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SOLUTIONS FOR A NONLINEAR NEUMANN PROBLEM IN
THREE-DIMENSIONAL EXTERIOR DOMAINS

SOLUTIONS POUR UN PROBLÈME DE NEUMANN
NON-LINÉAIRE DANS DES DOMAINES EXTÉRIEURS EN

DIMENSION 3

ADÉLAÏDE OLIVIER AND OLIVIER REY

Abstract. We prove the existence of multipeak solutions for an nonlinear
elliptic Neumann problem involving nearly critical Sobolev exponent, in three-

dimensional exterior domains.

Résumé. Nous démontrons, pour un problème elliptique de Neunmann avec

non-linéarité presque critique, dans un domaine extérieur en dimension trois,
l’existence de solutions qui se concentrent en plusieurs points de la frontière

lorsque la non-linéarité devient critique.

To Prof. Norman Dancer

1. Introduction and Results

There have been innumerable articles devoted over the last three decades to the
study of elliptic partial differential equations of second order with critical nonlin-
earity. One thing, however, is to be noticed: virtually all articles consider problems
in bounded domains. A work like Yan’s one [15] is an exception. In that paper,
Yan considers the following Neumann problem:

(1.1)

−∆u = u2∗−1−ε , u > 0 in RN \ Ω
∂u

∂ν
= 0 on ∂Ω

where Ω is a smooth and bounded domain in RN , N ≥ 3, such that RN \ Ω is
connected, 2∗ = 2N/(N − 2) is the limiting Sobolev exponent for the embedding
of the Sobolev space W 1,2(Ω) into the Lp(Ω)-spaces, and ε is a strictly positive
number assumed to be small. Although formally, the problem is subcritical, it is
asymptotically critical, and the techniques to be used to study it as ε goes to zero
are the same as those to be used in the case of critical nonlinearities.

Considering exterior domains is all but arbitrary. Indeed, various models lead
to study the equation −∆u = up in domains with small holes. As the size of these

Key words and phrases. Nonlinear elliptic Neumann problems, Critical Sobolev exponent, Ex-
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extérieurs.
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holes goes to zero, the limiting problem which is obtained through a rescaling cen-
tered on one of the holes looks precisely as (1.1).

In order to state the results proved by Yan, as well as those that we propose to
establish, some notations have first to be introduced. For λ ∈ R∗+ and x ∈ RN , we
denote by Uλ,x the function defined in RN by

(1.2) Uλ,x(y) = [N(N − 2)]
N−2

4
λ
N−2

2

(1 + λ2|y − x|2)
N−2

2

The Uλ,x’s are the only nontrivial solutions to the equation −∆U = U2∗−1, U ≥ 0
in RN (see for example [1], [13] or [7]) and induce, as λ goes to infinity, a lack of
compactness of the embedding of W 1,2 into L2∗ . In the following, D1,2(RN \ Ω)
refers to the completion of the set of smooth functions with compact support in
RN \ Ω for the norm

‖u‖ =< u, u >1/2

with
< u, v >=

∫
RN\Ω

∇u.∇v.

Lastly, we denote byH(y) the mean curvature of ∂Ω at a point y of this boundary.
Yan proves:

Theorem 1.1. [15]. Assume that N ≥ 4.
(1) [Case of a positive local maximum of H.] Suppose that S is a connected subset
of ∂Ω satisfying: H(y) = Hm > 0 for any y ∈ S; and there exists δ > 0 such
that H(y) < Hm for any y ∈ Sδ \ S, and H has no critical point in Sδ \ S, with
Sδ = {y ∈ ∂Ω s.t. d(x, y) ≤ δ}. Then, for any positive integer k, there exists
ε0 > 0 such that for any ε0 ∈ (0, ε0), (1.1) has a solution

(1.3) uε =
k∑
i=1

αε,iUλε,i,xε,i + vε

where, as ε goes to zero

αε,i → 1

ελε,i → c∗Hm c∗a positive constant depending on N only
xε,i ∈ Sδ and xε,i → xi ∈ S

for any i, i ≤ i ≤ k, and

vε → 0 in D1,2(RN \ Ω).
(2) [Case of a positive local minimum of H.] Suppose that S is a connected subset
of ∂Ω satisfying: H(y) = Hm > 0 for any y ∈ S; and there exists δ > 0 such
that H(y) > Hm for any y ∈ Sδ \ S, and H has no critical point in Sδ \ S, with
Sδ = {y ∈ ∂Ω s.t. d(x, y) ≤ δ}. Then, there exists ε0 > 0 such that for any
ε0 ∈ (0, ε0), (1.1) has a solution

(1.4) uε = αεUλε,xε + vε
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where αε,i → 1, ελε → c∗Hm, xε → x0 ∈ S and vε → 0 in D1,2(RN \ Ω) as ε goes
to zero.

The arguments developed by Yan to prove Theorem 1.1 allow him to consider
also the problem

(1.5)

−∆u+ µu = u2∗−1 , u > 0 in Ω
∂u

∂ν
= 0 on ∂Ω

where µ is a positive number assumed to be large. Yan proves, for N ≥ 5 and
a positive local minimum of H, an equivalent of Theorem 1.1 (1) as µ goes to
infinity (1/µ plays a role similar to that of ε previously). Such a result has been
extended to the cases N = 3, 4 by Wei and Yan in [14]. On the other hand, it has
never been demonstrated until now that the statement of Theorem 1.1 itself is valid
in the case N = 3. As Brezis and Nirenberg [6] have shown, there are problems
involving elliptic equations with critical nonlinearity where cases N = 3 and N ≥ 4
are qualitatively different. This is not the case here, and we are able to prove:

Theorem 1.2. Let N = 3.
(1) [Case of a positive local maximum of H.] Suppose that S ⊂ ∂Ω is such that
0 < supy∈∂S H(y) < supy∈S H(y) = Hm. Then, for any positive integer k, there
exists ε0 > 0 such that for any ε0 ∈ (0, ε0), (1.1) has a solution

(1.6) uε =
k∑
i=1

αε,iUλε,i,xε,i + vε

where, as ε goes to zero

αε,i → 1
lnλε,i
ελε,i

→ π

16Hm

(
i .e. λε,i ∼

16Hm

πε
ln

1
ε

)
xε,i → xi ∈ S such that H(xi) = max

y∈S
H(y)

for any i, 1 ≤ i ≤ k, and

vε → 0 in D1,2(RN \ Ω).
(2) [Case of a positive local minimum of H.] Suppose that S ⊂ ∂Ω is such that
0 < infy∈S H(y) < infy∈∂S H(y) = Hm. Then, there exists ε0 > 0 such that for
any ε0 ∈ (0, ε0), (1.1) has a solution

(1.7) uε = αεUλε,xε + vε

where αε,i → 1, lnλε,i
ελε,i

→ π
16Hm

, xε → x0 ∈ S such that H(xi) = miny∈S H(y)and
vε → 0 in D1,2(RN \ Ω) as ε goes to zero.

Remark 1. As ∂S is closed and bounded, supy∈∂S H(y) and infy∈∂S H(y) are
achieved. The same holds for supy∈S H(y) in case (1) and infy∈S H(y) in case
(2). Indeed, let us consider in case (1) a maximizing sequence (yn) in S for H. A
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subsequence of (yn) converges to some limit ȳ which satisfies H(ȳ) = Hm. As, by
assumption, supy∈∂S H(y) < Hm, ȳ has to be in the interior of S. Consequently,
there exist one or several points y ∈ S such that H(y) = Hm, and which are local
maxima of H. We conclude in the same way in case (2).

Remark 2. As Ω is assumed to be bounded in RN , H has a strictly positive
maximum on ∂Ω, and case (1) always occurs (in the particular case of a ball, we
can take S = ∂Ω, ∂S = ∅).

Remark 3. The method we use to prove Theorem 1.2 allows us to get rid of the
unessential assumption in the statement of Theorem 1.1, that H has no critical
point in Sδ \ S. Our argument to eliminate such an assumption applies as well to
the case N ≥ 4.

Problem (1.1) can be formulated in a variational way: formally, u ∈ D1,2(RN \Ω)
solves (1.1) if and only if u is a nontrivial critical point of the functional

(1.8) Iε =
1
2

∫
RN\Ω

|∇u|2 − 1
2∗ − ε

∫
RN\Ω

(u+)2∗−ε

with u+ = max(u, 0). Indeed, a critical point of Iε satisfies

(1.9) −∆u = (u+)2∗−ε in RN \ Ω, ;
∂u

∂ν
= 0 on ∂Ω.

Multiplying the equation by u− = max(−u, 0) and integrating on RN \ Ω, we see
that u− ≡ 0, whence u ≥ 0 in RN \ Ω. If u 6≡ 0, the strong maximum principle
implies that u > 0 in RN \ Ω; as a consequence, u is a solution of (1.1).

However, a difficulty arises: Iε is not defined in whole D1,2(RN \ Ω) for, as
RN \ Ω is not bounded, this space does not embed into L2∗−ε(RN \ Ω). Our first
task will therefore be, in the next section, to build a functional Ĩε well defined in
D1,2(RN \ Ω), and whose critical points which write as in Theorem 1.1 or 1.2 are
solutions of (1.1).

In Section 3 we shall perform a parametrization of the problem in a neighbour-
hood of the solutions of type (1.3) (1.6) we look for, in order to obtain a functional
depending on the αi’s, λi’s, xi’s and v.

In Section 4, an optimization of that functional with respect to the αi’s and v will
provide us with a function now dependent only on the λi’s and the xi’s. Then we
will be able, in the last section (Section 5), to deduce from the assumptions of The-
orem 1.2, that the reduced function has a critical point – whence, by construction,
the existence of a solution of (1.1) with the properties specified in Theorem 1.2.

The proof of a number of technical results necessary for the exposition of the
main argument is given in Appendix.

2. The variational formulation

Although this article is intended to establish Theorem 1.2, and is therefore con-
cerned only with space dimension N = 3, we consider in this section any dimension
N ≥ 3 – insofar the argument is identical in all dimensions. Moreover, we shall
make explicit some points which are sketched in [15]. To obtain, from Iε defined
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by (1.8), a functional Ĩε well defined in D1,2(RN \ Ω), the nonlinearity has to be
truncated at infinity. By adapting Yan’s strategy in [15], we proceed as follows.

