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A VARIATIONAL PRINCIPLE FOR KALUZA–KLEIN TYPE

THEORIES

FRÉDÉRIC HÉLEIN

Abstract. For any positive integer n and any Lie group G, given a definite
symmetric bilinear form on R

n and an Ad-invariant scalar product on the
Lie algebra of G, we construct a variational problem on fields defined on an
arbitrary oriented (n + dimG)-dimensional manifold Y . We show that, if G

is compact and simply connected, any global solution of the Euler–Lagrange
equations leads, through a spontaneous symmetry breaking, to identify Y with
the total space of a principal bundle over an n-dimensional manifold X . More-
over X is then endowed with a (pseudo-)Riemannian metric and a connection
which are solutions of the Einstein–Yang–Mills system equation with a cosmo-
logical constant.
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1. Introduction

In 1919 T. Kaluza [10] (after an earlier attempt by G. Nordström [14] in 1914)
discovered that solutions of the Einstein equations of gravity in vacuum on a
5-dimensional manifold could modelize Einstein equations coupled with Maxwell
equations on a 4-dimensional space-time manifold, provided one assumes that the
5-dimensional manifold is a circle fiber bundle over space-time and that the metric
is constant along these fibers. This was rediscovered more or less independentely
by O. Klein [12] in 1926 (and also by H. Mandel [13]), who proposed to assume
that the size of the extra fifth dimension is sufficientely tiny in order to explain why
this dimension is not directly observed. Since then this fascinating observation has
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2 FRÉDÉRIC HÉLEIN

been an important source of inspiration and questioning (see e.g. [6]). It has been
extended to include non Abelian gauge theories [5, 11, 3, 4], in order to unify the
Einstein equations with the Yang–Mills equations on a curved space-time and, in
particular, it becomes an important ingredient of the 11-dimensional supergravity
and the superstrings theories. It remains today a subject of questioning (see e.g.
[1, 18]).

However some difficulties plag this beautiful idea:
First in the initial proposal by Kaluza and Klein the coefficient g55 of the met-

ric on the 5-dimensional manifold along the fifth coordinates was assumed to be
constant, which leads to inconsistency. This point was raised by P. Jordan [9] and
Y. Thiry [16], who allowed this coefficient to be an extra scalar field. However this
scalar field is a source of difficulties as to its physical interpretation.

A second problem is to explain why we don’t ‘see’ the extra dimensions. The
current answer since Klein relies on Heisenberg uncertainty principle: by expanding
the fields in harmonic modes on each fiber and by assuming that the extra dimension
is tiny we deduce that all modes excepted the zero one should be extremely massive
and this would explain why we cannot observe their quantum excitations.

But lastly the fundamental question is to understandwhy these extra dimensions
are fibered and compact (and tiny if we want to support the above hypothesis):
could a dynamical mechanism explain these assumptions, instead of relying on an
ansatz based on an ad hoc hypothesis?

In the following we present a model which answers to these questions, without
relying on a smallness of the fibers assumption, provided that the structure Lie
group is compact and simply connected (hence this excludes U(1), for which our
mechanism does not explain the compactness of the fibers without extra ad hoc

hypotheses).

Notations — Let n be some positive integer and let b be some symmetric non
degenerate bilinear form on R

n (e.g. a scalar product or the Minkowski pseudo
metric on R

n).
Let G be Lie group of finite dimension, equal to r, and let g be its Lie algebra.

Let k be a scalar product on g which is invariant by the adjoint action of G on g. We
consider the vector space ĝ := R

n⊕g and endow it with the bilinear form h := b⊕k,
i.e. such that h((v, ξ), (w, η)) = b(v, w)+k(ξ, η), ∀(v, ξ), (w, η) ∈ R

n⊕g. We endow
ĝ with the Lie algebra structure [(v, ξ), (w, η)] = (0, [ξ, η]), ∀(v, ξ), (w, η) ∈ ĝ. We
set N := n+ r.

Let (tA)1≤A≤N be a basis of ĝ such that (ta)1≤a≤n is a basis ofRn and (tα)n+1≤α≤N

is a basis of g. We will systematically use the following conventions for the in-
dices: 1 ≤ A,B,C, . . . ≤ N and 1 ≤ a, b, c, . . . ≤ n < α, β, γ, . . . ≤ N . We set
hAB := h(tA, tB), bab := b(ta, tb) and kαβ := k(tα, tβ). We denote by cABC the
structure constants of ĝ in the basis (tA)1≤A≤N , defined by [tB , tC ] = tAc

A
BC . We

observe that

(hAB) =

(

hab haβ
hαb hαβ

)

=

(

bab 0
0 kαβ

)

and

(

cABC

)

=

(

cabc cabγ caβγ
cαbc cαbγ cαβγ

)

