
HAL Id: hal-01869788
https://hal.science/hal-01869788

Submitted on 17 Sep 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Buckling of a spinning elastic cylinder: linear, weakly
nonlinear and post-buckling analyses

Franck Richard, Aditi Chakrabarti, Basile Audoly, Yves Pomeau, Serge Mora

To cite this version:
Franck Richard, Aditi Chakrabarti, Basile Audoly, Yves Pomeau, Serge Mora. Buckling of a spin-
ning elastic cylinder: linear, weakly nonlinear and post-buckling analyses. Proceedings of the
Royal Society A: Mathematical, Physical and Engineering Sciences, 2018, 474 (2216), pp.20180242.
�10.1098/rspa.2018.0242�. �hal-01869788�

https://hal.science/hal-01869788
https://hal.archives-ouvertes.fr


Buckling of a spinning elastic cylinder:
linear, weakly nonlinear and post-buckling analyses

Franck Richard1, Aditi Chakrabarti1,2, Basile Audoly3,4, Yves Pomeau5 

and Serge Mora1

1 Laboratoire de Mécanique et de Génie Civil, Université de Montpellier and CNRS

163 rue Auguste Broussonnet, F-34090 Montpellier, France.
2 Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, 

Pennsylvania 18015, USA.
3 Laboratoire de Mécanique des Solides, École Polytechnique and CNRS, F-91128 Palaiseau, 

France. 4 Division of Applied Science and Engineering, California Institute of Technology, 

Pasadena, California, USA.
5 Department of Mathematics, University of Arizona, Tucson, Arizona 85721, USA.

An elastic cylinder spinning about a rigid axis buckles 
beyond a critical angular velocity, by an instability 
driven by the centrifugal force. This instability and 
the competition between the different buckling modes 
are investigated using analytical calculations in the 
linear and weakly nonlinear regimes, complemented 
by numerical simulations in the fully post-buckled 
regime. The weakly nonlinear analysis is carried out 
for a generic incompressible hyperelastic material. 
The key role played by the quadratic term in the 
expansion of the strain energy density is pointed out: 
this term has a strong effect on both the nature of 
the bifurcation, which can switch from supercritical 
to subcritical, and on the buckling amplitude. Given 
an arbitrary hyperelastic material, an equivalent shear 
modulus is proposed, allowing the main features of 
the instability to be captured by an equivalent neo-
Hookean model.
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1. Introduction
As is well known, a liquid sphere deforms into an oblate shape when spun, as the centrifugal
forces are stronger at the equator than at the poles [1,2]. A spinning elastic body can deform
by a similar mechanism. The magnitude of the elastic deformation depends on several factors
including the angular velocity, mass density, elastic stiffness, the size and the initial shape [3].
Among the many possible body shapes, the case of a spinning right circular cylinder is special,
as it yields a cylindrically symmetric distribution of centrifugal forces: the direct effect of the
centrifugal force is a radial expansion, but the latter is typically limited as it has to work against
the bulk modulus of the material. In this paper, we characterize the non cylindrically-symmetric
deformations of an initially circular spinning cylinder. To this end, we use bifurcation methods
as the symmetry breaking is induced by an elastic instability. Such deformations involve shear
strain but no local change of volume, and are favorable for almost-incompressible materials such
as typical soft solids.

The linear stability of rotating elastic cylinders has been investigated theoretically by
Haughton and Ogden [4,5]. These authors considered homogeneous cylinders of finite length, as
well as hollow tubes, rotating about their axis with angular velocity ω and subjected to a prescribed
axial loading. The unbuckled configuration involves a bi-axial stress that has been calculated in
terms of the prescribed force and of ω. It has been found to be linearly unstable with respect
to prismatic (invariant along the axis), axisymmetric (invariant under rotations) or asymmetric
steady deformations when ω exceeds a threshold value depending on the axial force and on the
elastic properties of the homogeneous cylinder [4,6] or of the tube [5]. In recent work, the influence
of an internal pressure on the linear stability against axisymmetric deformations of rotating tubes
has been considered [7]. In the appendix of their book devoted to the mathematical analysis of
elastic waves propagating at the surface of spinning elastic cylinders, Rabier and Oden [8] provide
a short account of the linear stability against steady prismatic deformations of spinning cylinders
based on the plane-strain approximation, ignoring any deformation along the axis of the cylinder,
in contrast with the systems studied by Haughton and Ogden [4,5] where the prescribed load
generate a base uniaxial deformation.

To the best of our knowledge, prior work on these instabilities is limited to linear bifurcation
analyses. Hence it is not known whether they are supercritical (the buckled configuration is
present beyond the linear bifurcation threshold only, and the bifurcation is continuous) or
subcritical (the buckled configuration exists below the linear bifurcation threshold, and the
bifurcation is discontinuous). In this paper, we carry out a nonlinear buckling analysis of a
spinning cylinder. As we have in mind applications to hydrogels or elastomers such as silicone
rubbers, the cylinder is modelled as an incompressible hyperelastic material. We consider the
case of a slender elastic cylinder whose total length is prescribed, as happens for example if
the cylinder is clamped to the rotating device at its ends. In addition, the axis of the cylinder is
assumed to be undeformable; in experiments, a stiff core of this kind can be achieved by moulding
the soft cylinder around a thin and stiff wire. This system can be viewed as the limit case of a rigid
shaft coated by an elastic material whose thickness is far larger than the radius of the rigid shaft
itself. In view of these assumptions, we carry out the stability analysis assuming plane strain;
this assumption is relaxed and discussed in the appendix, where other modes of bifurcations
are analyzed. We work in the frame rotating with the cylinder, and seek equilibrium (i.e. static)
solutions in the presence of centrifugal forces. Transients and other dynamic effects are ignored.

The outline of this paper is as follow. We start by recalling the nonlinear equations governing
the equilibrium of a cylinder undergoing finite deformations in Section 2. Next, we carry out its
linear bifurcation analysis in Section 3. The first unstable mode occurs at a critical angular velocity
ωc that is derived in terms of the shear modulus and of the mass density. Next, in Section 4, a
nonlinear analysis based on a Koiter post-bifurcation expansion addresses weakly post-buckled
solutions. We show that the instability can be either supercritical or subcritical, depending on the
first nonlinear coefficient in the series expansion of the strain energy density function. Along the



bifurcated branch, the amplitude is found to grow as |ω − ωc|1/2 and the moment of inertia of the
spinning cylinder as |ω − ωc|, with ω >ωc for a constitutive law corresponding to a supercritical
bifurcation, and ω <ωc in case of a subcritical bifurcation. Finally, finite-amplitude solutions are
studied numerically using the nonlinear finite elements method in Section 6. Bifurcated equilibria
for cylinders made of a neo-Hookean elastic material [9,10] and involving a strain up to 100% are
presented. The approximation consisting of considering an apparent shear modulus (instead of
the initial shear modulus) enables us to explain the subcritical-to-supercritical transition based on
an equivalent neo-Hookean model.

2. Equilibrium equations based on a finite strain theory
In this section the nonlinear equations governing the equilibrium of a rotating elastic cylinder are
derived, considering an arbitrary hyper-elastic incompressible isotropic material. Starting from
the condition that the total potential energy of the system is stationary, the classical equilibrium
equations relevant to finite deformations are derived, including the equilibrium conditions both
in the bulk and along the lateral boundary.

