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Abstract: Careful analysis of any new nanomedicine device or disposal should be undertaken to
comprehensively characterize the new product before application, so that any unintended side effect
is minimized. Because of the increasing number of nanotechnology-based drugs, we can anticipate
that regulatory authorities might adapt the approval process for nanomedicine products due to
safety concerns, e.g., request a more rigorous testing of the potential toxicity of nanoparticles (NPs).
Currently, the use of mesoporous silica nanoparticles (MSN) as drug delivery systems is challenged by
a lack of data on the toxicological profile of coated or non-coated MSN. In this context, we have carried
out an extensive study documenting the influence of different functionalized MSN on the cellular
internalization and in vivo behaviour. In this article, a synthesis of these works is reviewed and the
perspectives are drawn. The use of magnetic MSN (Fe3O4@MSN) allows an efficient separation of
coated NPs from cell cultures with a simple magnet, leading to results regarding corona formation
without experimental bias. Our interest is focused on the mechanism of interaction with model
membranes, the adsorption of proteins in biological fluids, the quantification of uptake, and the effect
of such NPs on the transcriptomic profile of hepatic cells that are known to be readily concerned by
NPs’ uptake in vivo, especially in the case of an intravenous injection.

Keywords: nanoparticles; safety; mesoporous silica; protein corona; internalization;
adverse outcome pathways

1. Introduction

The growing interest of the scientific community for mesoporous silica nanoparticles (MSN) is
particularly related to the degree of advanced sophistication that can be achieved in their design
according to the objectives, in terms of properties or applications sought. Thanks to the silicon
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chemistry, these nanoparticles (NPs) have a promising potential to constitute a new generation of smart
drug nanocontainers, due to their high stability, large surface area, tunable pore size, and abundant
surface functionalization sites [1,2].

For these reasons, MSN are one of the most studied nanotechnologies for use as drug delivery
systems. Because there are an increasing number of nanotechnology-based drugs, we can anticipate
that regulatory authorities might adapt the approval process for nanomedicine products due to safety
concerns, e.g., request a more rigorous testing of the potential toxicity of NPs. Understanding the
interactions of NPs with biological systems is clearly multifactorial and complex. Nanoparticles
display different shapes and sizes, and can be decorated with a variety of functionality. They have
increased surface area-to-volume ratios that dramatically increase their reactivity. The miniaturization
of materials to the nanoscale has seen emergent properties due to their ultralarge surface area.
Their surface reactivity can, depending on the type of coating, cause different behavior and toxicological
profiles. Thus, careful analysis of any new nanomedicine device or disposal should be undertaken to
completely characterize the new products before application, so that we can help avoid any unintended
side effects.

This perspective aims to present a series of biological assays performed to obtain an integrated
overview of the safety of coated or non-coated magnetic MSN (Fe3O4@MSN). In vitro studies at the
molecular and cellular level allow for rapid knowledge generation, and their results could be used
as predictors before a validation phase, in terms of toxicological outcome in vivo. This two-stage
approach could limit the extent, volume, and cost of animal testing. In this context, we propose to
review the safety profile of MSN [3] and the panel of methodologies associated. Our interest focuses on
MSN’s interaction with model membranes [4], the adsorption of proteins at their surface in biological
fluids [5], the kinetics of internalization, and the effect of such NPs on the transcriptomic profile of
hepatic cells [6] that are known to be readily concerned by NPs’ uptake in vivo, especially in the case
of an intravenous injection.