=

(

0 0 0
0 0 cαβγ

)

.
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We denote by (tA)1≤A≤N the basis of ĝ∗ which is dual to (tA)1≤A≤N . We endow the
Lie algebra so(ĝ, h) of the rotation group SO(ĝ, h) with the basis (tAB)1≤A<B≤N

such that, if u = tAu
A ∈ ĝ, tAB(tC) = tAhBC − tBhAC and we pose tAB := −tBA

if A ≥ B.
For any smooth manifoldM and any nonnegative integer p denote by Ωp(M) the

space of smooth p-forms on M. When considering ĝ-valued p-forms φ ∈ ĝ⊗Ωp(M)
we will use the decomposition φ = tAφ

A, where φA ∈ Ωp(M), ∀A. Similarly if
φ ∈ so(ĝ, h) ⊗ Ωp(M), we set φ = 1

2tABφ
AB, with φAB + φBA = 0, and we pose

φAB = hBB′φAB′

. Lastly if φ ∈ ĝ∗ ⊗ Ωp(M), we decompose it as φ = φAt
A.

The model — Let Y be a smooth oriented N -dimensional manifold. We define
the space of fields H to be set of triplets (θ, ϕ, π), where







θ ∈ ĝ⊗ Ω1(Y), i.e. θ is a 1-form with coefficients in ĝ

ϕ ∈ so(ĝ, h)⊗ Ω1(Y), i.e. ϕ is a 1-form with coefficients in so(ĝ, h)
π ∈ ĝ∗ ⊗ ΩN−2(Y), i.e. ϕ is a (N − 2)-form with coefficients in ĝ∗

and which satisfy the two constraints

(1) rank(θ1, · · · , θN ) = N everywhere,

so that (θ1, · · · , θN ) is a coframe on Y, and

(2) θa ∧ θb ∧ π = 0, ∀a, b = 1, · · · , n.

We note 1
2 [ϕ∧ϕ]AB := ϕA

C ∧ϕCB and 1
2 [θ∧ θ]

A := 1
2c

A
BCθ

A ∧ θB and lastly we set

θ
(−2)
AB := ∂

∂θA ∧ ∂
∂θB yθ1∧· · ·∧θN , where y is the interior product and ( ∂

∂θ1 , · · · ,
∂

∂θN )

is the frame on Y which is dual to (θ1, · · · , θN ).
Then to any (θ, ϕ, π) ∈ H we associate the action

(3) A[(θ, ϕ, π)] :=

∫

Y

1

2
θ
(−2)
AB ∧

(

dϕAB +
1

2
[ϕ ∧ ϕ]AB

)

+πA∧

(

dθA +
1

2
[θ ∧ θ]A

)

.

Theorem 1.1. Assume that G is compact and simply connected. Let Y be a smooth

oriented N -dimensional manifold and let H be as above. Then for any triplet

(θ, ϕ, π) ∈ H which is a global solution of the Euler–Lagrange equation of A, there

exists a Lie group G0 whose universal covering is G, an n-dimensional manifold

X and a submersion P : Y −→ X which has the structure of a principal bundle

with structure group G0 over X . Moreover X is endowed with a pseudo-Riemannian

metric g and a connection 1-form A which are solutions of the Einstein–Yang–Mills

system of equation

(4)

{

Ein(g)ad +
1
2

(

F γ
acFγdc −

1
4F γ

bcFγbc)δ
a
d

)

= κδad
∇cF γ

ca − cβαγA
α
c F β

ca = 0

where Ein(g)ad := Ric(g)ad −
1
2R(g)δ

a
d is the Einstein tensor of g, κ := 1

8c
α
βγc

β
αǫh

γǫ

and F := dA+ 1
2 [A ∧ A].

The hypothesis that (θ, ϕ, π) is a global solution in Theorem 1.1 means the fol-

lowing: by building a Riemannian metric associated to θ on Y (e.g.
∑N

A=1(θ
A)2),

we can endow Y with the induced topology. Then the solution is said to be global

if Y is complete without boundary.

Comments on Theorem 1.1—First note that, to any θ ∈ ĝ⊗Ω1(Y) satisfying
(1), one can associate the pseudo-Riemannian metric h = babθ

aθb + kαβθ
αθβ on Y.
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The action A is the sum of
∫

Y
1
2θ

(−2)
AB ∧

(

dϕAB + 1
2 [ϕ ∧ ϕ]AB

)

, the N -dimensional

generalization of the so-called ‘Palatini’ functional on Y, and of
∫

Y
πA∧

(

dθA + 1
2 [θ ∧ θ]

A
)

,
which is at the origin of the spontaneous symmetry breaking and fibration.

