leave T* x M before it reaches jgcs’l.

Proof. We have to check that for any (A, X) € O(T* x M) either —V.J. points
inwards, or J; is less than c. ;.

Case 1. X € OM.
Case 1a. There is some j such that H(z;) = Hp, — ag(Inl)
According to (4.15), we have

—1/4

k
- In\;
(5.11) (A X) < kKio+ (KQH(xi)nT + Kseln \,)

i=1 ¢

4 Ko(H(z)) — Hy) h;jf +0(e(m)™).
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When A\; = A(e)(1 + ¢;), ¢; small, a simple computations yields
In \; In A .
KoHp ==+ Keln A, = KsznA(g()g) + KselnA(e) + O (555 +eC?)

and, if ¢; = O((ln %)_1/4} as it is the case when \; € T
i 2 . 71/2
s e =0(=(m 1)),
Moreover, we have, using (5.9) and (5.1) (5.2)

e Ol = g ol b ™).

Therefore, taking into account (5.5),

L(A,X) < Cen +5(1n%)71/4 - ao%e(ln %)71/4 + O(s(ln%)flﬂ)

so that j'g(A,X ) < ce1 for € small enough, provided that ag > I}[(—’; For example
we set in (5.7)
H,,
5.12 =2—
(5.12) a0 =25
(or, in view of (A.23), ag = %Hm).

Case 1b. There is some 1, j, i # j, such that |z; — z;| = b(ln %)73/4.

According to (4.15) and using the previous computations, we have in that case

Je(A, X) < cep +€(lné)_1/4 - lp\lg‘;lmg(lni)i’% +O(a(1né)_1/2),
i 7y

As we have also, from (5.9)

1 _ 1 1y~1/4
A T3 (1-o(my™))

and from (5.2)
1 K 1 nin 1
(5.13) b Kee [nlJro(l In 2 )]

we obtain

T0X) < eente(ind) - gt e(n ) oo ).

Therefore, jE(A,X) < ¢g for € small enough, provided that b < % For
example, we set in (4.9) and (5.8)

_ K3K,

" 9KsH,,

(5.14)

(or, in view of (A.23), b= ?}é‘j’gj)
Case 2. A € 9T.
Case 2a. There is some j such that \; = (1 + D(In 2)1/4) A(e).
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In view of (4.16), we compute, using the fact that H(z;) < H,,, (5.1)—(5.3) and
(5.13)

In A In \;
K3— > —KyH,,—2 + K.
/\2 + 3)\3 2 /\2 + 3)\3

K3 2 1\-5/4 2 1\—5/4
7mDE (h’lg) +O(€ (hlg) )
From (4.16), we know that there exists a constant C, independent of D, such that

.. In \; _
o (0 X) 2 ~ Ko () 5+ Ko = O (),

_KQH(:I;Z)

Therefore, if D is chosen large enough, so that e ;} D > C, the inequality implies
gf (A, X) > 0, so that —V.J.(A, X) is directed toward the interior of T* x M.

Case 2b. There is some j such that A\; = (1 — D(In 2)1/4) Ae).
According to (4.16), (5.7) and (5.12), we have

dJ. 1/4\ In ) —5/4
A X)<-KsH,, In— K O
o (0 X) < ~Kall (1= Kg( o) )A§+3AJ+ (")
and the same kind of computations as in the previous subcase yield
9. K?2 2

2 9 15 27, 1)~5/4
g (M) < = (D= ) () +0(e2(m )™

where once again the last term denotes a quantity whose absolute value is less than
062( l) —5/4 for some constant C independent of D. Consequently, if D is chosen

, 8)\ J= (A, X) < 0, so that —V.J.(A, X) is directed toward the interior of

Tk x M. O

We can now complete the proof of Theorem 1.2. We define S” € S’ and M’ C M
as

H,, 1/4
" __ -

(5.15) S —{xES st H(w) > Hy — o (In Ly~ }
and

(5.16) M’ = {X € (0)F st. z; € 8"

K3 K,

and |z; —x;| > 4k(k — 1)K i
24Im

1, -

(lnf) 3/471 S Za] S ]{,’l ?é.]}
5

We claim that for € small enough

(5.17) VA X)eTF x M J.(AX) > cer.