2. Preparation of Magnetic Mesoporous Silica Nanoparticles

Firstly, homogeneous NPs, reproducible synthesis, and extensive characterization are required to
assess the toxicological profile of NPs. Before any biological assays, the NP synthesis has been designed
to produce more potent NPs. Different aspects were even described as critical for NP safety, including
biodegradability, surface properties (chemical composition, charge, hydrophilicity/hydrophobicity),
and size. Mesoporous silica nanoparticles are biodegradable materials allowing drug release [7] while
avoiding any accumulation and chronic toxicity, and which release silicic acid [8]. Dissolution of
sol–gel-derived silica matrices occurs following two steps: an initial surface burst erosion followed
by a slow bulk degradation [9]. The degradation rate and profile is dependent of the material
composition [8], the production processes [10], the surface coating [11], and the body fluids [12].
It has been shown that surfactant-extracted MSN are more quickly degraded than calcined ones or
amorphous silica NPs [10] in simulated body fluids. Plus, calcination influences the surface properties
and reactivity. This step allow the dehydration of the MSN surface, reducing the proportion of silanol
groups, leading to siloxane groups [13]. The surface then becomes more hydrophobic, reducing the
availability of the silanol groups to functionalization by covalent ligands or electrostatic coupling [14].
Mesoporous silica nanoparticles were synthesized with a magnetic core to follow them by magnetic
resonance imaging (MRI) [15], to induce a heat-triggered drug release [16], and to separate them from
complex media by magnetization. Synthesis of magnetic MSN was challenging to obtain a homogenous
population of spherical Fe3O4@MSN, presenting a primary diameter of 100 nm, all containing a unique
magnetic core, and without any step of calcination. The optimization of all these aspects was deeply
described previously [3] (Figure 1).
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Figure 1. Schematic representation of the synthesis of bare magnetic mesoporous silica nanoparticles 
(Fe3O4@MSN). Firstly, Fe3O4 nanocrystals (NC) are obtained by thermal decomposition of FeO(OH). 
In another flask, cetyl trimethylammonium bromide (CTAB) micelles were obtained in alkaline water, 
at a temperature of 80 °C. Fe3O4 NC, after stabilization in oleylamine, were progressively added to 
the CTAB micelles, in 10 steps. After that, tetraethylorthosilicate (TEOS) has been added for sol–gel 
reaction and formation of Fe3O4MSN. Different washing steps were performed to extract CTAB 
surfactant from the pores. 

3. Magnetic Separation for Corona Characterization 

The use of magnetic nanoparticles allows for the efficient separation of the Fe3O4@MSN from 
biological media with a simple magnet [17]. Magnetic attraction of NPs is a useful method of 
separation to precisely characterize the protein corona, taking into account weak binding proteins, 
instead of very fast and drastic separation using centrifugation [17] (Figure 2a). This technique 
provides a true corona “interactome” of the MSN, with the characterization of the different protein–
protein interactions around the NPs using next-generation shotgun proteomics [5] (Figure 2b). The 
timeline formation of the hard and the soft corona become accessible at low cost and relatively 
quickly, providing very interesting data for the development of future NPs. 
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Figure 1. Schematic representation of the synthesis of bare magnetic mesoporous silica nanoparticles
(Fe3O4@MSN). Firstly, Fe3O4 nanocrystals (NC) are obtained by thermal decomposition of FeO(OH). In
another flask, cetyl trimethylammonium bromide (CTAB) micelles were obtained in alkaline water, at a
temperature of 80 ◦C. Fe3O4 NC, after stabilization in oleylamine, were progressively added to the CTAB
micelles, in 10 steps. After that, tetraethylorthosilicate (TEOS) has been added for sol–gel reaction and
formation of Fe3O4MSN. Different washing steps were performed to extract CTAB surfactant from the pores.

3. Magnetic Separation for Corona Characterization

The use of magnetic nanoparticles allows for the efficient separation of the Fe3O4@MSN from
biological media with a simple magnet [17]. Magnetic attraction of NPs is a useful method of separation
to precisely characterize the protein corona, taking into account weak binding proteins, instead of
very fast and drastic separation using centrifugation [17] (Figure 2a). This technique provides a true
corona “interactome” of the MSN, with the characterization of the different protein–protein interactions
around the NPs using next-generation shotgun proteomics [5] (Figure 2b). The timeline formation
of the hard and the soft corona become accessible at low cost and relatively quickly, providing very
interesting data for the development of future NPs.
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Figure 2. (a) Different proteomic profiles of the protein corona after Fe3O4@MSN separation by 
magnetization (blue) or centrifugation (green). Sizes and colors of human protein clues are 
proportional to their relative percentage within the corona. The 35 highest abundant proteins are 
labelled. The color scale unit is Normalized Spectral Abundance Factor (%). Reproduced from Pisani 
et al. 2017 [17] with permission from the Royal Society of Chemistry. (b) Protein–protein interactions 
are represented in a network developed using the NetworkAnalyst software [18,19], based on 
InnateDB [20]. The target represents the time scale (0.5 min to 7 days). Each protein (represented by 
its gene symbol) is placed according to its time of appearance within the corona. The colors indicate 
the cluster membership. The grey lines represent the protein–protein interactions. Proteins that have 
a lot of interactions with other proteins are represented by a larger visual cue. Reproduced from Pisani 
et al. 2017 [5] with permission from the Royal Society of Chemistry. 
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Proteins and Cell Membranes 