If one is familiar with the ‘Palatini’ action it is not difficult to see that, if the
action is stationary with respect to variations of ϕ, then the connection on TY
associated to (θ, ϕ) is torsion free and hence is the Levi-Civita connection for h.
The variation with respect to π, which plays here the role of a Lagrange multiplier,
leads to the relation dθ + 1

2 [θ ∧ θ] = 0 mod[θa]. Using exterior differential calculus
à la Cartan and Frobenius’ theorem (as e.g. in [8, 17]), one deduces first that
Y is foliated by submanifolds f which are solutions of θa|f = 0, ∀a = 1, · · · , n.
Further applications of Frobenius’ theorem show that one can locally define a map
g : Y −→ G the restriction on each leaf f of which is a local diffeomorphism. The
global solution hypothesis and the hypotheses on G then imply that the leaves
actually close up and form the fibers of a fibration over a quotient manifold X .
Still using the relation dθ + 1

2 [θ ∧ θ] = 0 mod[θa] one deduces that θa = ea and

θα = (gAg−1 + g−1dg)α, where ea and A are pull-back forms of 1-forms on X . We
then set F := dA+ 1

2 [A ∧ A], the curvature 2-form of A.
Then the variation with respect to θ leads to the equation

1

2
θ
(−3)
ABC ∧

(

dϕAB + ϕA
D ∧ ϕDB

)

= −dπC − cBCAθ
A ∧ πB mod[θ(N−1)

γ ].

One can recognize on the left hand side the Einstein tensor of h on Y. Hence,
in order to prove the first equation in (4), things would be easy if the right hand
side of this equation would vanish. But this is obviously not true. However a
miracle occurs, analogous to what happens in [7, 8]. After a gauge transformation

eα = Sα
β θ

β and ωα
β = Sα

α′ϕα′

β′(S−1)β
′

β −dSα
β′(S−1)β

′

β , where S = Adg, the previous
equation translates as

1

2
e
(−3)
ABC ∧

(

dωAB + ωA
D ∧ ωDB

)

= −dpC mod[e(−1)
γ ]

The key observations are that the left hand side is constant on any fiber, whereas the
restriction of the right hand side to any fiber is an exact form. Both observations

lead to the conclusion that 1
2e

(−3)
ABC ∧

(

dωAB + ωA
C ∧ ωCB

)

= 0 mod[e
(−1)
γ ], i.e.

the two blocks Ein(h)ac and Ein(h)aγ of the Einstein tensor of ω vanish. This is
enough to imply (4). The resulted picture is analogous to the one described in [2]:
the manifold (Y,h) is not Einstein in general but leads to solutions of the system
(4) anyway.

2. The Euler–Lagrange equations

In the following we assume that (θ, ϕ, π) ∈ H is a critical point of A. We denote
by h = babθ

aθb + kαβθ
αθβ the induced metric on Y.

2.1. Variations with respect to coefficients of π. Since rankθ = N , the family
(θ1, · · · , θN ) is a coframe on Y, there exists unique coefficients HA

BC such that

dθA + 1
2c

A
BCθ

B ∧ θC = 1
2H

A
BCθ

B ∧ θC and HA
BC + HA

CB = 0. We note θ(N) :=

θ1∧· · ·∧θN , θ
(N−1)
A := ∂

∂θA yθ
(N), θ

(N−2)
AB := ∂

∂θA ∧ ∂
∂θB yθ(N), θ

(N−3)
ABC := ∂

∂θA ∧ ∂
∂θB ∧

∂
∂θC yθ

(N). Hence we can decompose any (N − 2)-form πA as πA = 1
2π

BC
A θ

(N−2)
BC ,
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where πBC
A + πCB

A = 0. The hypothesis (2) then reads πab
A = 0 or

(5) πA = π
bγ
A θ

(N−2)
bγ +

1

2
π
βγ
A θ

(N−2)
βγ

A first order variation of (θ, ϕ, π) keeping θ and ϕ constant and respecting the con-

straint (5) thus induces a variation of π of the form δπA = χ
bγ
A θ

(N−2)
bγ + 1

2χ
βγ
A θ

(N−2)
βγ .