Let us assume that (5.17) is true. For X € M’, we take (A(g), X) as initial
value in (5.10) — with A(e) = (A(€),...,A(€)). Lemma 5.1 and (5.17) imply that
the flow line has to meet OM’ before (A(t), X (t)) reaches J.°". Consequently the
flow, projected onto the X-variable, provides us with a deformation of M’ onto

OM’. However, M’ is topologically different from dM’ — see Proposition B1 in [§]
— hence a contradiction. Consequently, assumption (H) is not true — that is, J. has
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a critical point in T% x M, which provides us with a solution of (1.1) satisfying the
statements of Theorem 1.2 (1).

It only remains to prove (5.17). Let (A, X) € T* x M'. According to (4.15), we
have

In \; In \;

k
S5 Kaeln) - ZKQ(Hm ~ H(w) =y

Ky Z /2 1/2

k
To(AX) = kK o+ <K2

=1

+O<5(1n§)71).

,7 1 )\ —.Tj|

We remark that for \; € T

In \; Kse —1/4

= Ini )

y K2Hm+o(s( ni)

so that, using (5.15),
In \; 1,— _
ZK2 m— H@)) 5 < 2(n2) 7 4 0(=(m 1) 7).

We have also, using (5.16) and (5.2),

Ky Z 172 1/2

77 1)\ .Z'i a)‘j|

Lastly, we remark that in view of (5.1) and (5.9)

In A; In A
Kol PN L ket = KoH,, PAE)

By “Ae)

Then, taking into account definition (5.5) of ¢, 1, we obtain

+ Kzeln (e )+O(€(ln%)71/4).

~ 1,- -
T X) 2 eon+ 2 (n2) 7 4 0(e(n )77
2 €
and (5.17) follows. This ends the proof of the first part of Theorem 1.2.

The proof of the second part is straightforward. Indeed, in that case, the only
thing we have to do is to minimize J.(\,z) in T x S’. One can easily deduce from
the previous computations that such a minimum cannot lie on the boundary of
T x S’ — whence the existence of a critical point of js which provides us with the
desired solution of (1.1).

APPENDIX A.

We begin this appendix by a number of integral estimates, which will be useful
in establishing Proposition 4.2.
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A.l. Integral estimates. We recall that U; denotes the function Uy, 5, defined
by (1.2), where x; is assumed to belong to the boundary of 2. In the first place, we
state some results concerning integrals involving only U; and its derivatives with
respect to A\; and x; :

Lemma A.1. As \; — oo, we have

3v/3n? In A, 1
(A1) |Ui)? = \/;” + V3 H () (+):

Aq
3v3r? 33w H(x;) 1
A2 / Uf = + ~+0( ),
(8.2) \a 8 DY (Ag)
2 2 2
(A.3) / US—e = 3v3n — 3v3m eln \; + 3V3m (4ln2—-1—-1n3)e
s 8 16 32
3\[772 H (i) 272 1
1 Y +O( In )\iJr)\—?) as eln\; — 0,
oU; 3 In A, 1
(A (U gih) = =5 H )55 +0(55).
oU; V3m OH . In); 1
(A.5) U e = =5 amg @5 +O(5):
oU; |2 15v/3x?
(4.6) ’ Nl T 128a2 ( )
ou,; oU; In A;
A. —, )= :
( 7) <8>\i’8m> O( )\2 )’
(A.8) (9U: OU; _ 15v3n? A25 +O<)\ 1n>\>
' A1 0T 128 tm
Proof. (A.1) and (A.2) are proved in Appendix C of [11]. Let us prove (A.3).

Outside of B, (x;), where 7 > 0 is some fixed number, U;(y) behaves as )\;1/2

x;|71, whence
/ Use = o(i).
(BAQNB, () Al

U7 *(y) = exp (—eInU;(y)) = 1—% In )\,-—i-% In (1+)\$|y—xi\2)—z In3+0(*(In \;)?).

ly —

In B, (z;), we can write

On the one hand

Ul = / Ul +0
~/(R3\Q)HBT(1-¢) R\ </\‘3>

and the integral of U over R?\ Q is given by (A.2). On the other hand

/ USTn (14 X2y — z:%) =/ USIn (14 A2Jy — ] )+0(i3)
(R3\Q)NB,(z;) R3\Q >\z

and similarly to (A.2)

/ Ufln(1+A?|y—xi\2)=1/ Ufln(1+A?|y—a:i|2)+O(i).
R3\Q 2 Jps Ai
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Lastly, using the residue theorem, we compute

3/3m?
/ Ufln(1+)\?|y—xi|2):%(MnQ—l).
R3

Gathering these results, we obtain (A.3).