To reduce the formation of the protein corona at the NPs’ surfaces, NPs are generally covered 
by different layers. Numerous reported studies demonstrate that a polyethylene glycol (PEG) 
coating presents several advantages, like colloidal stability, inertia in biological media, and higher 
circulation time of NPs [11,21]. Another strategy consists of the deposition of a phospholipid bilayer 
on the inorganic NPs’ surface, in order to create a biomimetic surface [22,23]. Fusion of liposomes to 
a spherical, high surface area, nanoporous silica core improves capacity, selectivity, and stability of 
NPs, and enables their targeted delivery and controlled release within the targeted cells [22,24,25]. 

Figure 2. (a) Different proteomic profiles of the protein corona after Fe3O4@MSN separation by
magnetization (blue) or centrifugation (green). Sizes and colors of human protein clues are proportional
to their relative percentage within the corona. The 35 highest abundant proteins are labelled. The color
scale unit is Normalized Spectral Abundance Factor (%). Reproduced from Pisani et al. 2017 [17] with
permission from the Royal Society of Chemistry. (b) Protein–protein interactions are represented in a
network developed using the NetworkAnalyst software [18,19], based on InnateDB [20]. The target
represents the time scale (0.5 min to 7 days). Each protein (represented by its gene symbol) is placed
according to its time of appearance within the corona. The colors indicate the cluster membership.
The grey lines represent the protein–protein interactions. Proteins that have a lot of interactions with
other proteins are represented by a larger visual cue. Reproduced from Pisani et al. 2017 [5] with
permission from the Royal Society of Chemistry.
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4. Influence of Magnetic Mesoporous Silica Nanoparticles’ Coverage on Their Interaction with
Proteins and Cell Membranes

To reduce the formation of the protein corona at the NPs’ surfaces, NPs are generally covered by
different layers. Numerous reported studies demonstrate that a polyethylene glycol (PEG) coating
presents several advantages, like colloidal stability, inertia in biological media, and higher circulation
time of NPs [11,21]. Another strategy consists of the deposition of a phospholipid bilayer on the
inorganic NPs’ surface, in order to create a biomimetic surface [22,23]. Fusion of liposomes to a
spherical, high surface area, nanoporous silica core improves capacity, selectivity, and stability of
NPs, and enables their targeted delivery and controlled release within the targeted cells [22,24,25].
Moreover, these two types of coverage can be easily applied to inorganic NPs [3,26,27] (Figure 3).
Different strategies were employed for the functionalization of the NPs [28]. Concerning the lipid
coating of MSN, this can be achieved by spontaneous adsorption of small unilamellar vesicles
on the silica surface of NPs in suspension [27], or by thin-layer lipid rehydration in presence
of the NPs [28,29]. Various parameters were investigated for their influence on effective NP
coverage, such as buffer composition (pH, ionic strength) [30], lipid/NP ratio [31], temperature [32],
or NP size [26]. Characterization of the lipid coating of the NPs is often done by cryogenic
transmission electron microscopy (TEM), dynamic light scattering (DLS), zeta potential (ZP),
or dynamic scanning calorimetry (DSC). These methods allow qualitative characterization of the
NPs’ coating, while quantitative methods can also be used, such as inorganic phosphorus dosage [30]
or elemental analysis [29]. Preparation of PEG-grafted MSN is generally performed by direct
addition of PEG-silane at the end of the NPs synthesis [33]. The silane groups are then able to
condense with the silica surface of the NPs [34]. In this case, PEG is covalently bound to the
NPs’ surface [35]. Characterization is also frequently done by TEM imaging, DLS, or ZP [36].
Fourier-transformed infrared (FTIR) spectroscopy [35], DSC, or thermogravimetric analysis (TGA)
allow deeper characterization [34]. It should be noted that combinations of surface decoration strategies
are now described, leading to highly sophisticated nanocarriers that combines stealth properties,
targeting, and controlled or triggered release [37]. For example, PEG–lipid assemblies are used for the
functionalization of MSN [38].