We choose R > 0 such that Ω ⊂ BR/2(0), and τ > 0. Let ϕ : R+ × R → R,
0 ≤ ϕ ≤ 1, ϕ smooth in R+ × R+, such that

(2.1)


ϕ(s, t) = 0 if t < 0

ϕ(s, t) = 1 if 0 ≤ s ≤ R and t ≥ 0, or s ≥ R and 0 ≤ sN−2t ≤ τ
ϕ(s, t) = 0 if s ≥ R+ 1 and sN−2t ≥ τ + 1.

Then, we define gε : RN × R→ R as

(2.2) gε(y, t) = |t|2
∗−1−εϕ(|y|, t)

which, for ε small enough, is C1, and we consider the problem

(2.3)


−∆u = gε(y, u) in RN \ Ω
∂u

∂ν
= 0 on ∂Ω.

By construction, gε(y, u) = (u+)2∗−1−ε for |y| ≤ R, or |y| ≥ R and |y|N−2u+ ≤
τ ; gε(y, u) = 0 for |y| ≥ R+ 1 and |y|N−2u+ ≥ τ + 1. We notice that, according to
definition (1.2) of the Uλ,x’s, when x ∈ ∂Ω (whence |x| < R), |y|N−2Uλ,x(y) goes
to zero as λ goes to infinity, uniformly with respect to y, |y| ≥ R. Consequently,
when the xi’s belong to ∂Ω, the αi’s are close to 1 and the λi’s are large enough,
we have

gε
(
y,

k∑
i=1

αiUλi,xi(y)
)

=
( k∑
i=1

αiUλi,xi(y)
)2∗−1−ε

in allRN\Ω : the truncation does not affect the nonlinearity when u =
∑k
i=1 αiUλi,xi ,

in the neighborhood of which we look for a solution of (1.1). We set now

(2.4) Ĩε(u) =
1
2

∫
RN\Ω

|∇u|2 −
∫
RN\Ω

Gε(y, u)

with

Gε(y, u) =
∫ u

0

gε(y, t)dt.

According to the definition of gε, Gε(y, u) = 0 if u ≤ 0, Gε(y, u) = 1
2∗−εu

2∗−ε if
u ≥ 0 and |y| ≤ R, and |Gε(y, u)| ≤ 1

2∗−ε |u|
2∗−ε everywhere. Moreover, (2.1) and

(2.2) imply that if |y| ≥ R+1 and |y|N−2|u| ≥ τ +1, gε(y, u) = 0, and if |y| ≥ R+1
and |y|N−2|u| ≤ τ + 1

(2.5)
∣∣∣∣gε(y, u)

u

∣∣∣∣ ≤ ∣∣u∣∣2∗−2−ε ≤ (τ + 1)
4

N−2−ε

|y|4−(N−2)ε
.

Then, using Young’s inequality, we can write, for |y| ≥ R+ 1,

0 ≤ Gε(y, u) ≤ u2(τ + 1)
4

N−2−ε

2|y|4−(N−2)ε
≤ (τ + 1)

4
N−2−ε

(
|u|2∗

2∗
+

1

N |y|2N−
N(N−2)

2 ε

)
.

As D1,2(RN \ Ω) embeds into L2∗(RN \ Ω), we see that Ĩε is well defined in this
functional space.
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Arguing as we did before for the solutions of (1.8), we know that a nontrivial
solution of (2.3) is strictly positive in RN \ Ω. Let us show that a solution uε of
(2.3), writing as (1.3) (1.6), is actually a solution of (1.1). To this end, we shall
show that |y|N−2uε(y) goes uniformly to 0 in RN \ BR(0) as ε goes to zero – this
entails, by definition of gε, that gε(y, uε) = u2∗−1−ε

ε in RN \ Ω, whence the result.
Setting

wε(y) =
1

|y|N−2
uε

(
y

|y|2

)
this amounts to showing wε goes uniformly to 0 in B1/R(0). As uε is assumed to
solve (2.3), wε satisfies, in B2/R(0) \ {0}

−∆wε =
1

|y|N+2
∆uε

(
y

|y|2

)
=

1
|y|N+2

gε

(
y

|y|2
, |y|N−2wε(y)

)
.

We may also write

(2.6) −∆wε = aε(y)wε in B2/R(0) \ {0}

where, according to the definition (2.1) (2.2) of gε, aε satisfies

(2.7) 0 < aε(y) ≤ 1
|y|(N−2)ε

w2∗−2−ε
ε in B2/R(0)

and also, because of (2.5)

(2.8) 0 < aε(y) ≤ C

|y|(N−2)ε
in B1/(R+1)(0)

where C is a constant depending only on τ and N .
Actually, we can check that (2.6) holds in whole B2/R(0). To this end, we

consider ψ ∈ C∞(RN ,R) such that ψ(y) = 0 if |y| ≤ 1/2 and ψ(y) = 1 if |y| ≥ 1,
and we set, for n ∈ N∗, ψn(y) = ψ(ny). For any ϕ ∈ C∞0 (B2/R(0)), ψnϕ ∈
C∞0 (B2/R(0) \ {0}), and (2.6) yields

〈−∆wε, ψnϕ〉 =
∫
B2/R(0)

aε(y)wεψnϕ.

Through dominated convergence, it is easily checked that the right hand side goes
to
∫
B2/R(0)

aε(y)wεϕ as n goes to infinity. On the left hand side we have

〈−∆wε, ψnϕ〉 = −〈wε, ψn∆ϕ+ 2∇ψn.∇ϕ+ ϕ∆ψn〉

and

−〈wε, ϕ∆ψn〉 =
∫

1/2n≤|y|≤1/n

wεϕ∆ψn

= O

(
n2

(∫
1/2n≤|y|≤1/n

w2∗

ε

) 1
2∗
(∫

1/2n≤|y|≤1/n

dy

)N+2
2N
)
.

As ∫
1/2n≤|y|≤1/n

w2∗

ε =
∫
n≤|y|≤2n

1
|y|2N

w2∗

ε

(
y

|y|2

)
=
∫
n≤|y|≤2n

u2∗

ε

we see that
−〈wε, ϕ∆ψn〉 = o(n−

N−2
2 ).
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The term involving ∇ψn.∇ϕ may be treated in the same way, so that

lim
n→∞

〈−∆wε, ψnϕ〉 = − lim
n→∞

〈wε, ψn∆ϕ〉 = −〈wε,∆ϕ〉 = 〈−∆wε, ϕ〉

and (2.6) holds in whole B2/R(0), as announced.

Now, in view (2.7)and(2.8), for any y0 ∈ B3/(2R)(0) and any δ, 0 < δ < 1
4R , we

can write∫
Bδ(y0)

aN/2ε =
∫
Bδ(y0)∩B1/(R+1)(0)

aN/2ε +
∫
Bδ(y0)\B1/(R+1)(0)

aN/2ε

≤ C1

∫
Bδ(y0)

|y|−
N(N−2)

2 εdy + C2(R+ 1)
N(N−2)

2 ε

∫
B7/(4R)(0)

w
N
2 (2∗−2−ε)
ε

≤ C3δ
N−N(N−2)

2 ε + C4

(∫
B7/(4R)(0)

w2∗

ε

)1−N−2
4 ε

where C1, . . . , C4 are constants depending only on τ , R and N . Furthermore, we
have

(2.9)
∫
B7/(4R)(0)

w2∗

ε =
∫

RN\B4R/7(0)

u2∗

ε

and, when uε write as (1.3) (1.6), the last integral goes to zero as ε goes to zero
(remember that the Uλε,i,xε,i ’s concentrate at points located on the boundary of Ω,
with Ω ⊂ BR/2(0), and vε goes to zero in D1,2(RN \Ω) whence also in L2∗(RN \Ω)).
Consequently, we see that for every η > 0 we can choose δ > 0 such that, for ε
small enough,

(2.10)
∫
Bδ(y0)

aN/2ε < η

uniformly with respect to y0 ∈ B3/(2R)(0). This will imply that wε goes to zero in
L∞(B1/R(0)).

Indeed, let us consider δ′, 0 < δ′ < δ, and ψ ∈ C∞(RN ) such that 0 ≤ ψ ≤ 1
and ψ ≡ 1 in Bδ′(0), ψ ≡ 0 in RN \Bδ(0). For y0 ∈ B3/(2R)(0), let ψy0 ∈ C∞(R3)
be the function defined by ψy0(y) = ψ(y − y0). Multiplying (2.6) by ψ2

y0
wγε , γ > 1,

and integrating in Bδ(y0), we obtain

(2.11) −
∫
Bδ(y0)

∆wε.ψ2
y0
wγε =

∫
Bδ(y0)

aεψ
2
y0
wγ+1
ε

provided that the integrals are well defined. On the one hand, integrating by parts,
we have

−
∫
Bδ(y0)

∆wε.ψ2
y0
wγε =

4γ
(γ + 1)2

∫
Bδ(y0)

∣∣∇(ψy0w
γ+1

2
ε )

∣∣2
− 4(γ − 1)

(γ + 1)2

∫
Bδ(y0)

w
γ+1

2
ε ∇ψy0 .∇(ψy0w

γ+1
2

ε )

− 4
(γ + 1)2

∫
Bδ(y0)

∣∣∇ψy0

∣∣2wγ+1
ε .
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On the other hand, Hölder’s inequality yields∫
Bδ(y0)

aεψ
2
y0
wγ+1
ε ≤

(∫
Bδ(y0)

aN/2ε

) 2
N
(∫

Bδ(y0)

ψ2∗

y0
w

N
N−2 (γ+1)
ε

)N−2
N

.

Coming back to (2.11), we deduce from (2.10) and Cauchy-Schwarz inequality

4γ
(γ + 1)2

∫
Bδ(y0)

∣∣∇(ψy0w
γ+1

2
ε )

∣∣2
− 4(γ − 1)

(γ + 1)2

(∫
Bδ(y0)

∣∣∇ψy0

∣∣2wγ+1
ε

) 1
2
(∫

Bδ(y0)

∣∣∇(ψy0w
γ+1

2
ε )

∣∣2) 1
2

≤ 4
(γ + 1)2

∫
Bδ(y0)

∣∣∇ψy0

∣∣2wγ+1
ε +η

2
N

(∫
Bδ(y0)

ψ2∗

y0
w

N
N−2 (γ+1)
ε

)N−2
2

.