Estimates (A.4)—(A.8) follow from Appendix D of [12] — although in that paper
N is assumed to be larger than 5, the computations carried out therein extend
straightforwardly to the case N = 3, with the minor needed modifications. O

In the next lemma, we collect the estimates relative to integrals involving both
U; and Uj, i # j. Following [3], we set
Ai A
A9 = (J 2
( ) €ij )‘j + /\Z
Lemma A.2. Leti# j. As A\j,\j — 00 and €;; — 0, we have

~1/2
+)\2)\j|l‘l —{L‘j|2) .

5
(A.10) /RS\QU U; = 2v/3re +o( i 3) as ey =0,

(A.11)

90 61/ (W) as )\i|$¢—$j|,)\j|1'i—xj| — 00,

In|x;, —x; €ij
(A12) (U, U;) = 2V3rey + o(’ All e /;” + +¢}),
7 ¥ 7

as Ailw; — x|, Ajlzs — x| — o0
U\ reiy |z — |
(A.13) (U;, aTj> = O(Tj + W)
U, A
(A.14) <U¢,?j€> :O(A]‘&jﬁLﬁ“n‘xz’*z]‘H)a

8U2 8UJ . Eij | In |xz - $]||
(A.15) <a)\i, a)\j> - (/\i/\j )\?/2/\?/2 )7
au; o, Ney A
(A.16) <6/\i’87'jg>_ ( J +W\ln\xz CCjH)a
(A.17) <SZZ’ (;?T(ji = O()\i)\jﬁij + /\1,1/2)\;/2| In|z; — $j| |> .

Proof. We know, from formula (E.1) in [3], that for N >3

/N U, = (VY =) e, + 0[] )
R

dx ON-1
Cn = xS
BN (14 |zf2)

with

Therefore, for N = 3,
5 3
/Rs UPU; = 4V3re;; + O(el)).
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It is easily checked, through a rescaling, that the integral of UPU; over R*\ Q is
equal to half of the integral over the whole space, to within a small amount which
can be estimated proceeding as in Appendix C of [11]. (A.10) follows.

We turn to (A.11). Up to a translation and a rotation of the coordinates in R?,
we can assume that xz; = 0, and that for 7 > 0 small enough

(A1) QNB0)={y=(¥ ) €R* xR st. [yl < Roys > (1)}

where f is a smooth function such that f(0) = 0, f/(0) = 0. We have, for y €
o0 N B;(0),

oU;
ov

oU; O i _ OU AWy

(y) = y y') — =0(——"=75
e Oz " Oy 0xi3 ((1 + )\?Iy/|2)3/2

Let us assume first that d = |z; — x| > 5. In B(0), U; O()\._l/Q), so that

J

oU; 17 \2%3qr 1
? U — O 2 = O — = .
S 3% =G |, ) =0 G

Outside of B.(0), %lf = O()\;lﬂ), so that

v, 1 A2
/ Uj :O( 1/2/ T 2 1/2dy)
o0\ B, (0) OV A7 Jaan B, (0) (1+ Ay — x4]?)

d
N O()\}/;}\;/z /BQ\BT(O) |y *yxj|) B ()\}/21/\;/2).

Let us assume now that d = |z; — x| goes to zero. In Bg/(0), U; = O()\j_l/Qd_l),
so that

/ anU—O( 1 /d/z A28y )—O( 1 )
90N By2(0) OV A2d o (L Afr2)32 AVZpL2 )

J

In the same way, as %(l]j = O(/\fl/zd_l) in 00N By/a(x;), we have

3

=05y )= {5z
/@Qan/Q(xj) ov ? )\3/2)\]1./2 9QNB 42 (x5) ly — ;] )\3/2/\;/2

and the same estimate holds for the integral over 9Q\ B.(0), since outside of B.(0),
Wi = O()\;l/Z). Finally we notice that in w = (9QNB(0))\ (Bg/2(0)UBqg/2(x;)),
ly = 25| < 3lyl, and

U, o ( )\?/2|y/|2 )‘;/2 )70(;)
o X)) I

7
Consequently
ou; 1 Todry [1nd|
R e R vl

J ? J

and (A.11) is proved.
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(A.12) follows from (A.10) and (A.11), since

5 oU;
Ui, U; :/ U;U-—/ d
< J> R\ J 90 v

(with v the outward normal to §2). (A.13)—(A.17) follow from computations quite
similar to those above (some of these estimates could be improved, but they are
sufficient for our purposes). ([

We are now able to prove Proposition 4.2.