The coating of Fe3O4@MSN by polymers or lipid bilayers was shown to influence the colloidal
stability and interaction with proteins, model membranes, and cells in vitro [3]. Lipid bilayers allowed
colloidal stability of MSN in a high ionic strength medium, in comparison to native or PEG-coated
MSN (Figure 4a1). Native NPs were stabilized (meaning colloidal stability) in the presence of proteins
by the formation of the corona, while PEG-coated MSN were very slowly stabilized by the presence
of the proteins, due to the MSN’s low adsorption of those proteins (Figure 4a2). The formation of a
protein corona appeared to reduce the interaction between MSN and model membranes composed of
an egg phosphatidylcholine (EPC)-supported lipid bilayer (SLB) as was observed using quartz crystal
microbalance with dissipation (QCM-D) [4] (Figure 4b). Lipid-coated MSN were rapidly deposited on
the top of the lipid bilayer, while PEG-coated MSN deposited slowly, and the native ones remained
suspended in the medium.
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Figure 3. Characterization of native, polyethylene glycol (PEG)-grafted, and lipid-coated Fe3O4@MSN.
(a) Transmission electron microscopy (TEM) imaging of (1) native Fe3O4@MSN, (2) PEG-grafted
Fe3O4@MSN, and (3) lipid-coated Fe3O4@MSN with dimyristoyl phosphatidylcholine (DMPC) lipids,
showing a primary diameter of 100 nm, with very homogeneous shape, porosity, and coverage.
Reproduced from Pisani et al. 2017 [6], published under the Creative Commons attribution license
CC BY-NC-ND 4.0 by Taylor & Francis publishers. (b) Characterization of Fe3O4@MSN PEG-grafting,
with thermogravimetric analysis (TGA)/dynamic scanning calorimetry (DSC) spectra of (1) pristine
Fe3O4@MSN and (2) PEG–Fe3O4@MSN. (c) Imaging of magnetic Fe3O4@MSN core–shell particles
after incubation with DMPC small unilamellar vesicles (SUVs) (1). All the MSN are covered with a
complete lipid bilayer, having a thickness of 5 nm. Three lipid-coated MSN are zoomed in on for a
better observation of the lipid bilayer. (2) Scanning transmission electron microscopy (STEM) images
of DMPC Fe3O4@MSN: DMPC Fe3O4@MSN overlay of TEM black field (BF), iron (Fe), silica (Si),
and phosphorus (P) element cartography. (3) Each element is separately presented. The iron core
localizes at the center of the silica nanoparticles and phosphorus is localized around the silica shell of
the Fe3O4@MSN particles. (b) and (c) are reproduced and adapted from Nyalosaso et al. 2016 [3] with
permission from the Royal Society of Chemistry.
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Figure 4. Characterization of native and coated Fe3O4@MSN behavior in suspension in complex
media, with or without proteins. (a) (1) and (2): Hydrodynamic diameter (HD) and polydispersity
index (PDI), represented respectively by bars and dots, for native (blue), polyethylene glycol (PEG)
(orange) and dimyristoyl phosphatidylcholine (DMPC) (red) Fe3O4@MSN in (x) HEPES buffered saline
(HBS) 150 mM NaCl (pH 7.4) and (y) HBS 150 mM NaCl (pH 7.4) containing 10% fetal calf serum
(FCS). (b) Quartz crystal microbalance with dissipation (QCM-D) frequency sensorgram following the
interaction between nanoparticles and the egg phosphatidyl choline (EPC)-supported lipid bilayer
(SLB). Native (blue), PEG (orange), and DMPC (red) Fe3O4@MSN were flowed into HBS 150 mM
NaCl 10% SCF medium on the top of EPC SLB, at a concentration of 0.25 mg mL−1 of nanoparticles.
After adding Fe3O4@MSN into the medium on the top of the EPC SLB for 15 min, the flow was
stopped for 10 h. The results on the variations of frequency are presented after the offset of the lipid
bilayer formation. Reproduced and adapted from Rascol et al. 2017 [4], published under the Creative
Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