Therefore, there exists a constant C such that∫
Bδ(y0)

∣∣∇(ψy0w
γ+1

2
ε )

∣∣2 ≤ C[ ∫
Bδ(y0)

wγ+1
ε + η

2
N

(∫
Bδ(y0)

ψ2∗

y0
w

N
N−2 (γ+1)
ε

)N−2
2
]
.

Still assuming that the integrals are well defined, ψy0w
γ+1

2
ε ∈W 1,2

0 (Bδ(y0)), and as
W 1,2

0 (Bδ(y0)) embeds continuously into L2∗(Bδ(y0)), we have(∫
Bδ(y0)

ψ2∗

y0
w

N
N−2 (γ+1)
ε

)N−2
2

≤ 1
S

∫
Bδ(y0)

∣∣∇(ψy0w
γ+1

2
ε )

∣∣2
where S is a strictly positive constant (which depends only on N). We see that,
choosing η small enough, there exists a constant C ′, depending only on δ and N ,
such that

(2.12)
(∫

Bδ(y0)

ψ2∗

y0
w

N
N−2 (γ+1)
ε

)N−2
2

≤ C ′
∫
Bδ(y0)

wγ+1
ε .

With γ = 2∗ − 1, we obtain

(2.13)
(∫

Bδ′ (y0)

w
N
N−2 2∗

ε

)N−2
2

≤ C ′
∫
Bδ(y0)

w2∗

ε .

The right hand side integral is well defined, which proves that the left hand side
is also well defined. (Actually, to make the previous argument perfectly rigorous,
we should have multiplied (2.11) by ψ2

y0
wγε,n, where, for n ∈ N∗, wε,n(y) = wε(y) if

wε(y) ≤ n, wε,n(y) = n otherwise. Then, all the integrals in the previous compu-
tations are well defined and, letting n go to infinity, we obtain (2.13).)

The right hand side of (2.13) goes to zero as ε goes to zero, as (2.9) proves. As
a consequence, wε goes to zero in L

N
N−2 2∗

(
Bδ′(y0)

)
, uniformly with respect to y0,

and thus in L
N
N−2 2∗

(
B3/(2R)(0)

)
. Iterating the process, we find through (2.12) that

wε goes to zero in every Lp
(
B3/(2R)(0)

)
, p <∞. This implies, taking into account

(2.7), that aε goes to zero in Lq
(
B3/(2R)(0)

)
for some q > N/2 (actually, for any

q <∞). Then, standard theory for elliptic equations (see e.g. Theorem 8.24 in [9])
ensures that wε goes to zero in L∞

(
B1/R(0)

)
. Therefore, gε(y, uε) = u2∗−1−ε

ε in
RN \ Ω and uε is a solution of (1.1).
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3. Parametrization of the variational problem

In this section, we shall still consider the general case N ≥ 3. Let k ∈ N∗. We
set

(3.1) Dε =
{

(Λ, X) ∈ (R∗+)k × (∂Ω)k s.t. f1(ε) < λi < f2(ε)

and |xi − xj | > h(ε), 1 ≤ i, j ≤ k, i 6= j
}

where Λ = (λ1, . . . , λn), X = (x1, . . . , xn) and f1, f2, h are positive functions
such that f1(ε) and f2(ε) go to infinity, h(ε) goes to zero as ε goes to zero, and
whose precise expression will be determined later. We define also, for (Λ, X) ∈
(R∗+)k × (∂Ω)k

(3.2) EΛ,X =
{
v ∈ D1,2(RN \ Ω) s.t. 〈v, Ui〉 =

〈
v,
∂Ui
∂λi

〉
=
〈
v,
∂Ui
∂τi,j

〉
= 0,

1 ≤ i ≤ k, 1 ≤ j ≤ N − 1
}

where Ui = Uλi,xi , and (τi,1, . . . , τi,j) is an orthogonal system of coordinates of the
tangent space to ∂Ω at xi. Lastly, for δ > 0, we define

(3.3) Mε,δ =
{

(A,Λ, X, v) ∈ Rk × (R∗+)k × (∂Ω)k ×D1,2(RN \ Ω)

s.t. |αi − 1| < δ, 1 ≤ i ≤ k ; (Λ, X) ∈ Dε ; v ∈ EΛ,X , ‖v‖ < δ
}

where A = (α1, . . . , αk), and we consider on Mε,δ the functional

(3.4) Jε(A,Λ, X, v) = Ĩε

( k∑
i=1

αiUi + v

)
.

According to [3, 4], we know that for ε and δ small enough, (A,Λ, X, v) is a
critical point of Jε in Mε,δ if and only if u =

∑k
i=1 αiUi + v is a critical point of

Ĩε in D1,2(RN \ Ω). Let us remark that, in consideration of (3.2), (A,Λ, X, v) is a
critical point of Jε in Mε,δ if and only if there exists Lagrange multipliers Ai, Bi,
Cij , 1 ≤ i ≤ k, 1 ≤ j ≤ N − 1 such that

∂Jε
∂αi

= 0(3.5)

∂Jε
∂λi

= Bi
〈∂2Ui
∂λ2

i

, v
〉

+
N−1∑
`=1

Ci`
〈 ∂2Ui
∂λi∂τij

, v
〉

(3.6)

∂Jε
∂τij

= Bi
〈 ∂2Ui
∂λi∂τij

, v
〉

+
N−1∑
`=1

Ci`
〈 ∂2Ui
∂τij∂τi`

, v
〉

(3.7)

∂Jε
∂v

=
k∑
i=1

AiUi +
k∑
i=1

Bi
∂Ui
∂λi

+
k∑
i=1

N−1∑
`=1

Ci`
∂Ui
∂τi`

.(3.8)

In order to find critical points of Jε inMε,δ we shall proceed in two steps. Firstly
we shall eliminate the non-significant parameters : the αi’s and v. More precisely,
we shall prove the existence of a C1-map which to every (Λ, X) ∈ Dε associates
Aε(Λ, X) ∈ Rk, each αε,i close to 1, and vε ∈ EΛ,X , ‖vε‖ close to zero, such that
(3.5) and (3.8) are satisfied. It will be left to us, in a second time, to show, using
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a topological argument, that the function (Λ, X) 7→ Jε
(
Aε(Λ, X),Λ, X, vε(Λ, X)

)
has a critical point in Dε.

4. The reduced functional

We first perform a change of variables concerning the parameters αi’s, setting

(4.1) A′ = A− 1

where 1 = (1, . . . , 1), that is A′ = (α′1, . . . , α
′
k), with

(4.2) α′i = αi − 1, 1 ≤ i ≤ k.

We define also, on Rk ×D1,2(RN \ Ω), the scalar product

(4.3) � (A, f), (B, g)�=
k∑
i=1

aibi +
∫
RN\Ω

∇f.∇g

and |||·||| will denote the associated norm. Let us expand Jε(A,Λ, X, v) with respect
to w = (A′, v) in a neighborhood of (1, 0) in Rk ×EΛ,X . We can write, using Riesz
representation theorem

(4.4) Jε(A,Λ, X, v) = Jε(1,Λ, X, 0)+� fε,Λ,X , w � +
1
2
� Qε,Λ,Xw,w �

+Rε,Λ,X(w)

where fε,Λ,X ∈ Rk × EΛ,X is such that

(4.5) � fε,Λ,X , w � =
k∑
i=1

[〈 k∑
j=1

Uj , Ui
〉
−
∫
RN\Ω

Uigε
(
y,

k∑
j=1

Uj
)]
α′i

−
∫
RN\Ω

gε
(
y,

k∑
j=1

Uj
)
v,

Qε,Λ,X is an endomorphism of Rk × EΛ,X such that

(4.6) � Qε,Λ,Xw,w � =
k∑

i,j=1

[
〈Ui, Uj〉 −

∫
RN\Ω

UiUj
∂gε
∂t

(
y,

k∑
`=1

U`
)]
α′iα

′
j

−
k∑
i=1

(∫
R3\Ω

∂gε
∂t

(
y,

k∑
`=1

U`
)
Uiv

)
α′i

+ ‖v‖2 −
∫
RN\Ω

∂gε
∂t

(
y,

k∑
`=1

U`
)
v2,

and Rε,Λ,X satisfies

(4.7) R
(m)
ε,Λ,X(w) = O

(
‖w‖min(2∗−ε,3)−m), m = 0, 1, 2.

(In the special case N = 3, 2∗ = 6 and R(m)
ε,Λ,X(w) = O

(
‖w‖3−m

)
, m = 0, 1, 2.) The

fact that equations (3.5) and (3.8) are satisfied is equivalent to

(4.8) fε,Λ,X +Qε,Λ,Xw +R′ε,Λ,X = 0.
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In the special case N = 3 we choose in the definition (3.1) of Dε (for reasons that
will become clear later)

(4.9) f1(ε) =
a1

ε
ln

1
ε
, f2(ε) =

a2

ε
ln 1

ε , h(ε) = b
(

ln
1
ε

)−3/4

where a1, a2, b, with a1 < a2, are strictly positive constants which will be de-
termined later. (For N ≥ 4, following [15], we would choose f1(ε) = a1/ε,
f2(ε) = a2/ε, h(ε) = ε1− 1+θ

N−2 with θ a small positive number.) Then it is proved in
Appendix B1 that

(4.10) |||fε,Λ,X ||| = O
(
ε1/2

(
ln

1
ε

)−1/2)
.

Moreover it is proved in Appendix B2 that Qε,Λ,X is invertible and there exists ρ,
independent of ε and (Λ, X) ∈ Dε, such that

(4.11)
∣∣∣∣∣∣∣∣∣Q−1

ε,Λ,X

∣∣∣∣∣∣∣∣∣ ≤ ρ.
Let us consider now the map Fε,Λ,X , from a neighborhood of (0, 0) in (Rk×EΛ,X)2

to Rk × EΛ,X defined by

Fε,Λ,X(f, w) = f +Qε,Λ,Xw +R′ε,Λ,X(w).