The fact that the action A is stationary with respect to such variations of π thus
reads
∫

Y

δπA ∧

(

dθA +
1

2
[θ ∧ θ]A

)

=

∫

Y

(

χ
bγ
A H

A
bγ +

1

2
χ
βγ
A HA

βγ

)

θ(N) = 0, ∀χbγ
A , χ

βγ
A

and lead to the Euler–Lagrange equations HA
bγ = HA

βγ = 0, ∀A, b, β, γ. We thus
deduce that

(6) ΘA := dθA +
1

2
cABCθ

B ∧ θC =
1

2
HA

bcθ
b ∧ θc

or equivalentely

(7)

{

dθa = 1
2H

a
bcθ

b ∧ θc

dθα + 1
2c

α
βγθ

β ∧ θγ = 1
2H

α
bcθ

b ∧ θc

2.2. Variations with respect to ϕ. Keeping θ and π fixed we look at first order
variations δϕ = ψ of ϕ. This induces the condition that, for all ψ,

1

2

∫

Y

d
(

ψAB ∧ θ
(N−2)
AB

)

+ ψAB ∧
(

dθ
(N−2)
AB − ϕB′

B ∧ θ
(N−2)
AB′ − ϕA′

A ∧ θ
(N−2)
A′B

)

= 0

Assuming that ψ has compact support we deduce the relation
(

dθA + ϕA
A′ ∧ θA

′

)

∧ θ
(N−3)
ABC = dθ

(N−2)
AB − ϕB′

B ∧ θ
(N−2)
AB′ − ϕA′

A ∧ θ
(N−2)
A′B = 0

which implies that the torsion 2-form dθA + ϕA
A′ ∧ θA

′

vanishes. Hence the
connection on TY associated to ϕ is the Levi-Civita connection of (Y,h), where
h = hABθ

AθB.

2.3. Variations with respect to θ. We first observe that, through a variation

δθ = τ of θ keeping ϕ and the coefficients πbγ
A and πβγ

A fixed, we have

δ
(

θ
(N−2)
AB

)

= τC ∧ θ
(N−3)
ABC ,

plus the relation δΘA = dτA + cABCτ
B ∧ θC which implies

πA ∧ δΘA = d
(

τA ∧ πA
)

+ τA ∧
(

dπA + cCABθ
B ∧ πC

)

and lastly δπA = π
bγ
A

(

τd ∧ θ
(N−3)
bγd + τδ ∧ θ

(N−3)
bγδ

)

+ 1
2π

βγ
A

(

τd ∧ θ
(N−3)
βγd + τδ ∧ θ

(N−3)
βγδ

)

which, thanks to ΘA ∧ θ
(N−3)
bγδ = ΘA ∧ θ

(N−3)
βγd = ΘA ∧ θ

(N−3)
βγδ = 0 by (6), leads to

(δπA) ∧ΘA = −πbγ
A H

A
bdτ

d ∧ θ(N−1)
γ .

In conclusion, by assuming that τ has compact support, we obtain
∫

Y

τC ∧

(

1

2
θ
(N−3)
ABC ∧ΦAB − π

bγ
A HA

bCθ
(N−1)
γ + dπC − cBACθ

A ∧ πB

)

= 0

where we set Φ := dϕ+ 1
2 [ϕ ∧ ϕ]. Hence we deduce the Euler–Lagrange equation

(8)
1

2
θ
(N−3)
ABC ∧ ΦAB + dπC − cBACθ

A ∧ πB = 0 mod[θ
(N−1)
g ]
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where, for any 3-form ψ, ψ = 0 mod[θ
(N−1)
g ] means that there exists coefficients ψα

such that ψ = ψαθ
(N−1)
α .

3. The fibration

For simplicity we assume in the following that Y is connected. If not it suffices
to apply the following in each connected component of Y.

From the first equation in (7) we deduce that dθa = 0 mod[θb], ∀a = 1, · · · , n.
Since the rank of (θ1, · · · , θn) is equal to n everywhere, Frobenius’ theorem implies
that, for any point y ∈ Y, there exists a neighbourhood of y in which there exists
a unique submanifold f of dimension r crossing y such that θa|f = 0, ∀a = 1, · · · , n.
Hence Y is foliated by integral leaves of dimension r.

Consider any integral leaf f. It follows from the second equation in (7) that
dθg + 1

2 [θ
g ∧ θg]|f = 0, where θg := tαθ

α. Consider on the product manifold f×G

the g-valued 1-form τ := dh− hθg, where (y, h) denotes a point in f×G. From the
identity dτ+h(dθg+ 1

2 [θ∧θ]
g)+τ∧θg = 0, we deduce that d(τ |f×G) = 0 mod[τ ] and

hence, again by Frobenius’ theorem, the exterior differential system τ |f×G = 0 is
completely integrable. This implies, for any point y0 ∈ f, the existence of a unique
map g : f −→ G such that g(y0) = 1G and dg − gθg|f = 0. Moreover g is locally
invertible.

Consider any smooth path γ : [0, 1] −→ G such that γ(0) = 1G. We can
associate to it a unique path u : [0, 1] −→ f such that u(0) = y0 and (u, γ)∗τ = 0.
In particular the hypothesis that (Y,h) is complete ensures that the differential
equations defining u has a solution on the whole intervalle [0, 1]. Since the exterior
differential system defined by τ is closed, to any path homotopic to γ in G with
fixed extremities it corresponds a path homotopic to u in f with fixed extremities.
Since G is simply connected we can thus define a unique map T : G −→ f such
that T (1G) = y0 and (T × Id)∗τ = 0. Hence G is a universal cover of f and, in
particular, since G is compact f is compact.