5. Magnetic Mesoporous Silica Nanoparticles’ In Vivo Toxicity and In Vitro Mechanisms

Functionalized Fe3O4@MSN with lipid bilayers or PEG polymers were administered to mice by
intravenous injections, at a dose of 40 mg kg−1, in order to compare their distribution and toxicity
to bare Fe3O4@MSN [4]. Magnetic mesoporous silica nanoparticles were quantified by inductively
coupled plasma–mass spectrometry (ICP–MS) analysis in the different organs obtained from sacrificed
mice four days after injection (Figure 5a). All of the Fe3O4@MSN, functionalized or not, accumulated
in the liver and spleen. However, lipid bilayer-coated Fe3O4@MSN accumulation was largely higher in
the liver; these nanoparticles were found in a lower concentration in the lungs, and were cleared more
quickly from the blood than the bare and PEG-grafted Fe3O4@MSN. PEG-grafted Fe3O4@MSN were
always found in the blood 24 h after injection (Figure 5b). However, it was demonstrated that none

http://creativecommons.org/licenses/by/4.0/
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of the Fe3O4@MSN caused toxicity to liver, kidney, and spleen tissues at the administered doses [4].
Moreover, no immunotoxic effect was observed at the animal level.Biomimetics 2018, 3, x FOR PEER REVIEW  8 of 15 
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Figure 5. Biodistribution of Fe3O4@MSN in mice. (a) Quantification of silicon in different organs
four days after injection. Inductively coupled plasma–mass spectrometry (ICP–MS) was used after
acid digestion to quantify the silicon in the liver, lungs, spleen, kidneys, and urine four days
after intravenous injection of native (blue), polyethylene glycol (PEG) (orange) and dimyristoyl
phosphatidylcholine (DMPC) (red) Fe3O4@MSN at a concentration of 40 mg kg−1 in comparison
to control mice (white). (b) Nanoparticle level in blood. The silicon levels in blood were measured
2, 6, 24 h, and 4 days after intravenous injection of native (blue), PEG (orange), and DMPC (red)
Fe3O4@MSN at a concentration of 40 mg kg−1. The dashed line indicates the silicon level found in
blood of control mice. For this experiment, 20 mice were divided into four groups of five animals. The
values of the histograms represent the mean ± standard deviation (SD) of values of each animal of
a group. * p < 0.05 indicates that a group is statistically different from all other groups treated with
nanoparticles. Reproduced and adapted from Rascol et al. 2017 [4], published under the Creative
Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

Different techniques were combined to investigate the potential toxic effects of these Fe3O4@MSN,
covered or not covered by PEG or lipid bilayers at the cellular level. First, in vitro analyses were
performed by exposure of two liver cell lines to the different particles, the rational for choosing the
cell lines being dictated by the preferential liver uptake of MSN. On one hand, HepG2 is a very
frequently human hepatocarcinoma cell line studied for in vitro evaluation of anticancer therapy.
On the other hand, HepaRG is a human hepatocarcinoma cell line which can be differentiated in vitro
in hepatocyte-like colonies surrounded by clear primitive biliary cells [39,40]. The cell uptake of the
Fe3O4@MSN was faster for those that were coated with DMPC than for the native ones, and slower
for the PEG-grafted Fe3O4@MSN. This was observed by TEM cell imaging after exposure of HepG2
(Figure 6) and HepaRG cell lines to Fe3O4@MSN [6]. This observation was in accordance with the rapid
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deposition of lipid-coated MSN on membrane models [4]. Moreover, the effect of Fe3O4@MSN on
HepG2 and HepaRG cell lines was also investigated by cell impedance [3,6]. Impedance measurement
of HepG2 cells showed a greater decrease in cell impedance by exposure to native Fe3O4@MSN than
by exposure to the lipid-coated ones, and lastly, by exposure to the PEG-grafted Fe3O4@MSN [3,6]
(Figure 7). Thus, impedance measurement represents an important metric to document.
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Figure 6. Transmission electron microscopy imaging of HepG2 cells exposed for 3, 6, and 24 h at 50 µg
mL−1 for (a–c) native, (d–f) polyethylene glycol (PEG)-coated, or (g–i) dimyristoyl phosphatidylcholine
(DMPC)-coated Fe3O4@MSN. The nanoparticles are indicated by arrows, near the cell membrane (M)
or the nucleus (N). Reproduced from Rascol et al. 2017 [4], published under the Creative Commons
Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
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respectively), indicating that 16 μg cm−² (or 60 μg mL−1) could be the limit of biocompatibility for all 
of these Fe3O4@MSN. Slight differences could be observed depending on Fe3O4@MSN surface 
modifications. However, whatever the type of Fe3O4@MSN, 80 μg cm−² (or 300 μg mL−1) represents a 
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the bile salt export pump transporter protein BSEP (gene ABCB11), responsible for intrahepatic 
accumulation of cytotoxic bile acids [6] (Figure 9). 