Let r0 denote the radius of the undeformed cylinder, ρ its mass density and µ its initial shear
modulus, i.e. the shear modulus for infinitesimal strain. The cylinder is spun with an angular
velocity ω about its rigid axis, as sketched in Fig. 1. The equilibrium of the system is governed by

the only dimensionless parameter in the problem, namely α=
ρ r20 ω

2

µ .
In the co-rotating frame, both the elastic force and the centrifugal force are conservative.

The equilibrium can therefore be derived from the condition that the total potential energy is
stationary. The position R of a material point in final configuration is given as a map R(r) in
terms of the position r in undeformed configuration. For an isotropic and incompressible elastic
material, the strain energy density is a function of the two first invariants, I1 and I2, of Green’s
deformation tensor C = FT · F, where F = ∂R/∂r is the deformation gradient: I1 = tr C and

I2 = 1
2

(
(tr C)2 − tr

(
C2
))

. The strain energy density can be written as µW (I1, I2) where W
is the dimensionless strain energy density, obtained by scaling out the initial shear modulus
µ. The function W (I1, I2) captures the response of the material to finite strain. For the strain
energy µW (I1, I2) to be consistent with the initial shear modulus µ, the following normalization
condition must be enforced,

∂W

∂I1
(0, 0) +

∂W

∂I2
(0, 0) =

1

2
. (2.1)

For instance, an incompressible neo-Hookean solid [9,10] and an incompressible Mooney-Rivlin
solid [11,12] correspond, respectively, toW = 1

2 (I1 − 3), and toW = 1
2 (a1(I1 − 3) + (1− a1)(I2 − 3)),

with a1 a material constant in the range [0; 1].
Incompressibility is represented as a constraint J(r) = 1, where J = detF is the Jacobian of

the transformation. To characterize equilibrium configurations, we seek stationary points of the
augmented energy

E =

∫
0<r<r0; 0<z<h

dr

(
µW (I1, I2)− 1

2
ρω2

(
R ·R− (R · ez)2

)
+ µ q (J − 1)

)
. (2.2)

The terms in the integrand are the strain energy, the potential of the centrifugal force, and the
Lagrange term taking care of the inextensibility constraint J = 1 by means of a multiplier q(r),
respectively.

We consider a slender cylinder (h� r0), whose terminal sections are blocked by the rotating
device. The stiff central wire favors buckling modes that are plain strain, except in a small region
of size ∼ r0 near the ends, which we ignore. Accordingly, attention is limited to modes that are
invariant along the axial coordinate z, i.e. ∂/∂z = 0. This assumption is justified in the appendix
where the linear thresholds of the other modes (associated to non plane strain deformation) are
found to be beyond the threshold of the first unstable plane strain mode.
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Figure 1. Sketch of the (a) reference and (b) deformed configurations. The axis of the cylinder is an undeformable wire,

and the displacement is blocked at its two ends. We work under the assumption of plane strain. A material point with initial

polar coordinates (r, θ) has final cylindrical coordinates R(r, θ), Θ(r, θ).

We use polar coordinates (r, θ), with r the distance to the axis and θ the angle, both taken in the
reference configuration (Fig. 1). The coordinates (r, θ) are used as Lagrangian coordinates; they
label material points in the system. In the deformed configuration where the centrifugal forces are
in effect, the polar coordinates are R(r, θ) and Θ(r, θ), as sketched in Fig. 1. The determinant of
the deformation gradient reads J = R

r

(
R,rΘ,θ −R,θΘ,r

)
, where a comma in subscript denotes a

partial derivative. The invariants of Green’s deformation tensor read

I1 = R2
,r +

1

r2
R2
,θ +R2Θ2

,r +
R2

r2
Θ2
,θ + 1, (2.3)

I2 =
R2

r2

(
R2
,rΘ

2
,θ +Θ2

,θ − 2R,rR,θΘ,rΘ,θ +R2
,θΘ

2
,r +Θ2

,r

)
+Θ2

rR
2 +

R2
,θ

r2
+R2

,r. (2.4)

The equilibrium equations are derived from the condition that the first variation of Eq.2.2 with
respect to the unknowns R(r, θ), Θ(r, θ) and q(r, θ) is zero.

Let t = (R,Θ, q) denote the collection of unknowns, and δt = (δR, δΘ, δq) a virtual
displacement that is kinematically admissible (abbreviated as ‘k.a.’), i.e. such that δR(0, θ) = 0 as
imposed by the stiff wire. The field t(r, θ) is a solution of the problem if it satisfies the kinematic
boundary condition R(0, θ) = 0 and

∀δt k.a., DE(α, t) [δt] = 0. (2.5)

Here, DE(α, t) [δt] denotes the first variation of the energy evaluated in the configuration t with
an increment δt, also known as the first Gâteaux derivative of the functional E [13]. Defining
G = r (W (I1, I2) + q(J − 1)), where the factor r comes from the cylindrical volume element dr =

2π r dr dz, and integrating by parts, we can derive the equations in the interior from Eqs.2.5 as

J − 1 = 0, (2.6)

∂G
∂R
− ∂

∂r

(
∂G
∂R,r

)
− ∂

∂θ

(
∂G
∂R,θ

)
=

α

r2
0

rR, (2.7)

∂

∂r

(
∂G
∂Θ,r

)
+

∂

∂θ

(
∂G
∂Θ,θ

)
= 0, (2.8)

where the first equation is the incompressibility constraint and the two other equations are
the equilibrium in the radial and circumferential directions, respectively. These equations are
complemented by the condition of zero traction at the lateral boundary r= r0,

∂G
∂R,r

∣∣∣∣
r=r0

= 0 and
∂G
∂Θ,r

∣∣∣∣
r=r0

= 0. (2.9)



As mentioned above, the central wire imposes the condition

R(r= 0, θ) = 0. (2.10)

3. Linear bifurcation analysis
The linear bifurcation analysis under the assumption of plane strain has been done by Rabier and
Oden [8]. In this section, we carry out this linear analysis in a cylindrical coordinate system. Doing
so, we shall recover the previous results of Rabier and Oden, and derive an explicit expression for
the modes that will be useful for the nonlinear buckling analysis later in Section 4.

(a) Unbuckled solution
We start by analyzing the unbuckled configuration (base state), and label all quantities relevant to
it using a subscript ‘0’. Because of the incompressibility assumption, the symmetric configuration
remains undeformed, i.e. R0(r, θ) = r and Θ0(r, θ) = θ. The Lagrange multiplier q proportional to
a hydrostatic stress is non-zero, however; its value can be found from the radial equilibrium (2.7)

and (2.9) as q0 = α
2

(
1− (r/r0)2

)
− 1. Altogether, the unbuckled solution of Eqs.2.6-2.10 is

written as t0 = (r, θ, q0).