A.2. Proof of Proposition 4.2. From now on, in accordance with the hypotheses
of Proposition 4.2, we assume that € € (0,g9) and (A, X) € D.. This means, in
view of (3.1) and (4.9),

1 1
(A.19) Sl o <c@mliicicr: Ja—alsb(m i)Y
e € e € €
We notice that in that case, €;; defined by (A.9) is such that
1 31, 1) 73/4). 1\—1/4
(A.20) &i; = Vv — +0(H(m)™); ey =0(e(my) ™).
() ¥ g J

Proof of (4.15). From (4.14) and Proposition 4.1, we have
Jo(A, X) = J.(1,A, X,0) + O(E(ln g)*l).

Next we have

2 1

R3\Q P 6—¢ R3\Q =1

since, in accordance with the definition of gz, g (35, U;) = (35, 1) pro-
vided that ¢ is small enough (implying, through (A.19), that the A;’s are large

enough). On the one hand
k
= VU;|” + / VU; VU;
; /Rs\n Vo <Z<k RO\Q ’

~/R3 ‘ (
\Q
it

— quantities which are estimated by (A.1) and (A.12). On the other hand

RETN A0 SRS of INCESNUERID ol MG

1<i, i<k
i)

+o( / vimu?),

i#]

The first integral on the right hand side is estimated by (A.3). Concerning the
second one, we remark that U; © =1+ O(eln ;) as eIn A; goes to zero. Therefore,

(A.19) yields U7 =1+ O(e(In 1) "), and

[ v = (1ro(smy ™)) [ e
R3\Q R3\Q
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the last integral being estimated by (A.10). Lastly, we know from formula (E.3) in
[3] that for N > 3,4 # j,

(A.22) / UsUl = (gij(ln L
RN ij

as €; ; goes to zero. In our case, with N =3, a =4, b = 2, we obtain, using (A.19)

a0 =0 ie3) =02 2)"),

Gathering these results, we obtain (4.15), with

N-—2\ min(a,b) 2N
) N) s a,b>1,a+b:ﬁ

2 11
Ko, = V3T (1- (55 +g@m2-1-m3))e),
(A.23) \g 12\/382
KQZT/]Tv KSZ 3;- ) K4:\/§7T~

]

Proof of (4.16). As J.(A,X) = Jo(Ac(A, X), A, X, v-(A, X)), and 6‘]5 = 0 for
all j,

a.J. a.J. aJ. Ov.
o\ ~(A.X) = ON; av’aA)'

Let us first compute 3 8‘]5 =(A, X). According to (2.4) and (3.4), we have

(A.24) Z(A, X) +(

k

100, v
A X) § 0, U;). VoS § U+ v2) .

o o, /33\9 UiV o /Rs\ﬂ (2 U +ve) 5

=1 Jj=1

The first integral on the rlght hand side is estimated by (A.4) and (A.13). Con-
cerning the second one, we remark that according to the definition of g.,

k
oU;
Yy a;Uj+v
/(Rs\sz)mBR(o) (v Jz::l 3Us + ve) o\
5756Ui
= U; +
/R3\Q)HBR(0)( Za] UE ) O\
k
4—e
= T+(5-c¢ iUj
/(RS\Q B (0) [ ZO‘J ( )(;O‘J J) Ve
k
7732 5—¢ oU;
O((;QJUJ) vz + |l )} o
We notice that g(){ = ()%U) Then we have
5‘U
A.25 / )
( ) (R3\Q)NBR(0) Za]

J=1
oU; 1
5—¢ 5—¢ 7 5 5
/<R3\Q)nBR<o> N Ai 1<1Zj<k a0

SHiE
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(we recall that eln \; — 0 and U;° = O(1) for all j). The first integral on the right
hand side may be estimated exactly in the same way as (A.3), and we obtain
ou; \fﬁ € O<%+52ln/2\%\i).