For any x = (x1, · · · , xn) ∈ R
n, let X be the vector field on Y defined by

X = xa ∂
∂θa . Let f0 be some integral leaf. Since f0 is compact, there exists a

neighbourhood T of f0 in Y and some ε > 0 such that, for any x in the unit ball Bn

of Rn, the flow map (t, y) 7−→ etX(y) is defined on [−ε, ε]×T . We observe that, due
to (7), LXθ

a = Ha
bcx

bθc, ∀a. Hence there exists functions Ma
bc on Y (depending

on x) such that
(

etX
)∗
θa = Ma

c θ
c, ∀a. For any leaf f ⊂ T , let ι : f −→ Y its

embedding map and ιt := etX ◦ ι. Note that the image of ιt is e
tX(f). We have then

ι∗t θ
a =

(

etX ◦ ι
)∗
θa = ι∗

(

etX
)∗
θa = ι∗ (Ma

c θ
c) , ∀a.

Thus the 1-form taθ
a vanishes on etX(f) iff it vanishes on f, i.e. f is an integral leaf iff

etX(f) is also an integral leaf. In particular the map Bn× f0 ∋ (x, y) 7−→ eεx
a ∂

∂θa (y)
is a local diffeomorphism onto a neighbourhood of f0, which provides us with a
local trivialization of the set of leaves. Hence the set X of integral leaves has the
structure of an n-dimensional manifold and the quotient map P : Y −→ X is a
bundle fibration.

Set ea := θa, for 1 ≤ a ≤ n. From ∂
∂θβ ye

a = ∂
∂θβ yde

a = 0 we deduce that there
exists a coframe (ea)1≤a≤n on X such that ea = P ∗ea, ∀a. Thus we can equipp X

with the pseudo Riemannian metric g := babe
aeb.

In the following we choose an n-dimensional submanifold Σ ⊂ Y transverse
to the fibration and (restricting ourself to an open subset of Y if necessary) we
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define the map g : Y −→ G which is constant equal to 1G on Σ and such that
dg−gθg|f = 0 for any integral leaf f. We then define A := gθgg−1−dg ·g−1. Relation
dg − gθg|f = 0 then translates as A|f = 0 and hence we have the decomposition
A = Aaθ

a. Moreover since

(9) θg = g−1Ag + g−1dg,

we have dθg+ 1
2 [θ∧θ]

g = g−1(dA+ 1
2 [A∧A])g = g−1Fg, where F := dA+ 1

2 [A∧A].

In particular we deduce from (7) that ∂
∂θα ydA = 0, ∀α = n + 1, · · · , N , i.e. the

coefficients Aa are constants on the fibers f. Moreover we have

(10) Fα =
1

2
Fα
bce

b ∧ ec,

where the coefficients Fbc = gH
g
bcg

−1 are constant on the fibers.

4. Gauge transformation

In the following we define the map S : Y −→ End(ĝ) such that ∀(v, ξ) ∈ ĝ =
R

n × g, S(v, ξ) := (v, gξg−1), where g : Y −→ G is the map defined previously.
Extending to ĝ the adjoint action of G in a trivial way, we may write also S(v, ξ) =
g(v, ξ)g−1. Let

(

SA
B

)

1≤A,B≤N
be the matrix of S in the basis (tA)1≤A≤N , i.e. such

that S(tA) = tBS
B
A . We remark that S takes values in SO(ĝ, h) since the scalar

product k on g is invariant by the adjoint action of G. We define a new coframe
(

eA
)

1≤A≤N
by eA = SA

Bθ
B . Equivalentely

{

ea := θa ∀a = 1, · · · , n
eα := Sα

β θ
β ∀α = n+ 1, · · · , N

Then eα = (gθgg−1)α and (9) imply

(11) eα = Aα + (dg g−1)α, ∀α = n+ 1, · · · , N.

We deduce that

deα − 1
2 [e ∧ e]

α + [A ∧ e]α = deα − 1
2 [e ∧ e]

α + [(e− dg g−1) ∧ e]α

= deα + 1
2 [e ∧ e]

α − [dg g−1 ∧ e]α

=
(

gdθg−1 + [dgg−1 ∧ e]
)α

+ 1
2 [e ∧ e]

α − [dgg−1 ∧ e]α

=
(

g
(

dθ + 1
2 [θ ∧ θ]

)

g−1
)α

from which we deduce the useful identity

(12) deα −
1

2
[e ∧ e]α + [A ∧ e]α = Fα :=

1

2
Fα
bce

b ∧ ec.