We have

Fε,Λ,X(0, 0) = 0 and
∂Fε,Λ,X
∂w

= Qε,Λ,X +R′′ε,Λ,X(w).

From (4.11) and (4.7), we deduce the existence of η > 0 such that for ε small enough
and |||w||| < η, ∂Fε,Λ,X

∂w is invertible. Then, taking into account (4.10), the implicit
function theorem allows us to state:

Proposition 4.1. There exists ε0 > 0 such that for every ε ∈ (0, ε0), a C1-map
exists which to every (Λ, X) ∈ Dε associates wε,Λ,X = (A′ε,Λ,X , vε,Λ,X) ∈ Rk×EΛ,X

such that Fε,Λ,X(fε,Λ,X , wε,Λ,X) = 0. This means that (3.5) and (3.8) are satisfied
when the αi’s and v are such that A = 1 +A′ε,Λ,X and v = vε,Λ,X . Moreover, when
N = 3,

|α′i;ε,Λ,X | = |αi;ε,Λ,X − 1| = O
(
ε1/2

(
ln 1

ε

)−1/2)
, 1 ≤ i ≤ k,(4.12)

‖vε,Λ,X‖ = O
(
ε1/2

(
ln 1

ε

)−1/2)(4.13)

as ε goes to zero.

Remark. Actually, estimate (4.12) could be improved: we could prove that
|α′i| = O(ε ln 1

ε ). However, (4.12) is sufficient for our purposes.

We consider now the reduced functional

(4.14) J̃ε(Λ, X) = Jε
(
αε(Λ, X),Λ, X, vε(Λ, X)

)
in Dε. For J̃ε and its derivatives with respect to the λi’s, the following expansion
holds:



12 ADÉLAÏDE OLIVIER AND OLIVIER REY

Proposition 4.2. Let N = 3. For ε ∈ (0, ε0) and (Λ, X) ∈ Dε, we have:

J̃ε(Λ, X) = kK1,ε +
k∑
i=1

(
K2H(xi)

lnλi
λi

+K3ε lnλi
)

(4.15)

−K4

k∑
i,j=1
i6=j

1

λ
1/2
i λ

1/2
j |xi − xj |

+ O
(
ε
(

ln 1
ε

)−1)
,

∂J̃ε
∂λi

(Λ, X) = −K2H(xi)
lnλi
λ2
i

+K3
ε

λi
+ O

(
ε2
(

ln 1
ε

)−5/4)(4.16)

where Kε,1, K2, K3, K4 are strictly positive constants.

This proposition is proved in Appendix A. We are now able to prove Theorem 1.2.

5. Proof of Theorem 1.2

For sake of simplicity, we always assume now that N = 3. We shall concentrate
our attention on part (1) of Theorem 1.2 (the proof of part (2) will then be straight-
forward). We look for a critical point (Λ, X) ∈ Dε of J̃ε. The xi’s will be supposed
to belong to the subset S which, according to the assumptions of Theorem 1.2, is
such that

0 < max
y∈∂S

H(y) < max
y∈S

H(y) = Hm.

More precisely, the xi’s will be supposed to converge, as ε goes to zero, to points
x̄i which satisfy H(x̄i) = Hm. Then according to (4.16), the λi’s should be close
to λ(ε) defined by

(5.1)
lnλ(ε)
λ(ε)

=
K3ε

K2Hm
.

A simple computation yields the expansions

λ(ε) =
K2Hm

K3ε
ln

1
ε

+
K2Hm

K3ε
ln ln

1
ε

+ O
(1
ε

)
,(5.2)

lnλ(ε) = ln
1
ε

+ ln ln
1
ε

+ O(1).(5.3)

Now, we are able to fix a1 and a2 in the definition (4.9) of functions f1 and f2

which occur in (3.1): we choose a1 and a2 such that

(5.4) 0 < a1 <
K2Hm

K3
< a2.

(For example, in view of (A.23), we may take a1 = 15Hm/π and a2 = 17Hm/π.)

In order to prove the theorem, we are going to argue by contradiction. The
general strategy is the following: we define two levels, cε,1 and cε,2, cε,1 < cε,2, and
assume that J̃ε has no critical value between them. Then we use the gradient flow
to deform the level sets of J̃ε corresponding to cε,2 and cε,1 one into the other. The
difference of topology between the two level sets provides us with a contradiction.

Let us make the argument precise. Firstly, we define the two levels cε,1 and cε,2
as follows. In view of (4.15), we set

(5.5) c1,ε = kKε,1 +
k∑
i=1

(
K2Hm

lnλ(ε)
λ(ε)

+K3ε lnλ(ε)
)
− ε
(

ln
1
ε

)−1/4
.
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Taking into account (5.1), we can also write

(5.6) c1,ε = kKε,1 + kK3ε
(

lnλ(ε) + 1
)
− ε
(

ln
1
ε

)−1/4
.

Concerning c2,ε, we just set c2,ε = kKε,1+τ where τ is some small positive constant.
It is clear that for ε small enough, c2,ε > c1,ε. Next, we have to define the subset
of Dε on which the deformation argument will be implemented. We set

(5.7) S′ =
{
x ∈ S s.t. H(x) > Hm − a0

(
ln

1
ε

)−1/4
}

where a0 is a strictly positive constant to be determined later,

(5.8) M =
{
X ∈ (∂Ω)k s.t. xi ∈ S′ and |xi − xj | > b

(
ln

1
ε

)−3/4
,

1 ≤ i, j ≤ k, i 6= j
}

(b, which already occurs in the definition (4.9), will be determined later) and T is
the interval

(5.9) T =
](

1−D
(

ln
1
ε

)−1/4
)
λ(ε),

(
1 +D

(
ln

1
ε

)−1/4
)
λ(ε)

[
where D is a large constant which will be chosen later. We note that for ε small
enough, every λ ∈ T satisfies a1

ε ln 1
ε < λ < a2

ε ln 1
ε , and T k ×M ⊂ Dε. We note

also that for ε small enough, T k ×M ⊂ J̃ε
cε,2

, where J̃ε
ω

, ω ∈ R, is the level set
{(Λ, X) ∈ Dε s.t. J̃ε(Λ, X) < ω}.

We consider now the gradient flow

(5.10)


d
dt
(
Λ(t), X(t)

)
= −∇J̃ε

(
Λ(t), X(t)

)
(
Λ(0), X(0)

)
∈ (T k ×M)

Arguing by contradiction, we assume :

(H) J̃ε has no critical value between cε,1 and cε,2 in T k ×M.

The following holds:

Lemma 5.1. The flow line
(
Λ(t), X(t)

)
defined by (5.8) and starting from a point

of T k ×M does not leave T k ×M before it reaches J̃ε
cε,1

.

Proof. We have to check that for any (Λ, X) ∈ ∂(T k × M) either −∇J̃ε points
inwards, or J̃ε is less than cε,1.

Case 1. X ∈ ∂M .
Case 1a. There is some j such that H(xj) = Hm − a0

(
ln 1

ε

)−1/4.
According to (4.15), we have

(5.11) J̃ε(Λ, X) ≤ kK1,ε +
k∑
i=1

(
K2H(xi)

lnλi
λi

+K3ε lnλi
)

+K2

(
H(xj)−Hm

) lnλj
λj

+ O
(
ε
(

ln 1
ε

)−1
)
.
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When λi = λ(ε)(1 + ζi), ζi small, a simple computations yields

K2Hm
lnλi
λi

+K3ε lnλi = K2Hm
lnλ(ε)
λ(ε)

+K3ε lnλ(ε) + O
(
ζi
λ(ε) + εζ2

i

)
and, if ζi = O

((
ln 1

ε

)−1/4
)

, as it is the case when λi ∈ T

ζi
λ(ε) + εζ2

i = O
(
ε
(

ln 1
ε

)−1/2
)
.

Moreover, we have, using (5.9) and (5.1) (5.2)

lnλj
λj

=
lnλ(ε)
λ(ε)

+ O
(
ζj

lnλ(ε)
λ(ε)

)
=

K3ε

K2Hm
+ O

(
ε
(

ln 1
ε

)−1/4
)
.

Therefore, taking into account (5.5),

J̃ε(Λ, X) ≤ cε,1 + ε
(

ln 1
ε

)−1/4 − a0
K3

Hm
ε
(

ln 1
ε

)−1/4 + O
(
ε
(

ln 1
ε

)−1/2
)

so that J̃ε(Λ, X) < cε,1 for ε small enough, provided that a0 >
Hm
K3

. For example
we set in (5.7)

(5.12) a0 = 2
Hm

K3

(or, in view of (A.23), a0 = 64√
3π2Hm).

Case 1b. There is some i, j, i 6= j, such that |xi − xj | = b
(

ln 1
ε

)−3/4.
According to (4.15) and using the previous computations, we have in that case

J̃ε(Λ, X) ≤ cε,1 + ε
(

ln 1
ε

)−1/4 − K4

bλ
1/2
i λ

1/2
j

ε
(

ln 1
ε

)3/4 + O
(
ε
(

ln 1
ε

)−1/2
)
.

As we have also, from (5.9)

1

λ
1/2
i λ

1/2
j

=
1

λ(ε)

(
1 + O

((
ln 1

ε

)−1/4
))

and from (5.2)

(5.13)
1

λ(ε)
=

K3ε

K2Hm

[
1

ln 1
ε

+ O
(

ln ln
1
ε(

ln
1
ε

)2

)]
,

we obtain

J̃ε(Λ, X) ≤ cε,1 + ε
(

ln 1
ε

)−1/4 − K3K4

bK2Hm
ε
(

ln 1
ε

)−1/4 + o
(
ε
(

ln 1
ε

)−1/4
)
.

Therefore, J̃ε(Λ, X) < cε,1 for ε small enough, provided that b < K3K4
K2Hm

. For
example, we set in (4.9) and (5.8)

(5.14) b =
K3K4

2K2Hm

(or, in view of (A.23), b =
√

3π2

32Hm
).

Case 2. Λ ∈ ∂T .

Case 2a. There is some j such that λj =
(

1 +D
(

ln 1
ε

)−1/4
)
λ(ε).
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In view of (4.16), we compute, using the fact that H(xi) ≤ Hm, (5.1)–(5.3) and
(5.13)

−K2H(xi)
lnλj
λ2
j

+K3
ε

λj
≥ −K2Hm

lnλj
λ2
j

+K3
ε

λj

≥ K2
3

K2Hm
Dε2

(
ln

1
ε

)−5/4 + o
(
ε2
(

ln 1
ε

)−5/4
)
.