-
(R\QNBrO) - O\ 32 N

The remaining terms are estimated through (A.10). Next, we write
k
(Z%UJ)ZH = U O<5>\z‘Ui4 +( Y UU + Uf))

1<i<k
i

and, as AaUI = U;‘gg* in R3, and <6/\ ey =0

o, o, 1
/ UZ‘4 Ve = / Uz4 Ve + O(*/ Ui5|v€|)
(RA\QNBRO)  ONi re O Ai B3, (0)

L[ U o]
__g o0 aAzaI/ve—i_O(AZ/z)

Since DY2(R3\ Q) embeds into L*(9Q),

82Ui 5’2Ui 4/3\ 3/4
N “€:O<(/ N0 ) ””5”)
an OA OV o0 0V
22U,

Proceeding as in the proof of Lemma A.2, we remark that outside of B (x;), 3y-55 =
o(/\g_/z) and in B;(z;), with the notation (A.18),

62 Ul 3/2 ‘JZ

oxow ™) = (W)

/|2

Then we compute

2 . T g+
[ gl =00 [ i) =0 (5)

so that

0 [[ve |
a0 8)\2-81/115 o (A?/Q)

In \;
In \; Ul =0
eln /RB\Q (5 N HU5||>

We have also
oU;

and, for j # 1,

3 4
/Rs\Q(U U; +U; ) m

1
=0(5; [, Ui+ v

[|ve || 20/5716/5 6/57720/5
—o( vl R Jlvel ).
This last quantity may be estimated through (A.22). Lastly

. 2
/(Rg\Q)HBR(O)( Zaj )20 + |v5|5—a)% _ Q(H%”).



A NONLINEAR NEUMANN PROBLEM IN 3-DIMENSIONAL EXTERIOR DOMAINS 23

Finally, in Br11(0) \ Br(0), we use the fact that |g-(y,u)| < |u[>~¢ and U; =
O(}\l/g) for all j, and in B, ,(0), we use (2.5) and, taking into account (4.12)

(4.13) and (A.19) (A.20), we obtain

a.J. V37 In)\; 3n% e ( (In )75/4).

A2 2=an x0) =~ (s ~ 40

o\ 2 ))\2+32)\

Comparing this expansion with (4.16) it appears, in view of (A.24), that it only
remains to prove that %{j, g§f> = O(EQ(In %)_5/4). According to (3.8)

6J avg k oU; oU; Ov.
=> A,UﬁBJaA +Z_ ]eaﬂ o,

)

_

Jj=

= —Bi( aXZ’ ve) ZC“ amm ve)

since (Uj,ve) = <g—(){j,vg> = <§g€,va> =0 for all j and £. On the one hand,
0*U; [[ve| 0*U;
(A27) () =0(55 ) (grgeyve) = Ollleel).

On the other hand, the multipliers A;, B;, Cjy which occur in (3.5)—(3.8) can easily

be estimated. Namely, let us take the scaler product of (3.8) with Uj;, g&]@, gf;
1<i<k, {=1,2 respectively. On one side, we find
(Do DD OUn 1 0J D) OUny 1 0
o’ Y By o’ oNT ;0N o’ Ot o; 0T’

SJE

is given by (A.26), and computations quite similar to those establishing (A.26)

Show that 8‘]5 = O(1). On the other side, we have linear equations involving the
Ai’s, B’s, C( s, whose coefficients are given by estimates (A.1), (A.4)—(A.8) and
(A.12) (A.l?). Such a linear system is quasi-diagonal and invertible, and provides
us with the estimates

Bi=0(nl); Cu=0(2(ml)™?).

Then, we deduce from (A.27), (4.13) and (A.19) that

0J. Ov. —3/2
(o an) =O(72 () ™)

and the proof of (4.16) is complete. O

APPENDIX B.

B.1. Proof of (4.10). Let f = fc a,x be defined by (4.5), that is, for w = (A", v) €
RF x By x, A" = (af,...,a}),

< f7w>>=§k:[<§k:Uj,Ui>—/ Uiga(y,ZUj)]ai—/ ge(yi:Uj)U

i=1 b j=1
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First, we remark that according to the definition of g, g. (y, Ej Uj) = (ZJ Uj)5_E
everywhere, provided that ¢ is small enough, so that

(Soo-

R3

k k k
Uge (v, S U =S (U, U —/ U)o
@ gs(y; J) ;< 5, Ui) RS\Q(; J)
k
= U, U;) — U?’Ul} +0(eln\; + / US4+ U;UNHU;
z_j[u ) /RB\Q : (mre ¥ [ wreoun)

=1
J i#]

and, using (A.1) (A.2), (A.10), (A.12) and (A.19) (A.20), we obtain

<§:1Uiji>_/R UiQa(?J;in)ZO(Elni).