Figure 7. xCELLigence experiment. Real-time cell index (CI) monitoring of HepG2 cells (n = 3)
exposed to 50 and 100 mg mL-1 of pristine, polyethylene glycol (PEG)-coated, and dimyristoyl
phosphatidylcholine (DMPC)-coated Fe3O4@MSN. (a) Pristine Fe3O4@MSN versus PEG-coated
Fe3O4@MSN. (b) Pristine Fe3O4@MSN versus DMPC-coated Fe3O4@MSN. Reproduced and adapted
from Nyalosaso et al. 2016 [3] with permission from the Royal Society of Chemistry.

To get more insights into the molecular mechanisms explaining the biological effects of these
Fe3O4@MSN in vitro, high-throughput transcriptomic assays were carried out [6]. Changes in the
expression of thousands of genes were monitored for the HepaRG cell line after an exposure to different
doses of the native, PEG-grafted, and lipid-coated Fe3O4@MSN. A transient change in the expressed
gene profile has been observed for the lower doses between 24 and 48 h (Figure 8a,b, respectively),
indicating that 16 µg cm−2 (or 60 µg mL−1) could be the limit of biocompatibility for all of these
Fe3O4@MSN. Slight differences could be observed depending on Fe3O4@MSN surface modifications.
However, whatever the type of Fe3O4@MSN, 80 µg cm−2 (or 300 µg mL−1) represents a concentration
with strong and lasting adverse effects. At this concentration, initial molecular events and major
pathways of toxicity elicited by these Fe3O4@MSN were easily identified by the methodology used.
The hepatic cholestasis adverse pathway was triggered by a strong inhibition of the bile salt export
pump transporter protein BSEP (gene ABCB11), responsible for intrahepatic accumulation of cytotoxic
bile acids [6] (Figure 9).
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Figure 8. Time- and dose-dependent effects of exposure to Fe3O4@MSN on the number of
significantly differentially expressed genes. HepaRG cells were exposed to 1.6, 16, and 80 µg
cm−2 pristine, polyethylene glycol (PEG)-, and dimyristoyl phosphatidylcholine (DMPC)-coated
Fe3O4@MSN for 24 (a) or 48 (b) h. After extraction and labeling, RNA was hybridized to a
human oligonucleotide microarray (6 × 60 k Agilent V3 SurePrint). Bars represent the number
of differentially expressed transcripts after statistical analysis, using Genespring GX13 software
(Agilent), and with a p-value < 0.05 and a fold-change (FC) ≥ 2. Reproduced from Pisani et
al. 2017 [6], published under the the Creative Commons Attribution (CC BY-NC-ND 4.0) license
(https://creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 9. Canonical pathways elicited by each Fe3O4@MSN (80 mg cm−2). The percentage of
modulated transcripts of our datasets belonging to six major altered canonical pathways after (a) 24 and
(b) 48 h exposure to Fe3O4@MSN. These pathways were all significant according to a Fisher’s statistical
test (p-value < 0.05), revealed with Ingenuity® Pathway Analysis (IPA®, QIAGEN). Reproduced from
Pisani et al. 2017 [6], published under the Creative Commons Attribution (CC BY-NC-ND 4.0) license
(https://creativecommons.org/licenses/by-nc-nd/4.0/).
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6. Conclusions

This review highlighted the results of biological evaluation obtained on bare, PEG-grafted,
and lipid-coated Fe3O4@MSN, presenting the same physical and chemical characterizations for all
safety investigation performed. Some results presented here were previously discussed in other studies,
such as NP aggregation at high ionic force, adsorption of proteins to the surface, or NP accumulation
in the liver and spleen. However, this is the first time that all these aspects have been investigated,
using different techniques to compare NPs with different surface properties, and the results have
been reported as a whole here. This pioneering work allows for linking the different reported data
and methodologies to a more in-depth analysis of the biological effects of Fe3O4@MSN at the animal,
cellular, and molecular levels. This compendium is an example of integrated investigation of the safety
of innovative technologies for biomedical applications. This multi-technology approach paves the way
for the future trend of safety recommendations, including methodologies that are at the forefront of
their disciplines while being rather cost- and time-effective.
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