From (4.16), we know that there exists a constant C, independent of D, such that

∂J̃ε
∂λi

(Λ, X) ≥ −K2H(xi)
lnλi
λ2
i

+K3
ε

λi
− C

(
ε2
(

ln 1
ε

)−5/4)
.

Therefore, if D is chosen large enough, so that K2
3

K2Hm
D > C, the inequality implies

∂fJε
∂λj

(Λ, X) > 0, so that −∇J̃ε(Λ, X) is directed toward the interior of T k ×M .

Case 2b. There is some j such that λj =
(

1−D
(

ln 1
ε

)−1/4
)
λ(ε).

According to (4.16), (5.7) and (5.12), we have

∂J̃ε
∂λj

(Λ, X) ≤ −K2Hm

(
1− 2

K3

(
ln

1
ε

)−1/4
) lnλj
λ2
j

+K3
ε

λj
+ O

(
ε2
(

ln 1
ε

)−5/4
)

and the same kind of computations as in the previous subcase yield

∂J̃ε
∂λj

(Λ, X) ≤ − K2
3

K2Hm

(
D − 2

K3

)
ε2
(

ln
1
ε

)−5/4 + O
(
ε2
(

ln 1
ε

)−5/4
)

where once again the last term denotes a quantity whose absolute value is less than
Cε2

(
ln 1

ε

)−5/4 for some constant C independent of D. Consequently, if D is chosen

large enough, ∂fJε
∂λj

(Λ, X) < 0, so that −∇J̃ε(Λ, X) is directed toward the interior of
T k ×M . �

We can now complete the proof of Theorem 1.2. We define S′′ ⊂ S′ and M ′ ⊂M
as

(5.15) S′′ =
{
x ∈ S s.t. H(x) > Hm −

Hm

4kK3

(
ln

1
ε

)−1/4
}

and

(5.16) M ′ =
{
X ∈ (∂Ω)k s.t. xi ∈ S′′

and |xi − xj | > 4k(k − 1)
K3K4

K2Hm

(
ln

1
ε

)−3/4
, 1 ≤ i, j ≤ k, i 6= j

}
.

We claim that for ε small enough

(5.17) ∀(Λ, X) ∈ T k ×M ′ J̃ε(Λ, X) > cε,1.

Let us assume that (5.17) is true. For X ∈ M ′, we take (Λ(ε), X) as initial
value in (5.10) – with Λ(ε) =

(
λ(ε), . . . , λ(ε)

)
. Lemma 5.1 and (5.17) imply that

the flow line has to meet ∂M ′ before
(
Λ(t), X(t)

)
reaches J̃ε

cε,1
. Consequently the

flow, projected onto the X-variable, provides us with a deformation of M ′ onto
∂M ′. However, M ′ is topologically different from ∂M ′ – see Proposition B1 in [8]
– hence a contradiction. Consequently, assumption (H) is not true – that is, J̃ε has
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a critical point in T k×M , which provides us with a solution of (1.1) satisfying the
statements of Theorem 1.2 (1).

It only remains to prove (5.17). Let (Λ, X) ∈ T k ×M ′. According to (4.15), we
have

J̃ε(Λ, X) = kK1,ε +
k∑
i=1

(
K2Hm

lnλi
λi

+K3ε lnλi
)
−

k∑
i=1

K2

(
Hm −H(xi)

) lnλi
λi

−K4

k∑
i,j=1
i6=j

1

λ
1/2
i λ

1/2
j |xi − xj |

+ O
(
ε
(

ln 1
ε

)−1
)
.

We remark that for λi ∈ T

lnλi
λi

=
K3ε

K2Hm
+ O

(
ε
(

ln 1
ε

)−1/4
)

so that, using (5.15),

k∑
i=1

K2

(
Hm −H(xi)

) lnλi
λi
≤ ε

4
(

ln
1
ε

)−1/4 + O
(
ε
(

ln 1
ε

)−1/2
)
.

We have also, using (5.16) and (5.2),

K4

k∑
i,j=1
i6=j

1

λ
1/2
i λ

1/2
j |xi − xj |

≤ ε

4
(

ln
1
ε

)−1/4 + O
(
ε
(

ln 1
ε

)−5/4 ln ln 1
ε

)
.

Lastly, we remark that in view of (5.1) and (5.9)

K2Hm
lnλi
λi

+K3ε lnλi = K2Hm
lnλ(ε)
λ(ε)

+K3ε lnλ(ε) + O
(
ε
(

ln 1
ε

)−1/4
)
.

Then, taking into account definition (5.5) of cε,1, we obtain

J̃ε(Λ, X) ≥ cε,1 +
ε

2
(

ln
1
ε

)−1/4 + O
(
ε
(

ln 1
ε

)−1/2
)

and (5.17) follows. This ends the proof of the first part of Theorem 1.2.

The proof of the second part is straightforward. Indeed, in that case, the only
thing we have to do is to minimize J̃ε(λ, x) in T × S′. One can easily deduce from
the previous computations that such a minimum cannot lie on the boundary of
T × S′ – whence the existence of a critical point of J̃ε which provides us with the
desired solution of (1.1).

Appendix A.

We begin this appendix by a number of integral estimates, which will be useful
in establishing Proposition 4.2.
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A.1. Integral estimates. We recall that Ui denotes the function Uλi,xi defined
by (1.2), where xi is assumed to belong to the boundary of Ω. In the first place, we
state some results concerning integrals involving only Ui and its derivatives with
respect to λi and xi :

Lemma A.1. As λi →∞, we have

‖Ui‖2 =
3
√

3π2

8
+
√

3πH(xi)
lnλi
λi

+ O
( 1
λi

)
,(A.1) ∫

R3\Ω
U6
i =

3
√

3π2

8
+

3
√

3π
4

H(xi)
λi

+ O
( 1
λ2
i

)
,(A.2) ∫

R3\Ω
U6−ε
i =

3
√

3π2

8
− 3
√

3π2

16
ε lnλi +

3
√

3π2

32
(4 ln 2− 1− ln 3)ε(A.3)

+
3
√

3π2

4
H(xi)
λi

+ O
(
ε2 ln2 λi +

1
λ2
i

)
as ε lnλi → 0,

〈
Ui,

∂Ui
∂λi

〉
= −
√

3π
2

H(xi)
lnλi
λ2
i

+ O
( 1
λ2
i

)
,(A.4)

〈
Ui,

∂Ui
∂τi`

〉
= −
√

3π
2

∂H

∂τi`
(xi)

lnλi
λi

+ O
( 1
λi

)
,(A.5) ∥∥∥∂Ui

∂λi

∥∥∥2

=
15
√

3π2

128λ2
i

+ O
( lnλi
λ3
i

)
,(A.6)

〈∂Ui
∂λi

,
∂Ui
∂τi`

〉
= O

( lnλi
λ2
i

)
,(A.7)

〈∂Ui
∂τı`

,
∂Ui
∂τim

〉
=

15
√

3π2

128
λ2
i δ`m + O

(
λi lnλi

)
.(A.8)

Proof. (A.1) and (A.2) are proved in Appendix C of [11]. Let us prove (A.3).
Outside of Bτ (xi), where τ > 0 is some fixed number, Ui(y) behaves as λ−1/2

i |y −
xi|−1, whence ∫

(R3\Ω)∩Bτ (xi)c
U6−ε
i = O

( 1
λ3
i

)
.

In Bτ (xi), we can write

U−εi (y) = exp
(
−ε lnUi(y)

)
= 1−ε

2
lnλi+

ε

2
ln
(
1+λ2

i |y−xi|2
)
−ε

4
ln 3+O

(
ε2(lnλi)2

)
.

On the one hand ∫
(R3\Ω)∩Bτ (xi)

U6
i =

∫
R3\Ω

U6
i + O

( 1
λ3
i

)
and the integral of U6

i over R3 \ Ω is given by (A.2). On the other hand∫
(R3\Ω)∩Bτ (xi)

U6
i ln

(
1 + λ2

i |y − xi|2
)

=
∫
R3\Ω

U6
i ln

(
1 + λ2

i |y − xi|2
)

+ O
( 1
λ3
i

)
and similarly to (A.2)∫

R3\Ω
U6
i ln

(
1 + λ2

i |y − xi|2
)

=
1
2

∫
R3
U6
i ln

(
1 + λ2

i |y − xi|2
)

+ O
( 1
λi

)
.
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Lastly, using the residue theorem, we compute∫
R3
U6
i ln

(
1 + λ2

i |y − xi|2
)

=
3
√

3π2

8
(4 ln 2− 1).

Gathering these results, we obtain (A.3).

Estimates (A.4)–(A.8) follow from Appendix D of [12] – although in that paper
N is assumed to be larger than 5, the computations carried out therein extend
straightforwardly to the case N = 3, with the minor needed modifications. �

In the next lemma, we collect the estimates relative to integrals involving both
Ui and Uj , i 6= j. Following [3], we set

(A.9) εij =
(λi
λj

+
λj
λi

+ λiλj |xi − xj |2
)−1/2

.