Let us translate the left hand side of (8) in the new coframe. First we define

e(N) := e1 ∧ · · · ∧ eN and note that e(N) = θ(N). Moreover defining e
(N−1)
A :=

∂
∂eA

ye(N), e
(N−2)
AB := ∂

∂eA
∧ ∂

∂eB
ye(N), we observe that, since ∂

∂θA = ∂
∂eB

SB
A , we have

θ
(N−1)
A = e

(N−1)
A′ SA′

A , θ
(N−2)
AB = e

(N−2)
A′B′ SA′

A SB′

B and θ
(N−3)
ABC = e

(N−3)
A′B′C′SA′

A SB′

B SC′

C .
Second let ω be the so(ĝ, h)-valued connection 1-form in the coframe (eA)1≤A≤N ,

which is equal to ω := SϕS−1 − dS S−1. Let Ω := dω + 1
2 [ω ∧ ω] = SΦS−1, where

Φ = dϕ+ 1
2 [ϕ ∧ ϕ]. Then ΦAB = (S−1)AA′(S−1)BB′ΩA′B′

.

We deduce that θ
(N−3)
ABC ΩAB = e

(N−3)
ABC′ ΩABSC′

C . Hence (8) is equivalent to

(13)
1

2
e
(N−3)
ABC ΩAB +

(

dπC′ − cBAC′θA ∧ πB
)

(S−1)C
′

C = 0 mod[e
(N−1)
g ],
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where, for any (N − 1)-form ψ, ψ = 0 mod[e
(N−1)
g ] iff there exists forms ψα such

that ψ = ψαe
(N−1)
α .

Lemma 4.1. We have

(14)
(

dπC′ − cBAC′θA ∧ πB
)

(S−1)C
′

C = d
(

πC′(S−1)C
′

C

)

mod[e
(N−1)
g ].

Proof —From the definition of S we deduce d(S−1)C
′

C = −(S−1)C
′

A cABC(e
B−AB).

Hence

d
(

(S−1)C
′

C πC′

)

= −(S−1)C
′

A cABC(e
B −AB) ∧ πC′ + (S−1)C

′

C (dπC′)

= −(S−1)C
′

A cABCS
B
B′θB

′

∧ πC′ + (S−1)C
′

A cABCA
B ∧ πC′ + (S−1)C

′

C (dπC′)

But because of [Adg(ξ),Adg(η)] = Adg([ξ, η]), ∀ξ, η ∈ g, which is equivalent to

cAB′C′SB′

B SC′

C = SA
A′cA

′

BC , we have (S−1)C
′

A cABCS
B
B′ = cC

′

B′C′′(S−1)C
′′

C . Thus for the
first term on the r.h.s.,

(S−1)C
′

A cABCS
B
B′θ

B′

∧ πC′ = cC
′

B′C′′(S−1)C
′′

C θB
′

∧ πC′ = cBAC′θ
A ∧ πB(S

−1)C
′

C

and hence

d
(

(S−1)C
′

C πC′

)

=
(

dπC′ − cBAC′θ
A ∧ πB

)

(S−1)C
′

C + (S−1)C
′

A cABCA
B ∧ πC′

However we deduce from (5) that πC′ = π
bγ
C′e

(N−2)
bγ + 1

2π
βγ
C′ e

(N−2)
βγ and, since AB =

AB
c e

c, we get (S−1)C
′

A cABCA
B ∧πC′ = −(S−1)C

′

A cABCA
B
b π

bγ
C′e

(N−1)
γ = 0 mod[e

(N−1)
g ].

Hence (14) follows. �

Thus if we define pC := πC′(S−1)C
′

C we deduce from (14) that (13) is equivalent to

(15)
1

2
e
(N−3)
ABC ∧ ΩAB + dpC = 0 mod[e

(N−1)
g ].

We need to compute dpC . For that purpose we use the a priori decomposition

pC = p
bγ
C e

(N−2)
bγ + 1

2p
βγ
C e

(N−2)
βγ . We first compute using (7) and (12)

de
(N−2)
bγ = dea ∧ e

(N−3)
bγa + deα ∧ e

(N−3)
bγα

= Ha
abe

(N−1)
γ + cαγαe

(N−1)
b − cαβγ(A

β)be
(N−1)
γ

=
(

Ha
ab − cαβγ(A

β)b

)

e
(N−1)
γ = 0 mod[e

(N−1)
g ],

where we have used the fact that, sinceG is compact, its Lie algebra g is unimodular,
which reads cαγα = 0. Similarly

de
(N−2)
βγ = dea ∧ e

(N−3)
βγa + deα ∧ e

(N−3)
βγα

= 0 + cαγαe
(N−1)
β + cααβe

(N−1)
γ + cαβγe

(N−1)
α

= 0 mod[e
(N−1)
g ],

Then by writing dpbγC = p
bγ
C,ce

c + p
bγ
C,γe

γ and dpβγC = p
βγ
C,ce

c + p
βγ
C,δe

δ, we get

dpC = p
bγ
C,γe

(N−1)
b − p

bγ
C,be

(N−1)
γ + p

βγ
C,γe

(N−1)
β = p

bγ
C,γe

(N−1)
b mod[e

(N−1)
g ]