(b) Linearization of the equations about the unbuckled solution
A small perturbation is added to the unbuckled solution, and the equations of Section 2 are
linearized with respect to the amplitude of the perturbation,

t = t0 + εt1 = (r + εu1(r, θ), θ + εΘ1(r, θ), q0 + εq1(r, θ)) . (3.1)

In view of the rotational symmetry of the base solution, the perturbation can be assumed to
depend on the angular variable θ as exp(i n θ) without loss of generality, where the circumferential
wave number n is an integer parameter: the perturbation is sought in the form

u1(r, θ) =Re
(
fu(r)einθ

)
Θ1(r, θ) =Re

(
−ifΘ(r)einθ

)
q1(r, θ) =Re

(
fq(r)e

inθ
) (3.2)

where Re denotes the real part. The conventional complex factor (−i) has been included for
convenience, anticipating on the fact that the phase of t1 is shifted by π/2 compared to the phase
of the two other unknowns. The goal of the linear bifurcation analysis is to calculate critical
values of the loading α= αc(n) such that the linearized equations of equilibrium have non-trivial
solutions: this is generically a sign that a branch is bifurcating from the unbuckled branch. Note
that the buckling amplitude cannot be obtained from this linear bifurcation analysis; it will be
derived later in Section 4. At linear order in ε, Eqs.2.6-2.8 yield

dfu
dr

+
1

r
fu + nfΘ = 0, (3.3)

d2fu
dr2

+
1

r

dfu
dr
−
(
n2

r2
+

1

r2

)
fu −

(
2n

r
+
αnr

r2
0

)
fΘ +

dfq
dr

= 0, (3.4)

n

(
αr2

r2
0

+ 2

)
fu − r3 d2fΘ

dr2
− 3r2 dfΘ

dr
+ n2rfΘ + nrfq = 0. (3.5)

This set of differential equations is complemented with the boundary condition Eqs.2.9-2.10
which read, upon linearization,

dfu
dr
− 1

r0
fu − nfΘ + fq = 0 at r= r0, (3.6)
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Figure 2. Left: Buckling load α=
(
ρω2r20
µ

)
predicted by the linear bifurcation analysis as a function of the

circumferential wave number n. Right: Critical angular velocity as function of the radius of an elastic cylinder for different

shear moduli, based on Eq.3.12. Examples of devices involving given angular velocity are indicated on the right.

dfΘ
dr
− n

r2
0

fu = 0 at r= r0, (3.7)

fu = 0 at r= 0. (3.8)

Upon elimination of fΘ and fq in Eqs.3.3-3.5 one gets an equation for fu:(
n2 − 1

)2
fu −

(
2n2 + 1

)
r

dfu
dr

+
(

5− 2n2
)
r2 d2fu

dr2
+ 6r3 d3fu

dr3
+ r4 dfu

dr4
= 0. (3.9)

The general solution of Eq.3.9 that is regular at r= 0 can be expressed in terms of two constants
A and B as fu =Arn+1 +Brn−1. The boundary conditions Eqs.3.6-3.7 then yield:

r2
0

(
n2 − n− 2− nρω2r2

0

2µ

)
A +

(
n(n− 1)− nρω2r2

0

2µ

)
B = 0 (3.10)

r2
0(n+ 1)A + (n− 1)B = 0. (3.11)

Non-trivial solutions correspond to A 6= 0, and/or B 6= 0. This is possible whenever the
determinant of this linear system is zero. This condition yields the critical value of the control
parameter α in terms of the circumferential wave number n as

αc(n) = 2

(
n− 1

n

)
. (3.12)

We have recovered the result of Rabier and Oden [8]. From Eq.3.11, if n= 1 then A= 0 and u=

B is constant, corresponding to an in plane rigid translation, and thus one has to take B = 0

from Eq.3.8. Therefore, non-trivial solutions are possible for n≥ 2 only. In view of the graphical
representation of the dispersion relation (3.12) in Fig. 2(left), the first unstable mode encountered
as the angular velocity is increased from zero is the ovalization mode corresponding to n= 2. The
corresponding bifurcation takes place at αc(n= 2) = 3. The critical angular velocities predicted by
Eq.3.12 are plotted in Fig. 2(right), using the typical mass density ρ∼ 1 g/cm3 for a soft material,
and n= 2. A cylinder of radius 20 mm made in a soft gel [14] having a shear modulus µ= 50 Pa

bifurcates when the angular velocity is of order that of a typical car wheel. A cylinder of radius
20 mm made of rubber is predicted to be unstable for the characteristic angular velocity of a ultra-
centrifuge. These two examples show that the phenomenon we are studying can be encountered
in real situations, in rubber joints in rotating parts for example.

In the Appendix, the assumptions of plain and cylindrical invariance are relaxed and an
extension of this linear bifurcation analysis is presented. The modes are then characterized by
an axial wave vector k and a circumferential wave number n. The first critical load αc is always
found to be attained with cylindrically invariant modes, k= 0, see appendix. This validates our



assumption of plane strain. For instance, the axisymmetric varicose mode n= 0 and k 6= 0 takes
place with α equal to 6 (Fig. 6(left)). The mixed varicose/ovalization mode with n= 2 and k 6= 0

is in fact a long-wavelength one (k→ 0) that is consistent with the prismatic mode just studied, as
it has α= 3 (Fig. 6(right)).

For later reference, we provide the explicit expressions of the complex mode shape fu(r), fΘ(r)

and fq(r) (as defined in Eqs.3.2). These expressions are valid for any circumferential wave number
n:

fu(r) =
1

2

(
(n+ 1)

(
r

r0

)n−1

+ (1− n)

(
r

r0

)n+1
)
, (3.13)

fΘ(r) =
1

r0

(
−
(
n

2
+

1

2

)(
r

r0

)n−2

+

(
n

2
− 1

n
+

1

2

)(
r

r0

)n)
, (3.14)

fq(r) =
1

r0

((
−n2 + n+ 1− 1

n

)(
r

r0

)n
+

(
n2 − n− 1 +

1

n

)(
r

r0

)n+2
)
. (3.15)

In the expressions, the load parameter α has been eliminated by means of the critical condition
α= αc(n). The buckling amplitude are normalized using the convention fu(r0) = 1, which
warrants that ξ is the radial buckling amplitude on the lateral surface, scaled by the parameter ε
appearing in Eq.3.1

u1(r0, θ) = ξ cos(nθ). (3.16)

4. Weakly nonlinear analysis
In this section, we carry out a Koiter expansion and derive an expansion of the bifurcated
solution in the vicinity of the bifurcation point. This involves pushing to the next order the formal
expansion started earlier during the linear bifurcation analysis. Specifically, the displacement field
and the Lagrange multiplier are expanded to order 2 in terms of an arc-length parameter ε that
we will be able to express in terms of the increment of the load parameter α− αc(n). This method
ultimately yields the buckling amplitude ε ξ in terms of the distance to threshold α− αc(n).

The Koiter post-bifurcation expansion is a perturbation method that has been already used
in various elastic systems [15–21]. In our recent paper dealing with the post-buckling analysis in
the elastic Rayleigh-Taylor instability [22], Koiter’s method has been rederived in a self-consistent
way; the present work makes use of the same notations and of the same solution strategy as in
this previous paper.

(a) Principle of the Koiter expansion
Both the load parameter α and the solution t = (R,Θ, q) are expanded in terms of the small arc-
length parameter ε as:

α = αc + α2ε
2 (4.1)

t(α) = t0(α) + εt1 + ε2t2 + ε3t3 + · · · (4.2)

where αc = αc(n) is the critical dimensionless angular velocity from the linear bifurcation
analysis, see Eq.3.12, and t1 is the corresponding linear mode. The load increment (α− αc) has
been assumed to scale like ε2 and not ε, as usual for a symmetric bifurcation: this makes the
expansion invariant by the transformation ε← (−ε), t1← (−t1) and t3← (−t3) corresponding
to a rotation of the buckling pattern by half a wavelength in a plane perpendicular to the axis.

Onwards, the dependence of αc on n will become implicit in our notation, for the sake of
readability. Note that the base solution t0 depends on the load α through the pressure parameter
q0. The first-order correction t1 is the linear mode from Section 3, normalized according to our
convention that the radial amplitude on the lateral surface is ξ, u1(r0, θ) = ξ cos(nθ).