Lemma A.2. Let i 6= j. As λi, λj →∞ and εij → 0, we have∫
R3\Ω

U5
i Uj = 2

√
3πεij + O

( εij

λ
1/2
i

+ ε3
ij

)
as εij → 0,(A.10) ∫

∂Ω

∂Ui
∂ν

Uj = O
(∣∣ ln |xi − xj |∣∣

λ
1/2
i λ

1/2
j

)
as λi|xi − xj |, λj |xi − xj | → ∞,(A.11)

〈Ui, Uj〉 = 2
√

3πεij + O
(∣∣ ln |xi − xj |∣∣

λ
1/2
i λ

1/2
j

+
εij

λ
1/2
i

+ ε3
ij

)
,(A.12)

as λi|xi − xj |, λj |xi − xj | → ∞〈
Ui,

∂Uj
∂λj

〉
= O

(εij
λj

+

∣∣ ln |xi − xj |∣∣
λ

1/2
i λ

3/2
j

)
,(A.13)

〈
Ui,

∂Uj
∂τj`

〉
= O

(
λjεij +

λ
1/2
j

λ
1/2
i

∣∣ ln |xi − xj |∣∣),(A.14)

〈∂Ui
∂λi

,
∂Uj
∂λj

〉
= O

( εij
λiλj

+

∣∣ ln |xi − xj |∣∣
λ

3/2
i λ

3/2
j

)
,(A.15)

〈∂Ui
∂λi

,
∂Uj
∂τj`

〉
= O

(λjεij
λi

+
λ

1/2
j

λ
3/2
i

∣∣ ln |xi − xj |∣∣),(A.16)

〈 ∂Ui
∂τi`

,
∂Uj
∂τjm

〉
= O

(
λiλjεij + λ

1/2
i λ

1/2
j

∣∣ ln |xi − xj |∣∣).(A.17)

Proof. We know, from formula (E.1) in [3], that for N ≥ 3∫
RN

U
N+2
N−2
i Uj =

(
N(N − 2)

)N/2
CNεij + O

(
ε

N
N−2
ij

)
with

CN =
∫

RN

dx(
1 + |x|2

)N+2
2

=
σN−1

N
.

Therefore, for N = 3, ∫
R3
U5
i Uj = 4

√
3πεij + O

(
ε3
ij

)
.



A NONLINEAR NEUMANN PROBLEM IN 3-DIMENSIONAL EXTERIOR DOMAINS 19

It is easily checked, through a rescaling, that the integral of U5
i Uj over R3 \ Ω is

equal to half of the integral over the whole space, to within a small amount which
can be estimated proceeding as in Appendix C of [11]. (A.10) follows.

We turn to (A.11). Up to a translation and a rotation of the coordinates in R3,
we can assume that xi = 0, and that for τ > 0 small enough

(A.18) Ω ∩Bτ (0) =
{
y = (y′, y3) ∈ R2 × R s.t. |y| < R, y3 > f(y′)

}
where f is a smooth function such that f(0) = 0, f ′(0) = 0. We have, for y ∈
∂Ω ∩Bτ (0),

∂Ui
∂ν

(y) =
∑
`=1,2

∂Ui
∂xi`

(y)
∂f

∂y`
(y′)− ∂Ui

∂xi3
= O

( λ
5/2
i |y′|2(

1 + λ2
i |y′|2

)3/2).
Let us assume first that d = |xi − xj | > τ

2 . In Bτ (0), Uj = O
(
λ
−1/2
j

)
, so that∫

∂Ω∩Bτ (0)

∂Ui
∂ν

Uj = O
( 1

λ
1/2
j

∫ τ

0

λ
5/2
i r3dr

(1 + λ2
i r

2)3/2

)
= O

( 1

λ
1/2
i λ

1/2
j

)
.

Outside of Bτ (0), ∂Ui
∂ν = O

(
λ
−1/2
i

)
, so that∫

∂Ω\Bτ (0)

∂Ui
∂ν

Uj = O
( 1

λ
1/2
i

∫
∂Ω\Bτ (0)

λ
1/2
j

(1 + λ2
j |y − xj |2)1/2

dy
)

= O
( 1

λ
1/2
i λ

1/2
j

∫
∂Ω\Bτ (0)

dy
|y − xj |

)
= O

( 1

λ
1/2
i λ

1/2
j

)
.

Let us assume now that d = |xi − xj | goes to zero. In Bd/2(0), Uj = O
(
λ
−1/2
j d−1

)
,

so that∫
∂Ω∩Bd/2(0)

∂Ui
∂ν

Uj = O
( 1

λ
1/2
j d

∫ d/2

0

λ
5/2
i r3dr

(1 + λ2
i r

2)3/2

)
= O

( 1

λ
1/2
i λ

1/2
j

)
.

In the same way, as ∂Ui
∂ν = O

(
λ
−1/2
i d−1

)
in ∂Ω ∩Bd/2(xj), we have∫

∂Ω∩Bd/2(xj)

∂Ui
∂ν

Uj = O
( 1

λ
1/2
i λ

1/2
j

∫
∂Ω∩Bd/2(xj)

dy
|y − xj |

)
= O

( 1

λ
1/2
i λ

1/2
j

)
and the same estimate holds for the integral over ∂Ω\Bτ (0), since outside of Bτ (0),
∂Ui
∂ν = O

(
λ
−1/2
i

)
. Finally we notice that in ω =

(
∂Ω∩Bτ (0)

)
\
(
Bd/2(0)∪Bd/2(xj)

)
,

|y − xj | ≤ 1
3 |y|, and

∂Ui
∂ν

Uj = O
( λ

5/2
i |y′|2(

1 + λ2
i |y′|2

)3/2 λ
1/2
i(

1 + λ2
j |y′|2

)1/2) = O
( 1

λ
1/2
i λ

1/2
j |y′|2

)
.

Consequently ∫
ω

∂Ui
∂ν

Uj = O
( 1

λ
1/2
i λ

1/2
j

∫ τ

d/2

dr
r

)
= O

( | ln d|
λ

1/2
i λ

1/2
j

)
.

and (A.11) is proved.
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(A.12) follows from (A.10) and (A.11), since

〈Ui, Uj〉 =
∫
R3\Ω

U5
i Uj −

∫
∂Ω

∂Ui
∂ν

Uj

(with ν the outward normal to Ω). (A.13)–(A.17) follow from computations quite
similar to those above (some of these estimates could be improved, but they are
sufficient for our purposes). �

We are now able to prove Proposition 4.2.

A.2. Proof of Proposition 4.2. From now on, in accordance with the hypotheses
of Proposition 4.2, we assume that ε ∈ (0, ε0) and (Λ, X) ∈ Dε. This means, in
view of (3.1) and (4.9),

(A.19)
a1

ε
ln

1
ε
< λi <

a2

ε
ln

1
ε
, 1 ≤ i ≤ k ; |xi − xj | > b

(
ln

1
ε

)−3/4
.

We notice that in that case, εij defined by (A.9) is such that

(A.20) εi,j =
1

λ
1/2
i λ

1/2
j |xi − xj |

+ O
(
ε3
(

ln 1
ε

)−3/4
)

; εi,j = O
(
ε
(

ln 1
ε

)−1/4
)
.

Proof of (4.15). From (4.14) and Proposition 4.1, we have

J̃ε(Λ, X) = Jε(1,Λ, X, 0) + O
(
ε
(

ln 1
ε

)−1
)
.

Next we have

Jε(1,Λ, X, 0) =
1
2

∫
R3\Ω

∣∣∣∇( k∑
i=1

Ui
)∣∣∣2 − 1

6− ε

∫
R3\Ω

( k∑
i=1

Ui
)6−ε

since, in accordance with the definition of gε, gε
(∑k

i=1 Ui
)

=
(∑k

i=1 Ui
)5−ε pro-

vided that ε is small enough (implying, through (A.19), that the λi’s are large
enough). On the one hand∫

R3\Ω

∣∣∣∇( k∑
i=1

Ui
)∣∣∣2 =

k∑
i=1

∫
R3\Ω

∣∣∇Ui∣∣2 +
∑

1≤i,j≤k
i6=j

∫
R3\Ω

∇Ui.∇Uj

– quantities which are estimated by (A.1) and (A.12). On the other hand

(A.21)
∫
R3\Ω

( k∑
i=1

Ui
)6−ε =

k∑
i=1

∫
R3\Ω

U6−ε
i + (6− ε)

∑
1≤i,j≤k
i6=j

∫
R3\Ω

U5−ε
i Uj

+ O
( ∑

1≤i,j≤k
i6=j

∫
R3\Ω

U4−ε
i U2

j

)
.

The first integral on the right hand side is estimated by (A.3). Concerning the
second one, we remark that U−εi = 1 + O(ε lnλi) as ε lnλi goes to zero. Therefore,
(A.19) yields U−εi = 1 + O

(
ε
(

ln 1
ε

)−1), and∫
R3\Ω

U5−ε
i Uj =

(
1 + O

(
ε
(

ln 1
ε

)−1
))∫

R3\Ω
U5
i Uj
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the last integral being estimated by (A.10). Lastly, we know from formula (E.3) in
[3] that for N ≥ 3, i 6= j,

(A.22)
∫

RN
Uai U

b
j =

(
εij
(

ln 1
εij

)N−2
N

)min(a,b)

, a, b > 1; a+ b =
2N
N − 2

as εi,j goes to zero. In our case, with N = 3, a = 4, b = 2, we obtain, using (A.19)∫
R3\Ω

U4−ε
i U2

j = O
(∫

R3
U4
i U

2
j

)
= O

(
ε2
(

ln 1
ε

)1/2)
.

Gathering these results, we obtain (4.15), with

(A.23)


Kε,1 =

√
3π2

8

(
1−

( 1
12

+
1
8

(4 ln 2− 1− ln 3)
)
ε
)
,

K2 =
√

3π
2

, K3 =
√

3π2

32
, K4 =

√
3π.

�

Proof of (4.16). As J̃ε(Λ, X) = Jε
(
Aε(Λ, X),Λ, X, vε(Λ, X)

)
, and ∂Jε

∂αi
= 0 for

all j,

(A.24)
∂J̃ε
∂λi

(Λ, X) =
∂Jε
∂λi

(Λ, X) +
〈∂Jε
∂v

,
∂vε
∂λi

〉
.

Let us first compute ∂Jε
∂λi

(Λ, X). According to (2.4) and (3.4), we have

1
αi

∂Jε
∂λi

(Λ, X) =
∫
R3\Ω

∇
( k∑
j=1

αjUj
)
.∇∂Ui
∂λi
−
∫
R3\Ω

gε
(
y,

k∑
j=1

αjUj + vε
)∂Ui
∂λi

.

The first integral on the right hand side is estimated by (A.4) and (A.13). Con-
cerning the second one, we remark that according to the definition of gε,∫

(R3\Ω)∩BR(0)

gε
(
y,

k∑
j=1

αjUj + vε
)∂Ui
∂λi

=
∫

(R3\Ω)∩BR(0)

(( k∑
j=1

αjUj + vε
)+)5−ε ∂Ui

∂λi

=
∫

(R3\Ω)∩BR(0)

[( k∑
j=1

αjUj
)5−ε + (5− ε)

( k∑
j=1

αjUj
)4−ε

vε

+ O
(( k∑

j=1

αjUj
)3
v2
ε + |vε|5−ε

)]∂Ui
∂λi

.