Lastly by decomposing ΩAB = 1
2Ω

AB
CDe

C ∧ eD, we find that 1
2e

(N−3)
ABC ∧ΩAB =

−Ein(ω)ACe
(N−1)
A , where Ein(ω)AC := Ric(ω)AC−

1
2R(ω)δ

A
C , Ric(ω)

A
C := ΩAB

CB

and R(ω) := Ric(ω)AA. Obviously Ric(ω)AC is the Ricci curvature, R(ω) the scalar



A VARIATIONAL PRINCIPLE FOR KALUZA–KLEIN TYPE THEORIES 9

curvature and Ein(ω)AC the Einstein tensor, in the coframe
(

eA
)

1≤A≤N
. Hence we

find that (15) is equivalent to
(

Ein(ω)aC − p
aγ
C,γ

)

e
(N−1)
a = 0 mod[e

(N−1)
g ], or

(16) Ein(ω)aC = p
aγ
C,γ , ∀a = 1, · · · , n, ∀C = 1, · · · , N.

We will come back to this equation later on.

5. The connection and the curvature form in the coframe
(

eA
)

1≤A≤+r

We need to compute the connection 1-form ω and the curvature 2-form. As a
preliminary we first set γac to be the connection 1-form on (X ,g) in the coframe ea,

i.e. which satisfies γac + γca = 0 and dea + γac ∧ e
b = 0. Then we set γac := P ∗γac

which satisfies similar relations, which, together with (12), leads to

(17)

{

dea + γac ∧ e
c = 0

deα − 1
2F

α
bce

b ∧ ec − 1
2c

α
βγ(e

β − 2Aβ) ∧ eγ = 0

Now the connexion 1-form ω is uniquely characterized by the condition ωAB +
ωBA = 0 (preservation of the metric) and deA+ωA

C∧eC = 0 (the torsion vanishes),
which can be written

(18)

{

dea + ωa
c ∧ e

c + ωa
γ ∧ eγ = 0

deα + ωα
c ∧ e

c + ωα
γ ∧ eγ = 0

Comparing with (17) we are tempted to assume that ωα
γ = − 1

2c
α
βγ(e

β − 2Aβ),

which fulfills the condition ωαβ+ωβα = 0, since cαβγ′k
γ′γ+cγβα′k

α′α = 0 because the

metric k is preserved by the adjoint action of g. We also guess that ωα
c = − 1

2F
α
bce

b,

which forces automatically ωa
γ = 1

2kγγ′F
γ′

bc′g
c′ceb, in order to satisfy ωαb+ωbα = 0.

Then in order to fulfill the first relation of (18), one needs to assume that ωa
c =

γac−
1
2kγγ′F

γ′

a′cb
a′aeγ . We then check that ωac = γac− 1

2kγγ′F
γ′

a′c′b
a′abc

′ceγ is skew

symmetric in (a, c). Thus we see that the forms ωAC defined by:
(

ωa
c ωa

γ

ωα
c ωα

γ

)

=

(

γac −
1
2kγγ′F

γ′

a′cb
a′aeγ 1

2kγγ′F
γ′

ba′b
a′aeb

− 1
2F

α
bce

b − 1
2c

α
βγ(e

β − 2Aβ)

)

satisfy (18) and ωAC +ωCA = 0. Hence this is the Levi-Civita connection 1-form of

(Y,h). In the following it will convenient to set F γ
bc := F

γ
bc, F γ

a
c := kγγ′F γ′

a′cb
a′a

and F γb
c := kγγ′F γ′

bc′b
c′c. Then

(

ωa
c ωa

γ

ωα
c ωα

γ

)

=

(

γac −
1
2F γ

a
ce

γ 1
2F γb

aeb

− 1
2F

α
bce

b − 1
2c

α
βγ(e

β − 2Aβ)

)

We can thus compute the curvature 2-form ΩA
C = dωA

C + ωA
B ∧ ωB

C .