We turn now to the integral involving v. We have

k k
(02U :/ > )
/Ra\Qg (v 2 K RB\Q( i)

j=1

3\Q

= [ (0 0femtmaeri)

j=1
since () U;)"° =1+ O(cln(max; \;)) and

k
5 4 5
U, <k / Ut
/RS\Q(E_ 3) 1ol ;:1 e 2ol

Jj=1
k

<k4z</Rg\QU§’)g(/R3\Qv6)é < Cllol

Jj=1

where C' is a constant. Next, we have

k .5 B k . .
/RS\Q(ZUJ) ijI/RB\QUjerO(K;k /Ra\QUjUZ|U|)

—
I i#j

4 24 6\ ¢
| ool < ([ uFud) i
RA\Q R3
with, according to (A.22) and (A.20)

(/ )t = o(e(m)"?).
.

/ UJ‘-E’U :/ —-AUjv = —/ anv
RA\Q RA\Q o0 Ov

and we proceed, to estimate the last integral, as we did to estimate the integral

over 99 of U} g(){ ve. Namely, we observe that D1'2(R3\ Q) embeds into L*(992),

from which we deduce

ou;, OU, |4/33/4
/m ay”o(%ﬂ ) “”)-

and

Lastly, we have
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Far from z;, 9%t = (ﬁ), whereas close to z; we can write, with the notation of
(A.18) '
5/2 2
% 2= 0 Aj || )
v (1+ A2 [2)*/*
so that
ou e e r i 1
W ot [ ) —o( k)
/amBT(zi) v 7o Jo (A A3r2)2 )\i/g
and

Ui o]
—uv=0(—%).
b0 OV ( A;/z)
Then, (4.10) follows from (A.19).

B.2. Proof of the invertibility of Q. a x. Let Q = Q. a,x by defined by (4.6),
that is, for w = (A’,v) € R* x Ej x

k k

< Q’LU7U1 > = Z |:<U17 UJ> — (5 — 5)/ U[)48Uin:| Oz;Oé;-
ij—=1 RA\Q

k k \
—(5—¢) (/ (Y ) _EUiv)ag
; R3\Q ;
k
HolP-6-9 [ (Y u)e
R3\Q ZZ:;

since, as we previously noticed, g. (y, > U;) = (Ej Uj)ﬂ_8 and Oag; (v, >, U;) =

5—¢ U)te everywhere, provided that ¢ is small enough. Using (A.1) (A.2),
)
(A.10), (A.12) and (A.19)-(A.22), we obtain

k
(B.1) W) = 5-2) [ (S U U,

~387 L Ofelnl) if i=j,

O(s(m)™")  ir i

Next, we write

k
4—¢
E U, U;
/RB\Q (2 @) !

=1

k
4
_ /RB\Q (;Ug) U+ O (= In(max A o]

=1

= Ulv+0Ofelnd
[ ererofemtias ¥

1<i,j<k
i#j

/RS\Q(U;*Ui FUUN).
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We just proved, in the previous subsection, that

fia TP =0(5%)

Then, using (A.22) and (A.20), we find

(B.2) /Rs\ﬂ(f:Uz)“EUw:o( Y2 (I 1)y II)

{=1

Lastly, we have to consider the term involving v? — that is, the quadratic form
in v which writes

k
Q) = |v||? = (5 — ey
A =169 [ (30

=1
k
= ||v||2 -5 / Utv? + o HUH2 .
; ot F o)

We want to prove that @ is coercive, with a modulus of coercivity independent of €
and (A, X) € D.. Together with (B.1) and (B.2), this will prove that @ is invertible,
and the existence of p independent of ¢ and (A, X) € D, such that |HQ*1 |H <p.