The Koiter method proceeds by inserting the expansion in Eqs.4.1–4.2 into the nonlinear
equilibrium written earlier in Eq.2.5 as

∀δt, DE
(
αc + α2ε

2, t0(α) + εt1 + ε2t2 + ε3t3 + · · ·
)

[δt] = 0, (4.3)

where δt(r, θ) is the set of virtual functions
(
δR, δΘ, δq

)
that represent infinitesimal increments

of the displacements (including the Lagrange multiplier) satisfying the kinematic boundary
conditions. Equation 4.3 is then expanded order by order in ε [21,23].
At order ε, we recover the linear bifurcation problem solved earlier, now written in weak form,

∀δt, D2E(αc, t0(αc)) · [t1, δt] = 0 (4.4)

whose solution yields the critical value of the load αc and the linear mode t1;
At order ε2, we find an equation for the second-order correction t2,

∀δt, D2E(αc, t0(αc)) · [t2, δt] + 1
2D

3E(αc, t0(αc)) · [t1, t1, δt] = 0. (4.5)

which can be solved modulo an unknown (and irrelevant) component proportional to t1;
At order ε3, one obtains the equation

∀δt, D2E(αc, t0(αc)) · [t3, δt] +D3E(αc, t0(αc)) · [t2, t1, δt] · · ·

+ α2
dD2E(α, t0(α))

dα

∣∣∣∣
α=αc

· [t1, δt] +
1

6
D4E(αc, t0(αc)) · [t1, t1, t1, δt] = 0.

Upon insertion of the particular virtual displacement δt = t1, the first term cancels out by Eq.4.4
and we are left with

D3E(αc, t0(αc)) · [t2, t1, t1] · · ·

+ α2
dD2E(α, t0(α))

dα

∣∣∣∣
α=αc

· [t1, t1] +
1

6
D4E(αc, t0(αc)) · [t1, t1, t1, t1] = 0. (4.6)

This equation yields α2, since all the other quantities are known at this stage. In view of Eqs.4.1–
4.2, the value of α2 finally allows to connect the buckling amplitude ε to the increment of the
load α− αc = α2ε

2. In the equations above, D2E [δt; t1] denotes the second Gâteaux derivative
of E , which is a bi-linear symmetric form on the increment t1 and on the virtual increment δt.
Similarly, D3E [δt; t1; t2] is the third Gâteaux derivative (a tri-linear symmetric form).

(b) Second-order correction to the displacement
The second order displacements t2 = (u2, Θ2, q2) results from the nonlinear interaction of the
linear mode t1 with itself, see Eq.4.5. As a result, it involves a superposition of Fourier modes with
respect to the variable θ having wave numbers n− n= 0; n; and n+ n= 2n. The component with
wave number n corresponds to the linear mode t1 with an amplitude that cannot be determined
at this order: observe that it is possible to add an arbitrary contribution γ t1 to the solutions t2 of
Eq.4.5, thanks to Eq.4.4. We will therefore omit this Fourier mode, and retain only the meaningful
0 and 2n components: we seek the second-order correction t2 to the displacement as

u2 = ḡu(r) +Re
(
gu(r)e2inθ

)
, (4.7)

Θ2 = ḡΘ(r) +Re
(
−igΘ(r)e2inθ

)
, (4.8)

q2 = ḡq(r) +Re
(
gq(r)e

2inθ
)
. (4.9)

In what follows, we focus on the branch emanating from the first unstable load, i.e. we take n= 2

and αc = 3. To calculate the Gâteaux derivative of the total potential energy, an expansion of the
dimensionless strain energyW is needed in terms of I1 − 3 and I2 − 3. For the case of plane strain



and incompressible materials considered here, I1 = I2, and one can expand the strain energy as
in [24]

W =
1

2

[
(I1 − 3) + β(I1 − 3)2 + · · ·

]
, (4.10)

where β is a nonlinear constitutive parameter. For both a Neo-Hookean solid, and a Mooney-
Rivlin solid in plane strain, β = 0. Note that β > 0 as well as β < 0 are compatible with material
stability.

Inserting the expression of the linear mode in Eqs.3.13–3.15 and the second-order correction in
Eqs.4.7–4.9 into the nonlinear equilibrium in Eqs.2.6-2.10 leads to a set of equations at order ε2.
Each equation can be split into two equations : one equation for the terms depending on the θ
variable as cos(4πθ) (or sin(4πθ)); the other one for the remaining terms.
The incompressibility condition at order 2 writes:

dgu
dr

+
gu
r

+ 4gΘ =

(
5r4

2r6
0

− 6r2

r4
0

+
27

2r2
0

)
ξ2

4
, (4.11)

and
dḡu
dr

+
ḡu
r

=

(
21r4

2r6
0

− 30
r2

r4
0

+
27

2r2
0

)
ξ2

4
. (4.12)

The radial equilibrium in the bulk in Eq.2.7 reads:

− (4β + 1) r
d2gu
dr2

− (4β + 1)
dgu
dr
− 16βr

dgΘ
dr
− rdgq

dr
+ (4β + 17)

gu
r

+

(
12
r2

r2
0

+ 8

)
gΘ =

(
(24β + 21)

r2

r2
0

− (20β + 19)
r4

r4
0

+ 6
r6

r6
0

)
ξ2

2r2
0

, (4.13)

and

(4β + 1) r
d2ḡu
dr2

+ (4β + 1)
dḡu
dr

+ r
dḡq
dr
− (4β + 1)

ḡu
r

=

((
12β − 21

2

)
r2

r4
0

+

(
39

2
− 30β

)
r4

r6
0

− 9
r6

r8
0

)
ξ2. (4.14)

The equilibrium in the bulk in the orthoradial direction in Eq.2.8 reads:

−16βr
dgu
dr

+ r3 d2gΘ
dr2

+ 3r2 dgΘ
dr
−
(

16β + 8 + 12
r2

r2
0

)
gu − (64β + 16) rgΘ − 4rgq

=

(
−
(

54β +
27

2

)
r

r2
0

+

(
24β +

39

4

)
r3

r4
0

− (10β + 5)
r5

r6
0

+
3

4

r7

r8
0

)
ξ2, (4.15)

and

r
d2ḡΘ
dr2

+ 3
dḡΘ
dr

= 0. (4.16)

The radial equilibrium of the boundary in Eq.2.9 reads:

− (4β + 1) r0
dgu
dr

(r0) + (1− 4β) gu (r0) + 4 (1− 4β) r0gΘ (r0)− r0gq (r0) =

(
1

2
− 10β

)
ξ2

r0
,(4.17)

and

− (4β + 1) r0
dḡu
dr

(r0) + (1− 4β) ḡu (r0)− r0ḡq (r0) =

(
6β +

1

2

)
ξ2

r0
. (4.18)

The equilibrium of the boundary in the orthoradial direction (see Eq.2.9) reads:

− r2
0

dgΘ
dr

(r0) + 4gu (r0) =
ξ2

r0
, (4.19)

and
dḡΘ
dr

(r0) = 0. (4.20)



Eliminating gΘ and gq from Eqs.4.11, 4.13 and 4.15 one gets a differential equation for gu:

r3

3

d4gu
dr4

+ 2r2 d3gu
dr3

− 9r
d2gu
dr2

− 11
dgu
dr

+
75gu
r

=−36ξ2

r2
0

. (4.21)

Using the boundary conditions Eqs.4.17, 4.19 one obtains gu as

gu(r) =−9rξ2

16r2
0

+
5r3ξ2

8r4
0

− r5ξ2

16r6
0

, (4.22)

from which we find gΘ and gq as

gΘ(r) =
9ξ2

8r2
0

− r2ξ2

r4
0

+
r4ξ2

4r6
0

, (4.23)

gq(r) = 0. (4.24)