We notice that ∂Ui
∂λi

= O
(

1
λi
Ui
)
. Then we have

(A.25)
∫

(R3\Ω)∩BR(0)

( k∑
j=1

αjUj
)5−ε ∂Ui

∂λi

= α5−ε
i

∫
(R3\Ω)∩BR(0)

U5−ε
i

∂Ui
∂λi

+ O
( 1
λi

∑
1≤i,j≤k
i6=j

∫
R3\Ω

(U5
i Uj + U5

j Ui)
)
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(we recall that ε lnλj → 0 and U−εj = O(1) for all j). The first integral on the right
hand side may be estimated exactly in the same way as (A.3), and we obtain∫

(R3\Ω)∩BR(0)

U5−ε
i

∂Ui
∂λi

= −
√

3π2

32
ε

λi
+ O

( 1
λ2
i

+ ε2 ln2 λi
λi

)
.

The remaining terms are estimated through (A.10). Next, we write

( k∑
j=1

αjUj
)4−ε = α4−ε

i U4−ε
i + O

(
ελiU

4
i +

( ∑
1≤j≤k
j 6=i

U3
i Uj + U4

j

))
and, as −∆∂Ui

∂λi
= 5U4

i
∂Ui
∂λi

in R3, and
〈
∂Ui
∂λi

, vε
〉

= 0∫
(R3\Ω)∩BR(0)

U4
i

∂Ui
∂λi

vε =
∫
R3\Ω

U4
i

∂Ui
∂λi

vε + O
( 1
λi

∫
BcR(0)

U5
i |vε|

)
= −1

5

∫
∂Ω

∂2Ui
∂λi∂ν

vε + O
( ‖v‖
λ

7/2
i

)
.

Since D1,2(R3 \ Ω) embeds into L4(∂Ω),∫
∂Ω

∂2Ui
∂λi∂ν

vε = O
((∫

∂Ω

∣∣∣ ∂2Ui
∂λi∂ν

∣∣∣4/3)3/4

‖vε‖
)
.

Proceeding as in the proof of Lemma A.2, we remark that outside of Bτ (xi), ∂2Ui
∂λi∂ν

=
o
(

1

λ
3/2
i

)
, and in Bτ (xi), with the notation (A.18),

∂2Ui
∂λi∂ν

(x) = O
( λ

3/2
i |x′|2

(1 + λ2
i |x′|2)3/2

)
.

Then we compute∫
∂Ω∩Bτ (xi)

∣∣∣ ∂2Ui
∂λi∂ν

∣∣∣4/3 = O
(
λ2
i

∫ τ

0

r
8
3 +1

(1 + λ2
i r

2)2
dr
)

= O
( 1
λ2
i

)
so that ∫

∂Ω

∂2Ui
∂λi∂ν

vε = O
(‖vε‖
λ

3/2
i

)
.

We have also

ε lnλi
∫
R3\Ω

U4
i

∣∣∣∂Ui
∂λi

∣∣∣|vε| = O
(
ε

lnλi
λi
‖vε‖

)
and, for j 6= i,∫

R3\Ω
(U3

i Uj + U4
j )
∣∣∣∂Ui
∂λi

∣∣∣|vε| = O
( 1
λi

∫
R3\Ω

(U4
i Uj + UiU

4
j )|vε|

)
= O

(‖vε‖
λi

∫
R3\Ω

(U20/5
i U

6/5
j + U

6/5
i U

20/5
j )|vε|

)
.

This last quantity may be estimated through (A.22). Lastly∫
(R3\Ω)∩BR(0)

(( k∑
j=1

αjUj
)3
v2
ε + |vε|5−ε

)∂Ui
∂λi

= O
(‖vε‖2

λi

)
.
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Finally, in BR+1(0) \ BR(0), we use the fact that |gε(y, u)| ≤ |u|5−ε and Uj =
O
(

1

λ
1/2
i

)
for all j, and in BcR+1(0), we use (2.5) and, taking into account (4.12)

(4.13) and (A.19) (A.20), we obtain

(A.26)
∂Jε
∂λi

(Aε,Λ, X, vε) = −
√

3π
2

H(xi)
lnλi
λ2
i

+
√

3π2

32
ε

λi
+ O

(
ε2
(

ln 1
ε

)−5/4
)
.

Comparing this expansion with (4.16) it appears, in view of (A.24), that it only
remains to prove that

〈
∂Jε
∂ν ,

∂vε
∂λi

〉
= O

(
ε2
(

ln 1
ε

)−5/4
)

. According to (3.8)

〈∂Jε
∂v

,
∂vε
∂λi

〉
=

k∑
j=1

〈
AjUj +Bj

∂Uj
∂λj

+
∑
`=1,2

Cj`
∂Uj
∂τj`

,
∂vε
∂λi

〉
= −Bi

〈∂2Ui
∂λ2

i

, vε
〉
−
∑
`=1,2

Ci`
〈 ∂2Ui
∂λi∂τi`

, vε
〉

since 〈Uj , vε〉 =
〈∂Uj
∂λj

, vε
〉

=
〈 ∂Uj
∂τj`

, vε
〉

= 0 for all j and `. On the one hand,

(A.27)
〈∂2Ui
∂λ2

i

, vε
〉

= O
(‖vε‖
λ2
i

)
;
〈 ∂2Ui
∂λi∂τi`

, vε
〉

= O
(
‖vε‖

)
.

On the other hand, the multipliers Ai, Bi, Ci` which occur in (3.5)–(3.8) can easily
be estimated. Namely, let us take the scaler product of (3.8) with Ui, ∂Ui

∂λi
, ∂Ui
∂τi`

,
1 ≤ i ≤ k, ` = 1, 2 respectively. On one side, we find〈∂Jε

∂v
, Ui
〉

=
∂Jε
∂αi

= 0 ;
〈∂Jε
∂v

,
∂Ui
∂λi

〉
=

1
αi

∂Jε
∂λi

;
〈∂Jε
∂v

,
∂Ui
∂τi`

〉
=

1
αi

∂Jε
∂τi`

.

∂Jε
∂λi

is given by (A.26), and computations quite similar to those establishing (A.26)
show that ∂Jε

∂τi`
= O(1). On the other side, we have linear equations involving the

Ai’s, Bi’s, Ci`’s, whose coefficients are given by estimates (A.1), (A.4)–(A.8) and
(A.12)–(A.17). Such a linear system is quasi-diagonal and invertible, and provides
us with the estimates

Bi = O
(

ln 1
ε

)
; Ci` = O

(
ε2
(

ln 1
ε

)−2
)
.

Then, we deduce from (A.27), (4.13) and (A.19) that〈∂Jε
∂v

,
∂vε
∂λi

〉
= O

(
ε5/2

(
ln 1

ε

)−3/2
)

and the proof of (4.16) is complete. �

Appendix B.

B.1. Proof of (4.10). Let f = fε,Λ,X be defined by (4.5), that is, for w = (A′, v) ∈
Rk × EΛ,X , A′ = (α′1, . . . , α

′
k),

� f, w � =
k∑
i=1

[〈 k∑
j=1

Uj , Ui
〉
−
∫
R3\Ω

Uigε
(
y,

k∑
j=1

Uj
)]
α′i −

∫
R3\Ω

gε
(
y,

k∑
j=1

Uj
)
v.
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First, we remark that according to the definition of gε, gε
(
y,
∑
j Uj

)
=
(∑

j Uj
)5−ε

everywhere, provided that ε is small enough, so that〈 k∑
j=1

Uj , Ui
〉
−
∫
R3\Ω

Uigε
(
y,

k∑
j=1

Uj
)

=
k∑
j=1

〈Uj , Ui〉 −
∫
R3\Ω

( k∑
j=1

Uj
)5−ε

Ui

=
k∑
j=1

[
〈Uj , Ui〉 −

∫
R3\Ω

U5
j Ui

]
+ O

(
ε lnλi +

∑
1≤i,j≤k
i6=j

∫
R3\Ω

(U5
j + UjU

4
i )Ui

)
and, using (A.1) (A.2), (A.10), (A.12) and (A.19) (A.20), we obtain〈 k∑

j=1

Uj , Ui
〉
−
∫
R3\Ω

Uigε
(
y,

k∑
j=1

Uj
)

= O
(
ε ln 1

ε

)
.

We turn now to the integral involving v. We have∫
R3\Ω

gε
(
y,

k∑
j=1

Uj
)
v =

∫
R3\Ω

( k∑
j=1

Uj
)5−ε

v

=
∫
R3\Ω

( k∑
j=1

Uj
)5
v + O

(
ε ln(max

j
λj)‖v‖

)
since

(∑
j Uj

)−ε = 1 + O
(
ε ln(maxj λj)

)
and∫

R3\Ω

( k∑
j=1

Uj
)5|v| ≤ k4

k∑
j=1

∫
R3\Ω

U5
j |v|

≤ k4
k∑
j=1

(∫
R3\Ω

U5
j

) 5
6
(∫

R3\Ω
v6
) 1

6 ≤ C‖v‖

where C is a constant. Next, we have∫
R3\Ω

( k∑
j=1

Uj
)5
v =

k∑
j=1

∫
R3\Ω

U5
j v + O

( ∑
1≤i,j≤k
i6=j

∫
R3\Ω

U4
j Ui|v|

)
and ∫

R3\Ω
U4
j Ui|v| ≤

(∫
R3
U

24
5
j U

6
5
i

) 5
6 ‖v‖

with, according to (A.22) and (A.20)(∫
R3
U

24
5
j U

6
5
i

) 5
6

= O
(
ε
(

ln 1
ε

)1/2)
.