We begin by considering the eigenvalue and eigenvector problem in H!(RY),
N >3

4
(B.3) —Aw = pUy w

The spectrum and the eigenvectors of (B.3) are linked to the spectrum and the
eigenvectors of —A of S, which are known [5]. Namely, the eigenvalues of —Agn
are A, = n(N + k — 1), n € N, with multiplicity m,, = (NJF”;!Q&\!,QVS!%*U, and the
corresponding eigenvectors are harmonic polynomials of degree n: A\g =0, mg = 1,
w=LM=N,m=N+1lLu,=2,1<i<N+1LA=2(N+1),...Forua
function defined on S3, we define a function v in R? by

(@) = (1+ )~ o(y)

where y = Iz is the stereographic projection of S, the unit sphere of RV*1,
with respect to the north pole z; = 0, 1 <i < N, xy4; = 1, onto RV identified
to the hyperplane of RN*! defined by zx,1; = 0. u is an eigenvector of —Agn
With eigenvalue A, if and only if v solves (B.3) with (A\,z) = (1,0) and p = p, =

N(N —y+1. In particular, the eigenvectors of (B.3) are Uy o for po, Bg L2 1<i<N,

and 6U1° for pi. The orthogonality of v to Uy, gi\o, and aUl 2 1<i<N,in

Db 2(}RN) means that u is orthogonal to 1 and the x;’s, 1 <4 § N + 1, so that

/ |Vsyul? > )\2/ u?.
SN SN

From such an inequality we deduce, through straightforward computations

(B.4) /RN (Vo2 = UL 0?) > (1 - m> /RN Vo2,
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Through rescaling, we see that the same inequality holds replacing Uy o by Uy gz,
OUx.z daU“ 1<i<N,in

when u is assumed to be orthogonal to Uy ,,

ox ox;
Dl’Z(RN).
Let us consider now the eigenvalue and eigenvector problem in H*(RY),
N2 N, Ow N
(B.5) —Aw = pU, ;*w in R ; 8—20 on JRY
' v
with RY = {z = (z1,...,2y) € RY s.t. zy > 0}. A symmetry argument shows

that a solution of (B.5) provides us with a solution of (B.3). Therefore, for this
new problem, the eigenvalues are the same as for (B.3), and the eigenvectors are

the eigenvectors w of (B.3) such that a—“ =0 on ORY. We notice that U, o, s

Tox
dU* 9.1 <i < N —1 satisfy that condltlon Consequently, for v orthogonal to

Ux.0, af\o, and BU* ©1<i<N-—1,in DM3(RY), we have the same inequality

as (B.4) replacing RN by RY (and Uy by Uxp). From such an inequality we can
deduce, proceeding as in [2], that for p < ps, z € 9Q and X large enough,

[owePsufatzp [ v
RN\Q RN\Q

for any v orthogonal to U) s, 8%%, and dU” ,1 < ¢ < N,in DV2(RY). To

complete the proof of the coercivity of @, we proceed as in [12]. We set

7]

and

and, defining v; = vlq,, we write
v; = v;r +v;

with
ou; oU;
& o\ am

and v;" is orthogonal to v; for the scalar product (, ) in B;. The previous argu-

ments imply that
[ 1werp —sui = p [ (vurp
Q; Q;

for \; large enough. On the other hand, multiplying the gradient of

; iUs b i
v; =a + N\ +Z§1:2cea7_w

v, GSpan( =1 2)

by the gradient of Uj, ‘g[/\] , gU"’ respectively, and integrating over €);, we obtain a

quasi-diagonal and invertible linear system which allows to estimate a;, b;, ¢;; with
respect to

/ Vo, VU; :/ VoVU,; = —/ VuVU; = O((/ |VUZ.|2)1/2||U||>
Q Q o\Q; Q\Q;

6UL

and similar formulas for the integrals involving 33+ and 8U’ . We check that

/Q\m IVUiF = O()\id) =0(=(In %)_1/4)
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and omitting here the details, we obtain

/Q, Vo, |2 = o(g(lng)‘”“”v\\?).

Consequently, we have

and

[ 1 =5t = p [ 90+ ool

k k
@v:vz— /Vv2+ /VU2—5/ Ultv?
)= bl =3 | Vel Z(| P-s ) Ut
k
+5 / Ulv?
Z(Rf‘\ﬂ)\ﬂi

i=1
k
> [ ey [P+ o(ul)
(RI\D\Q; i=1 Y%

> p'llv])?

for & small enough and p’ > 0 a suitable constant independent of ¢.

Acknoledgements. The authors are grateful to the referee for his/her careful
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