Eqs.4.12, 4.14, 4.16, 4.18 and 4.20 can be solved by a similar method,

ḡu(r) =

(
27r2

4r2
0

− 15r4

2r4
0

+
7r6

4r6
0

)
ξ2

4r
, (4.25)

ḡΘ(r) = 0, (4.26)

ḡq(r) =

(
− (72β + 6) + (144β + 9)

r2

r2
0

+ (9− 72β)
r4

r4
0

− 6
r6

r6
0

)
ξ2

4r2
0

. (4.27)

(c) Amplitude equation
At this point, we have calculated the first and second-order displacements t1 and t2. With the
help of a symbolic calculation language, we can then determine the quantities appearing Eq.4.6
as

D3E(αc, t0(αc)) · [t2, t1, t1] = −329πβξ4

40
− 325πξ4

64
,

D4E(αc, t0(αc)) · [t1, t1, t1, t1] =
975πβξ4

4
+

6387πξ4

160
,

dD2E(α, t0(α))

dα

∣∣∣∣
α=αc

= −πξ2.

Equation 4.6 then yields the sought relation between the scaled load increment α2 and the
buckling amplitude ξ: α2 = (63/40 + 162/5β) ξ2/r2

0 . Multiplying both sides by ε2 and identifying
the load increment α− αc from Eq.4.1 and the true buckling amplitude ζ = ε ξ, we find the
amplitude equation for the mode n= 2 as

α− αc =

(
63

40
+

162

5
β

)
ζ2

r2
0

. (4.28)

Thanks to our normalization convention in Eq.3.16, the buckling amplitude ζ is the amplitude
of the radial displacement on the outer surface, i.e. R(r0) = r0 +Re(ζ e2iθ) + · · ·
Based on the amplitude equation in Eq.4.28, the bifurcation is supercritical (continuous) if the
material parameter β is such that 63/40 + 162β/5> 0, and subcritical (discontinuous) otherwise:

ζ = r0

√
(α− αc) /

(
63

40
+

162

5
β

)
, α > αc if β >− 7

144 '−0.0486 (supercritical) (4.29)

ζ = r0

√
(αc − α) /

(
63

40
+

162

5
β

)
, α < αc if β <− 7

144 '−0.0486 (subcritical) (4.30)

The bifurcated branch is found above the critical load in the supercritical case, and below the
critical load in the subcritical case.
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Figure 3. left: Dimensionless amplitude of mode n= 2 as a function of the control parameter α− αc for a spinning

cylinder with different β in the elastic constitutive laws (Eq. 4.10), in the limit of the small deformations. The lines result

from the Koiter post-bifurcation expansion (Eqs.4.29 and 4.30). The filled circles result from simulations using the finite

elements method. right: Dimensionless energy ∆E as a function of the control parameter α computed from finite

elements simulations with a linear mesh density equal to nmesh = 12. ∆E is zero below the critical value α∗(nmesh)

of α, and starts to decrease quadratically beyond these value. Inset: Convergence of the critical load α∗ with the linear

mesh size 1/nmesh towards the theoretical value α∗ = 3 for the ovalization mode (n= 2).

The amplitude equation captures the influence of an arbitrary material model through the
single parameter β. For both the neo-Hookean and Mooney-Rivlin material, β = 0 and the
bifurcation is supercritical. For the Gent hyper-elastic model, which captures the concept of
limiting chain extensibility, the dimensionless strain energy density function is [25]:

WGent =−Jm
2

log

(
1− I1 − 3

Jm

)
⇒ β =

1

2Jm
, (4.31)

where the parameter Jm is related to the maximal stretch of the material under a uni-axial
deformation. For a maximal stretch equal to 700%, Jm ∼ 50. From Eq.4.29, the ratio of the
amplitude ζ of the ovalization mode n= 2 for a Gent elastic material versus a neo-Hookean
solid (β = 0) is ζGent/ζneo Hookean ∼ 0.9: even near the bifurcation threshold where the solid is
almost undeformed and the chains are not extended, the limited chain extensibility accounts for
a reduction of the buckling amplitude by 10%, which is not negligible.

The ovalization of the cylinder induces an increase in the moment of inertia of the cylinder, an
effect that could be probed by the rotating device. The moment of inertia being quadratic in the
amplitude of the displacement, its calculation requires the use of the series expansion of R(r, θ)

at order 2 (Eq.4.2). From Eqs.3.13, 4.25, 4.29 and 4.30, the moment of inertia per unit axial length
is at order ε2 (see Fig. 4):

I∆ = ρ

∫r0
0

∫2π

0
R2rdrdθ=

π

2
ρr4

0

(
1 +

80 (α− αc)
1296β + 63

)
, (4.32)

with α>αc if β >−7/144 and α<αc if β <−7/144.
The predictions of the amplitude equation in Eq.4.28 are verified against numerical

simulations: Fig. 3(left) shows as expected a perfect agreement asymptotically close to bifurcation
for four particular material models.

5. A simple physical account of the influence of the material
model on the buckling amplitude

In Section 4 we have shown that the post-buckling behavior is influenced by the constitutive law
through the nonlinear elasticity coefficient β. As a result, the neo-Hookean model (β = 0) cannot



predict the buckling amplitude of a different material model (β 6= 0), and does not capture the
possibility of a subcritical bifurcation. In this section, we explain the dependence of the post-
buckling behavior on β by a simple mean-field type of argument: we modify the Koiter solution
for a neo-Hookean material (β = 0) by introducing an effective shear modulus depending on β,
and obtain a simple prediction for the buckling amplitude ζ in terms of β, which turns out to
be similar to the prediction based on the exact Koiter expansion. In particular, we recover the
existence of a transition to a subcritical bifurcation for small values of β.

Our argument makes use of two features of the Koiter solution for a neo-Hookean material:
for β = 0 the buckling amplitude in Eq.4.29 is

ζ = r0

√
40

63

√
α− αc, (5.1)

and the average value of the invariant I1 is, from its definition:

〈I1〉= 3 +
59

6

ζ2

r2
0

+O
(
ζ3

r3
0

)
. (5.2)

This expression is accurate to order ε2, and has been found by setting β = 0 in the displacement
found by the Koiter expansion in Eqs.3.13–3.15 and 4.22–4.27.

For an arbitrary elastic constitutive law we define an apparent nonlinear shear modulus
µapp(I1) for plane strain by

µapp(I1) = 2µ
W (I1)

I1 − 3
. (5.3)

In view of the series expansion of W in Eq.4.10, one obtains

µapp(I1) = µ
[
1 + β(I1 − 3) +O

(
(I1 − 3)2

)]
. (5.4)

In particular, µapp = µ for a Mooney-Rivlin or a neo-Hookean solid (β = 0): one can think of the
apparent modulus µapp as the modulus of an equivalent neo-Hookean model for a prescribed
value of I1.

We postulate that the post-buckling behavior of a cylinder having an arbitrary constitutive
law can be predicted by replacing the modulus µ in the prediction of the neo-Hookean model by
the apparent modulus µapp(〈I1〉) defined based on the average value of the invariant. Replacing
α= ρ r2

0 ω
2/µ in equation 5.1 with the effective load parameter αeff ,

αeff =
ρ r2

0 ω
2

µapp(〈I1〉)
. (5.5)

and combining with Eqs.5.4 and 5.2, we obtain

αeff = α

(
1− β 59

6

ζ2

r2
0

)
, (5.6)

after dropping higher-order terms. Replacing α with αeff in the amplitude equation for β = 0 in
Eq.5.1 as well, we find

ζ2

r2
0

=
40

63
(αeff − αc) =

40

63

[
α

(
1− β 59

6

ζ2

r2
0

)
− αc

]
. (5.7)

Grouping the terms depending on the amplitude ζ, this yields

ζ2

r2
0

(
63

40
+

59

6
αβ

)
= α− αc.