Lastly, we have ∫
R3\Ω

U5
j v =

∫
R3\Ω

−∆Ujv = −
∫
∂Ω

∂Ui
∂ν

v

and we proceed, to estimate the last integral, as we did to estimate the integral
over ∂Ω of U4

i
∂Ui
∂λi

vε. Namely, we observe that D1,2(R3 \ Ω) embeds into L4(∂Ω),
from which we deduce∫

∂Ω

∂Ui
∂ν

v = O
((∫

∂Ω

∣∣∣∂Uj
∂ν

∣∣∣4/3)3/4

‖v‖
)
.
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Far from xi, ∂Ui∂ν = O
(

1

λ
1/2
i

)
, whereas close to xi we can write, with the notation of

(A.18)

∂Uj
∂ν

(x) = O
( λ

5/2
j |x′|2(

1 + λ2
j |x′|2

)3/2)
so that ∫

∂Ω∩Bτ (xi)

∣∣∣∂Uj
∂ν

∣∣∣4/3 = O
(
λ

10
3
j

∫ τ

0

r
8
3 +1

(1 + λ2
jr

2)2
dr
)

= O
( 1

λ
2/3
j

)
and ∫

∂Ω

∂Ui
∂ν

v = O
( ‖v‖
λ

1/2
j

)
.

Then, (4.10) follows from (A.19).

B.2. Proof of the invertibility of Qε,Λ,X . Let Q = Qε,Λ,X by defined by (4.6),
that is, for w = (A′, v) ∈ Rk × EΛ,X

� Qw,w � =
k∑

i,j=1

[
〈Ui, Uj〉 − (5− ε)

∫
R3\Ω

( k∑
`=1

U`
)4−ε

UiUj

]
α′iα

′
j

− (5− ε)
k∑
i=1

(∫
R3\Ω

( k∑
`=1

U`
)4−ε

Uiv

)
α′i

+ ‖v‖2 − (5− ε)
∫
R3\Ω

( k∑
`=1

U`
)
v2

since, as we previously noticed, gε
(
y,
∑
j Uj

)
=
(∑

j Uj
)5−ε and ∂gε

∂t

(
y,
∑
j Uj

)
=

(5−ε)
(∑

j Uj
)4−ε everywhere, provided that ε is small enough. Using (A.1) (A.2),

(A.10), (A.12) and (A.19)–(A.22), we obtain

(B.1) 〈Ui, Uj〉 − (5− ε)
∫
R3\Ω

( k∑
`=1

U`
)4−ε

UiUj

=

 −
3
√

3π2

2 + O
(
ε ln 1

ε

)
if i = j,

O
(
ε
(

ln 1
ε

)−1/4
)

if i 6= j.

Next, we write∫
R3\Ω

( k∑
`=1

U`
)4−ε

Uiv

=
∫
R3\Ω

( k∑
`=1

U`
)4
Uiv + O

(
ε ln(max

`
λ`)‖v‖

)
=
∫
R3\Ω

U5
i v + O

(
ε ln 1

ε‖v‖+
∑

1≤i,j≤k
i6=j

∫
R3\Ω

(U4
j Ui + UjU

4
i )|v|

)
.
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We just proved, in the previous subsection, that∫
R3\Ω

U5
i v = O

( ‖v‖
λ

1/2
i

)
.

Then, using (A.22) and (A.20), we find

(B.2)
∫
R3\Ω

( k∑
`=1

U`
)4−ε

Uiv = O
(
ε1/2

(
ln 1

ε

)−1/2‖v‖
)
.

Lastly, we have to consider the term involving v2 – that is, the quadratic form
in v which writes

Q̃(v) = ‖v‖2 − (5− ε)
∫
R3\Ω

( k∑
`=1

U`
)4−ε

v2

= ‖v‖2 − 5
k∑
`=1

∫
R3\Ω

U4
` v

2 + o
(
‖v‖2

)
.

We want to prove that Q̃ is coercive, with a modulus of coercivity independent of ε
and (Λ, X) ∈ Dε. Together with (B.1) and (B.2), this will prove that Q is invertible,
and the existence of ρ independent of ε and (Λ, X) ∈ Dε such that

∣∣∣∣∣∣Q−1
∣∣∣∣∣∣ ≤ ρ.

We begin by considering the eigenvalue and eigenvector problem in H1(RN ),
N ≥ 3

(B.3) −∆ω = µU
4

N−2
λ,x ω.

The spectrum and the eigenvectors of (B.3) are linked to the spectrum and the
eigenvectors of −∆ of SN , which are known [5]. Namely, the eigenvalues of −∆SN

are λn = n(N + k − 1), n ∈ N, with multiplicity mn = (N+n−2)!(N+2n−1)
n!(N−1)! , and the

corresponding eigenvectors are harmonic polynomials of degree n: λ0 = 0, m0 = 1,
u0 = 1; λ1 = N , m1 = N + 1, u1,i = xi, 1 ≤ i ≤ N + 1; λ2 = 2(N + 1), . . . For u a
function defined on S3, we define a function v in R3 by

u(x) =
(
1 + |y|2

)N−2
N v(y)

where y = Πx is the stereographic projection of SN , the unit sphere of RN+1,
with respect to the north pole xi = 0, 1 ≤ i ≤ N , xN+1 = 1, onto RN identified
to the hyperplane of RN+1 defined by xN+1 = 0. u is an eigenvector of −∆SN

with eigenvalue λn if and only if v solves (B.3) with (λ, x) = (1, 0) and µ = µn =
4λn

N(N−2) +1. In particular, the eigenvectors of (B.3) are U1,0 for µ0, ∂U1,0
∂xi

, 1 ≤ i ≤ N ,

and ∂U1,0
∂λ for µ1. The orthogonality of v to U1,0, ∂U1,0

∂λ , and ∂U1,0
∂xi

, 1 ≤ i ≤ N , in
D1,2(RN ) means that u is orthogonal to 1 and the xi’s, 1 ≤ i ≤ N + 1, so that∫

SN
|∇SNu|2 ≥ λ2

∫
SN

u2.

From such an inequality we deduce, through straightforward computations

(B.4)
∫

RN

(
|∇v|2 − 5U4

1,0v
2
)
≥
(

1− N(N + 2)
4λ2 +N(N − 2)

)∫
RN
|∇v|2.
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Through rescaling, we see that the same inequality holds replacing U1,0 by Uλ,x,
when u is assumed to be orthogonal to Uλ,x, ∂Uλ,x

∂λ , and ∂Uλ,x
∂xi

, 1 ≤ i ≤ N , in
D1,2(RN ).

Let us consider now the eigenvalue and eigenvector problem in H1(RN+ ),

(B.5) −∆ω = µU
4

N−2
λ,0 ω in RN+ ;

∂ω

∂ν
= 0 on ∂RN+

with RN+ = {x = (x1, . . . , xN ) ∈ RN s.t. xN > 0}. A symmetry argument shows
that a solution of (B.5) provides us with a solution of (B.3). Therefore, for this
new problem, the eigenvalues are the same as for (B.3), and the eigenvectors are
the eigenvectors ω of (B.3) such that ∂ω

∂ν = 0 on ∂RN+ . We notice that Uλ,0, ∂Uλ,0
∂λ ,

and ∂Uλ,0
∂xi

, 1 ≤ i ≤ N − 1 satisfy that condition. Consequently, for v orthogonal to

Uλ,0, ∂Uλ,0
∂λ , and ∂Uλ,0

∂xi
, 1 ≤ i ≤ N − 1, in D1,2(RN ), we have the same inequality

as (B.4) replacing RN by RN+ (and U1,0 by Uλ,0). From such an inequality we can
deduce, proceeding as in [2], that for ρ < µ2, x ∈ ∂Ω and λ large enough,∫

RN\Ω
|∇v|2 − 5U4

λ,xv
2 ≥ ρ

∫
RN\Ω

|∇v|2

for any v orthogonal to Uλ,x, ∂Uλ,x
∂λ , and ∂Uλ,x

∂τ`
, 1 ≤ ` ≤ N , in D1,2(RN ). To

complete the proof of the coercivity of Q̃, we proceed as in [12]. We set

d = min
i 6=j
|xi − xj |, Ωi = (R3 \ Ω) ∩Bd/2(xi)

and, defining vi = v1Ωi , we write

vi = v+
i + v−i

with

v−i ∈ Span
(
Ui;

∂Ui
∂λi

;
∂Ui
∂τi`

, ` = 1, 2
)

and v+
i is orthogonal to v−i for the scalar product 〈 , 〉 in Bi. The previous argu-

ments imply that ∫
Ωi

|∇v+
i |

2 − 5U4
i v

2 ≥ ρ
∫

Ωi

|∇v+
i |

2

for λi large enough. On the other hand, multiplying the gradient of

v−i = aiUi + bi
∂Ui
∂λi

+
∑
`=1,2

ci`
∂Ui
∂τi`

by the gradient of Ui, ∂Ui
∂λi

, ∂Ui
∂τi`

respectively, and integrating over Ωi, we obtain a
quasi-diagonal and invertible linear system which allows to estimate ai, bi, cil with
respect to∫

Ωi

∇v−i ∇Ui =
∫

Ωi

∇v∇Ui = −
∫

Ω\Ωi
∇v∇Ui = O

(( ∫
Ω\Ωi

|∇Ui|2
)1/2‖v‖)

and similar formulas for the integrals involving ∂Ui
∂λi

and ∂Ui
∂τi`

. We check that∫
Ω\Ωi

|∇Ui|2 = O
( 1
λid

)
= O

(
ε
(

ln 1
ε

)−1/4
)
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and omitting here the details, we obtain∫
Ωi

|∇v−i |
2 = O

(
ε
(

ln 1
ε

)−1/4‖v‖2
)
.

Consequently, we have∫
Ωi

|∇v|2 − 5U4
i v

2 ≥ ρ
∫

Ωi

|∇v|2 + o
(
‖v‖2

)
and

Q̃(v) = ‖v‖2 −
k∑
i=1

∫
Ωi

|∇v|2 +
k∑
i=1

(∫
Ωi

|∇v|2 − 5
∫

Ωi

U4
i v

2
)

+ 5
k∑
i=1

∫
(R3\Ω)\Ωi

U4
i v

2

≥
∫

(R3\Ω)\Ωi
|∇v|2 + ρ

k∑
i=1

∫
Ωi

|∇v|2 + o
(
‖v‖2

)
≥ ρ′‖v‖2

for ε small enough and ρ′ > 0 a suitable constant independent of ε.
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Adéläıde Olivier, Laboratoire de Mathématiques dOrsay, Univ. Paris-Sud, CNRS,
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