Ωa
c = d

(

γac −
1

2
F γ

a
ce

γ

)

+

(

γab −
1

2
F β′

a
be

β′

)

∧

(

γbc −
1

2
F γ′

b
ce

γ′

)

−
1

4
F βb′

aF β
c′ce

b′∧ec
′

Ωa
γ = d

(

F γb
aeb
)

+
1

2

(

γab −
1

2
F β′

a
be

β′

)

∧
(

F γb′
aeb

′

)

+
1

4
F βb′

ac
β
β′γe

b′∧(2Aβ′

−eβ
′

)

Ωα
c = −d

(

Fα
bce

b
)

−
1

2

(

Fα
b′be

b′
)

∧

(

γbc −
1

2
F γ′

b
ce

γ′

)

−
1

4
F β

bcc
α
β′β(2A

β′

−eβ
′

)∧eb

Ωα
γ =

1

2
d
(

cαβγ(2A
β − eβ)

)

−
1

4

(

Fα
b′be

b′
)

∧
(

F γc′
bec

′

)

+
1

4
cαβ′βc

β
γ′γ(2A

β′

−eβ
′

)∧(2Aγ′

−eγ
′

).
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Lastly we obtain the components of the Ricci tensor Ric(ω) through a lengthy
computation.

(19) Ric(ω)ad = Ric(γ)ad −
1

2
F β

acF β
dc

where Ric(γ)ad :=
(

dγac + γab ∧ γ
b
c

)

de
bce is the Ricci curvature of γ, and using

the decompositions dFδ
ac = Fδ

ac
,ce

c and γab = (γab)ce
c,

(20) Ric(ω)aδ =
1

2

(

Fδ
ac

,c + (γab)cF δ
bc + (γcb)cF δ

ab − c
γ
αδA

α
c F γ

ac
)

(21) Ric(ω)αδ =
1

4
F δ

bcFα
bc −

1

4
cαβγc

β
δǫk

γǫ

We deduce the scalar curvature R(ω) of ω in function of the scalar curvature R(γ) :=
Ric(γ)aa:

(22) R(ω) = R(γ)−
1

4
Fα

abFα
ab −

1

4
cαβγc

β
αδk

γδ

Hence the Einstein tensor of ω is

(23) Ein(ω)ad = Ein(γ)ad −
1

2

(

F β
acF β

dc −
1

4
Fα

bcFα
bcδ

a
d

)

+
1

8
cαβγc

β
αδk

γδδad

and Ein(ω)aδ = Ric(ω)aδ is given by (20).
An important observation is that the components of Ein(ω)ad and Ein(ω)aδ are

constant on the fibers f.

6. The Einstein–Yang–Mills equations

We conclude by exploiting the fact that the fibers f are compact without bound-

ary. Let µ(r) := en+1 ∧ · · · eN and set µ
(r−1)
α := ∂

∂eα
yµ(r), ∀α. By integrating both

sides of (16) on a fiber f we obtain

∫

f

Ein(ω)aCµ
(r) =

∫

f

p
aγ
C,γµ

(r) =

∫

f

d
(

p
aγ
C µ(r−1)

γ

)

= 0.

But on the one hand, the components of Ein(ω)aC are constant on the fiber f, as
seen in the previous section. Hence

(24) Ein(ω)aC =

∫

f
Ein(ω)aCµ

(r)

∫

f
µ(r)

= 0.

Thus, using (20) and (23) we deduce that γ and A are solutions of the Einstein–
Yang–Mills system

{

Ein(γ)ad −
1
2

(

F β
acF β

dc −
1
4Fα

bcFα
bcδ

a
d

)

+ 1
8c

α
βγc

β
αδk

γδδad = 0

Fδ
ac

,c + (γab)cF δ
bc + (γcb)cF δ

ab − c
γ
αδA

α
c F γ

ac = 0
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7. Conclusion

Given a compact, simply connected structure Lie group G and an (n + dimG)-
dimensional manifold without any structure a priori we defined an action functional
on a space of fields on this manifold, such that each critical point of this action which
satisfies fairly broad assumptions produces spontaneously a fiber bundle structure
on the manifold and solutions of an Einstein–Yang–Mills system on the quotient
manifold.

Klein’s hypothesis that the metric is covariantly constant along spontaneously
created fibers was abandoned a long time ago because apart from its physical mean-

ing, this assumption seems to be artificial, to quote [6]. However, our model shows
the existence of dynamic mechanisms that naturally imply that this hypothesis can
be verified.

Our construction works in particular if G is equal to SU(2), SU(2) or SU(2)×
SU(3), but not for U(1) or U(1)× SU(2)× SU(3) in full generality. In the latter
case one needs to assume the further hypothesis that the leaves of the foliation
close up to compact fibers to reach similar conclusions. Additional mechanisms
should therefore be used to avoid the necessity of the latter hypothesis. Another
challenging question is how to include fermions in the model.
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