Using α≈ αc = 3 in the left-hand side, we obtain the buckling amplitude as

ζ2 = r2
0 (α− αc) /

(
63

40
+

59

2
β

)
. (5.8)



This approximate prediction is similar to the exact one based on the Koiter expansion in Eqs.4.29–
4.30. The only difference is the coefficient of β, which is 162/5 = 32.4 in the exact theory and is
now approximated as 59/2 = 29.5. In particular, the approximate formula in Eq.5.8 still predicts
a change in the type of bifurcation, now at β =−(63/40)/(59/2) =−0.053.

In view of the above derivation, the dependence of the buckling amplitude on β can be
interpreted as follows. If β > 0, the apparent modulus µapp is larger than the initial modulus µ and
as a result the effective load parameter αeff is smaller than the true load parameter α, see Eq.5.6,
and the buckling amplitude is smaller than in the neo-Hookean case, see Eq.5.8. Conversely, if
β < 0 is moderately negative, the buckling amplitude is larger than for a neo-Hookean material;
if β is more negative, αeff can be larger than αc even if α is smaller than αc and the bifurcation
becomes subcritical as the bifurcated branch flips.

Qualitatively, the main features of the solution in the weakly nonlinear regime are well
captured by the proposed approximation, which combines the nonlinear expansion for a neo-
Hookean solid with an apparent modulus depending on the material non-linearity β and on the
amplitude of the deformation.

6. Post-buckling analysis
To probe the equilibrium solutions in the fully nonlinear regime, we have set up numerical
simulations of the finite-elasticity problem described in Section 2. The simulations make use of
the finite element method, and of its open-source implementation in the FEniCS library [26], and
are based on the variational formulation written symbolically in Eq.2.5. We first use the numerical
solution close to the bifurcation threshold to verify the predictions of the weakly nonlinear Koiter
expansion (Section (a)). Next, proceeding farther from the bifurcation, we use it to probe the range
of validity of the weakly nonlinear analysis (Sections (d) and (e)).

(a) Finite element implementation
The simulations make use of a set of units such that r0 = 1, ρ= 1 and µ= 1, so that α= ω2. The
domain is a 2-dimensional disk Ω of radius r0 = 1. A Cartesian coordinate system (x, y) is used,
whose origin is at the center of Ω. The orthonormal frame associated with the coordinate axes is
denoted by (ex, ey). An isotropic two-dimensional elastic body initially occupying the domain
Ω is set up, to represent an isotropic incompressible three-dimensional solid in plane strain. It is
subjected to the action of the centrifugal volume force α (xex + yex)/r, where r=

√
x2 + y2 is

the radial coordinate.
The displacement vector u = uxex + uyey and the Lagrange multiplier p are discretized using

Lagrange finite elements with a quadratic interpolation, on a triangular mesh (see chapter 20
of [26]). The number of triangular mesh elements is written n2

mesh, where nmesh is the typical
linear mesh density in either direction. The nonlinear problem in the (u, p) variables is solved
using a Newton algorithm based on a direct parallel solver (MUMPS). Full equilibrium branches are
obtained by progressively incrementing the load parameter α, recording the displacement field,
the Lagrange multiplier and the total potential energy of the system, and reaching convergence
at each step.

(b) Verification using a neo-Hookean material
Different material models have been used, corresponding to different expressions of the scaled
strain energy density. We first consider the neo-Hookean case, for which W (I1) = 1

2 (I1 − 3).
Starting from the reference configuration (u = 0), α is gradually increased by increments δα=

1/4000. A random disturbance of amplitude ξ0 = 10−3 is systematically added to the solution
from the previous step, and used as the initial condition for the next step.

For α lower than a threshold which depends on nmesh, no deformation is observed (u =

0). Beyond the threshold value of α the calculation converges to a non-zero solution u. The



corresponding deformed shape is ellipsoidal, as shown in Fig. 4-(a). Upon increasing values of α,
the ovalization is more and more pronounced. The difference of the total potential energy of the
system and the energy of the undeformed cylinder,∆E , is found to be negative, i.e. the ovalization
is energetically favorable. A plot of ∆E as a function of the load α is shown in Fig. 3(right).

For a given mesh size, one can estimate the buckling threshold α∗(nmesh) accurately by
fitting ∆E as ∆E ≈ k(α− α∗(nmesh))2. The convergence of α∗(nmesh) with the mesh size,
i.e. for 1/nmesh→ 0 is shown in the inset. The limit α∗(∞) is consistent with the analytical
prediction αc = 3, with a residual error well below 10−4. In the following, the linear mesh
density nmesh is always taken larger than 12, which warrants a residual error of the order
(α∗(nmesh = 12)− αc)/αc < 0.2%.

(c) Verification using a general material
Simulations have also been performed with a more nonlinear material model W (I1) = 1

2 (I1 −
3) + β

2 (I1 − 3)2. For all the tested values of β larger than −7/144, again, no deformation is
observed if α<α∗(nmesh), the deformation grows quadratically above α∗(nmesh), and the
buckling threshold convergences to the same buckling threshold αc = 3. For all the tested values
of β smaller than −7/144, no deformation takes place when α passes α= 3. However, when α

is decreased by small increments, the solution bifurcates from u = 0 as α becomes less that an
critical value α∗(nmesh). We have checked that α∗(nmesh) converges to αc = 3 for finer and finer
meshes in this subcritical case as well.

The buckling amplitude is measured from the simulations as ζ = 1
2 (Rmax/Rmin − 1), where

Rmin and Rmax are the smallest and largest distance from the deformed lateral boundary to
the origin. This amplitude ζ is plotted as a function of α in Fig. 3(left) for different values of β,
and compared to the prediction based on the Koiter expansion from Eqs.4.29–4.30. In this figure
and the following figures, the horizontal axis is α− αc, with αc = 3 for the analytic curves for
mode n= 2, and αc = α∗(nmesh) for the simulation data: this choice cancels the small shift in the
instability threshold caused by the finite mesh size. The agreement is good in the limit of the small
amplitudes, which indeed corresponds to the domain of validity of the Koiter expansion.

(d) Gent elastic cylinders
To assess the domain of validity of the Koiter expansion, which is in principle restricted to a small
neighborhood of the bifurcation point, we have plotted in Fig. 4 the moment of inertia and the
buckling amplitude of a neo-Hookean cylinder over a wide range of α. The buckling amplitude
defined here by (Rmax −Rmin)/Rmax = 1−Rmin/Rmax, is also one minus the aspect ratio for
the ovalization mode n= 2 considered here. Comparison to the prediction of the Koiter post-
bifurcation expansion at order (α− αc)2, yields good agreement close to bifurcation.

In Section 5, we have shown that non neo-Hookean constitutive laws can be accounted for
by using an effective load parameter αeff in the predictions of the neo-Hookean model. Here,
we show how this approximation can be extended to the case of finite deformation. We start by
capturing the average value of the invariant 〈I1〉 as obtained by the numerical simulation of a
neo-Hookean material (black dots in Fig. 5) using a fitting function fnH,

〈I1〉= fnH(α). (6.1)

This fitted function fnH serves as a replacement for Eq.5.2 which, being part of a Koiter expansion,
is inapplicable beyond the neighborhood of the bifurcation point. Next, we define an effective
load parameter based on 〈I1〉 as earlier in Section 5: inserting Gent’s constitutive law in Eq.4.31
into the definition of the apparent modulus µapp in Eq.5.3, and the latter into the definition of the
effective modulus in Eq.5.5, we find

αeff = α
〈I1〉 − 3

−Jm log
(

1− 〈I1〉−3
Jm

) . (6.2)
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Figure 4. Moment of inertia (top left) and aspect ratio (bottom left) from the finite element simulations (dots), for a neo-
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the amplitude of the displacement, relative to the maximum displacement which is, respectively 0.05r0 (snapshot (a)

for α= 3.006), 0.13r0 (snapshot (b) for α= 3.025), 0.20r0 (snapshot (c) for α= 3.05) and 0.41r0 (snapshot (d) for

α= 3.15).

Finally, we replace the load parameter α appearing in Eq.6.1 by αeff , as we did earlier in Section 5.
The result is

〈I1〉= fnH (αeff) . (6.3)

This implicit equation yields the two solid curves in Fig. 5, which agree well with the predictions
of the numerical simulations. Fig. 5 confirms that the nonlinear solution depends mainly on the
load α and on the constitutive parameter β through the combination αeff : for a fixed value of
〈I1〉 − 3 or, equivalently, of αeff , the solutions corresponding to different values of the constitutive
parameter Jm are almost indistinguishable (see snapshots in Fig. 5).

(e) Case of a subcritical bifurcation
We analyze the numerical solutions having a finite amplitude, obtained when the constitutive
law produces a subcritical bifurcation (β <−7/144, see Eq.4.30). To this end, we consider the
constitutive law

W =
1

2

[
(I1 − 3)− 0.1(I1 − 3)2 + 0.2(I1 − 3)3

]
. (6.4)

The constitutive parameter β =−0.1 is indeed less than −7/144 and we expect a subcritical
bifurcation. The higher-order ensures that the energy is bounded from below (material stability).
Note that W is an increasing function of I1 for the range of the deformations that are considered
here.

Starting from α well above αc = 3 and decreasing α progressively, we find that the buckling
indicator 〈I1〉 − 3 departs from zero at α= α∗(nmesh), see Fig. 5(right).

The excess of energy∆E is positive and increases asα decreases (inset of Fig. 5(right)), meaning
that the energy of the buckled solution is larger than that in the unbuckled configuration. A
fold point is then encountered: for a value αm of α, the slope of 〈I1〉 − 3 as a function of α
becomes infinite, and no solution is found below αm except the trivial one. Conversely, starting
from the fold point at α= αm, and increasing α now, one finds a new branch of solutions with
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larger buckling amplitude, as seen in Fig. 5(right). The excess of energy decreases and eventually
becomes negative as one moves along this part of the branch, increasing α from the initial value
αm. For α<αm the only solution found is the trivial one, u = 0; we call this the stable unbuckled
branch; For αm <α<α∗(nmesh) there are three solutions, located on the stable unbuckled branch,
on the lower bifurcated branch (enclosed between the initial bifurcation point and the fold point),
and on the upper bifurcated branch; For α>α∗(nmesh) there are two solutions, corresponding to
the so-called unstable unbuckled branch, and to the upper bifurcated branch.
An approximation of this bifurcation diagram can be obtained without numerical calculation
by the trick based on the effective load parameter. To do so, it suffices to insert into Eq.6.3 the
expression of αeff relevant to the constitutive model in Eq.6.4, namely

αeff = α
〈I1〉 − 3

1− 0.1 (〈I1〉 − 3) + 0.2 (〈I1〉 − 3)2
. (6.5)

The result is shown by the continuous line in Fig. 5(right). While the agreement with the
numerical simulations is not perfect, the approximate theory captures well the general aspect
of the bifurcation diagram, including the presence of a fold point.

The stability of the branches can be addressed with the Leray-Schauder rule [27]. An index
(+1) is assigned to a stable branch and (-1) to an unstable branch. From the Leray-Schauder degree
theory the sum of the indexes has to be constant for any value of the control parameter α. The
left unbuckled branch is stable, and its index is (+1). A small disturbance of a solution in the right
unbuckled branch causes a negative ∆E : The index of this branch is therefore (-1). The buckled
branches count double, since for a given value of I1 the amplitude of the mode can be equally
positive or negative. One concludes that the index of the upper branch has to be (+1) and the index
of the lower branch is (-1) [28], as summarized Fig. 5(right)). We end up with the usual situation
for a subcritical bifurcation: for α<αm the unique stable solution is the base state; two stable
solutions coexist for αm >α>αc, namely the base state and the upper branch; going from αm to



αc the lowest-energy solution transitions from the unbuckled one to the one on the upper branch;
for α>αc, the only stable solution is the one on the upper branch.

7. Conclusion
We have studied the prismatic deformations induced by centrifugal forces in a hyperelastic
cylinder spinning about its axis. These deformations are driven by the dimensionless control
parameter αwhich is proportional to the square of the angular velocity, the radius of the cylinder,
its mass density, and the inverse of the shear modulus.

A sinusoidal radial disturbance with a circumferential wave number n and an infinitesimal
amplitude has been shown to become critical by a linear bifurcation analysis for a set of valuesα=

αc(n) that depend on the wave number but not on the constitutive law of the material. The first
critical value αc(n) corresponds to an ovalization of the cross-section, n= 2, and will therefore be
observed when α is increased from zero as the cylinder is set into rotation.

The amplitude of the deformation of the cross-section has been characterized by a weakly
nonlinear expansion. The first nonlinear elasticity modulus, β, has been shown to influence both
the buckling amplitude and the nature of the bifurcation which, for the first mode n= 2, is
subcritical when β <−7/144 and supercritical when β >−7/144.

Fully post-buckled configurations have been calculated numerically using the finite elements
method, both in the supercritical and subcritical cases. The post-buckled shapes of a cylinder
having an arbitrary constitutive law characterized by a material parameter β are well
approximated by a neo-Hookean model (β = 0) making use of an apparent shear modulus
depending on β and of the buckling amplitude. This interpretation in terms of an effective neo-
Hookean model provides a simple and unified way to capture the nonlinear features of this
instability, including the effects of the constitutive model on the buckling amplitude and on the
nature of the bifurcation, as well as the general aspect of the bifurcation diagram, both in the
subcritical and supercritical cases.

This instability causes significant modifications in the mechanical properties of rotating
cylinders. It has therefore to be considered in the design of devices involving compliant elastic
pieces that can rotate at high angular velocity, as joints or insulators placed in between rotating
rigid pieces. Since the elastic properties of most of these soft materials are temperature dependent,
these changes may occur—or disappear—while the device is operating for a long time, due to
local heating. Another potential application is related to the development of patterning induced
by external forces (here the centrifugal force): once a targeted deformation of a soft elastic cylinder
is achieved by adjusting its angular velocity, a chemical reaction may be initiated in order to
imprint the deformed configuration into the material permanently.
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A. Linear stability analysis including variations along the axis of
the cylinder

In this appendix, we go beyond the plane strain deformation. A linear stability analysis taking
into account deformations in the radial, circumferential and axial directions is carried out. The
first unstable mode is found to be the prismatic (plane-strain) one with the circumferential
wave number n= 2. This result validates the relevance of the plane strain assumption for a
post-buckling analysis.

(a) Linearization of the base equations
In the following we use cylindrical coordinates, with r the distance to the axis, θ the angle and
z the height in the unperturbed state (Fig. 1). After deformation, the polar coordinates become



R(r, θ, z),Θ(r, θ, z), andZ(r, θ, z). In this coordinate system, the deformation gradient F =∇R(r)

writes:

F =

 R,r RΘ,r Z,r
1
rR,θ

R
r Θ,θ

1
rZθ

R,z RΘ,z Z,z

 . (A 1)

Expressions of J , I1 and I2 are obtained from Eq.A 1. Defining G = r (W (I1, I2) + q(J − 1)),
Eqs.2.5 write in strong form:

J − 1 = 0, (A 2)
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− ∂
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r2
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rR, (A 3)

∂
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(
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∂Θ,θ

)
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)
+

∂
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(
∂G
∂Z,θ

)
+

∂

∂z

(
∂G
∂Z,z

)
= 0, (A 5)

with, at r= r0:
∂G
∂R,r

∣∣∣∣
r=r0

= 0,
∂G
∂Θ,r

∣∣∣∣
r=r0

= 0,
∂G
∂Z,r

∣∣∣∣
r=r0

= 0. (A 6)

In a standard way, we assume for the linear stability analysis a harmonic θ and
z dependence of any variation of the perturbation of R, Θ, Z and q: u1(r, θ, z) =

Re
(
fu(r)einθ+ikz

)
, Θ1(r, θ, z) =Re

(
−ifΘ(r)einθ+ikz

)
, z1(r, θ, z) =Re

(
−ifz(r)einθ+ikz

)
,

q1(r, θ, z) =Re
(
fq(r)e

inθ+ikz
)

, where n is the circumferential wave number and k is the axial
wave number. Since R(r, θ, z) =R(r, θ + 2π, z), n has to be an integer. Furthermore, from the
symmetry θ↔−θ, one can take n positive. One can take k > 0 as well. Eqs.A 2-A 6 lead at order
ε to a differential equation for fu of order 6:

−r6 d6fu
dr6

− 9r5 d5fu
dr5

+ 3r4
[
(kr)2 +

(
n2 − 4

)] d4fu
dr4

+ 6r3
[
3(kr)2 +

(
1 + n2

)] d3fu
dr3

− 3r2
[(

3− n2 + n4
)

+
(

2n2 − 5
)

(kr)2 + (kr)4
] d2fu

dr2

− 3r
[(
−3 + n2 − n4

)
+
(

1 + 2n2
)

(kr)2 + 3(kr)4
] dfu

dr

+

[
(n2 − 9)(n2 − 1)2 + 3

(
1− n2

)2
(kr)2 − 3

(
1− n2

)
(kr)4 + (kr)6

]
fu,

(A 7)

and from Eqs.A 6 one obtains the boundary conditions in term of fu at order ε:

r4
0

d4fu
dr4

+ 6r0
3 d3fu

dr3
+ r2

0

[(
5− 2n2

)
− 2(kr0)2
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[(
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+
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(
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]
fu = 0, (A 8)
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Figure 6. Critical value of α beyond which the instability occurs, as a function of k. left: For axisymmetric modes. right:
For asymmetric mode with n= 2
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In the next sections, the main steps to derive the linear solvability condition for asymmetric
modes with circumferential numbers n= 0 (section (b)) and n= 2 (section (c)) are developed.

(b) Axisymmetric modes
We now consider deformations that are invariant by rotation but depend on z, giving to
the cylinder a varicose shape, which formally amounts to imposing n= 0 and fΘ = 0. Eq.A 7

simplifies to
(
L − k2

)2
fu = 0 with L= d2

dr2
+ 1
r

d
dr −

1
r2

. Omitting terms diverging at r= 0, the
general solution of this equation is found by using the Wronskian method and can be presented
as

u(r) =AI1(kr) +Bk2
[
K1(kr)

∫r0
r
I2
1 (kr′)r′dr′ − I1(kr)

∫r0
r
r′I1(kr′)K1(kr′)dr′

]
, (A 11)

where Ia andKa are the modified Bessel functions of first and second kind of order a respectively,
and A and B are integration constants. The boundary conditions Eqs.A 8 and A 10 writes 2A+

B = 0 and
[
−2kI0(kr0) + 2

r0
I1(kr0) + α

r0
I1(kr0)

]
A+ kI0(kr0)B = 0. The nontrivial solution

(A 6= 0 and/or B 6= 0) exists if the determinant of this linear system is zero. This condition yields
α=

4kr0I0(kr0)
I1(kr0)

− 2.
The axisymmetric deformation first appears in the long scale modes (k= 0), beyond a

threshold for α which is found to be equal to 6 (see Fig. 6(left)). This value being larger than the
threshold for the prismatic mode with n= 2, one concludes that the mode invariant by rotation
would occur far beyond the threshold for the prismatic mode n= 2.

(c) Asymmetric modes
In addition to the previous section and to section 3, we consider asymmetric modes with k 6= 0

and n 6= 0. In order to find the behavior of the solutions of the differential equation A 7 in the



limit r→ 0, let first assume that fu(r)∼ ra as r→ 0. Substituting this particular expression of fu
in Eq.A 7 and considering the limit r→ 0, one obtains the condition on exponent a:

(n+ a− 3)(n− a− 1)(n− a+ 1)(n− a+ 3)(n+ a− 1)(n+ a+ 1) = 0 (A 12)

The prismatic mode n= 2 has been found to corresponds to the first prismatic mode that
appears upon increasing values of αc (Section 3 ). Aiming at finding the modes corresponding
to the smallest critical value of α, one considers now asymmetric modes with n= 2. The roots of
Eq.A 12 being 1,3,5,-1,-3, with 1 a double root, we take s1(r)∼ r, s2(r)∼ r3 and s3(r)∼ r5 as r→
0, and we look for series expansion of s1(r), s2(r) and s3(r) in the form si(r) =

∑∞
m=1 am(kr)m.

The conditions for si(r) to be a solution of Eq.A 7 is, for m≥ 6:

am−6 − 3am−4(m− 5)(m− 1) + 3am−2(m− 5)(m− 3)(m− 1)(m+ 1)

+am(5−m)(m− 3)(m− 1)2(1 +m)(3 +m) = 0.
(A 13)

a1, a3 and a5 are not fixed up to now. Coefficients with an even index have to be 0. We choose
a1 = 1, a3 = a5 = 0 for s1(r) ; a1 = a5 = 0 and a3 = 1 for s2(r) ; a1 = a3 = 0 and a5 = 1 for s3(r).
Writing fu(r) as fu(r) =As1(r) +Bs2(r) + Cs3(r) and substituting this expression of fu(r) in
the boundary conditions Eqs.A 8-A 10, one obtains the threshold value of αc as a function of
k for n= 2 (See Fig. 6(right)). The mixed modes with the fixed circumferential number n= 2

first develops with an infinite wave length (k= 0), the instability threshold being the one of the
prismatic mode n= 2.

Mixed modes with n> 2 are also first unstable in the long wave length limit kr0→ 0. The
corresponding instability threshold is equal to the one of the prismatic mode with the same
circumferential wave number, and αc(n, k) increases as k increases.

To conclude, we have considered in the appendix 3d deformations. The first unstable mode is
the prismatic mode with the circumferential wave number n= 2. Mixed modes with the same
circumferential number (n= 2) are found to be linearly unstable as the control parameter is
slightly increased beyond the threshold value of the prismatic mode. The axial wave number
then continuously increases.
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