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Nikita Dvornik, Julien Mairal, Senior Member, IEEE, and Cordelia Schmid, Fellow, IEEE

Abstract—Performing data augmentation for learning deep neural networks is known to be important for training visual recognition
systems. By artificially increasing the number of training examples, it helps reducing overfitting and improves generalization. While
simple image transformations can already improve predictive performance in most vision tasks, larger gains can be obtained by
leveraging task-specific prior knowledge. In this work, we consider object detection, semantic and instance segmentation and augment
the training images by blending objects in existing scenes, using instance segmentation annotations. We observe that randomly
pasting objects on images hurts the performance, unless the object is placed in the right context. To resolve this issue, we propose an
explicit context model by using a convolutional neural network, which predicts whether an image region is suitable for placing a given
object or not. In our experiments, we show that our approach is able to improve object detection, semantic and instance segmentation
on the PASCAL VOC12 and COCO datasets, with significant gains in a limited annotation scenario, i.e. when only one category is
annotated. We also show that the method is not limited to datasets that come with expensive pixel-wise instance annotations and can
be used when only bounding boxes are available, by employing weakly-supervised learning for instance masks approximation.

Index Terms—Convolutional Neural Networks, Data Augmentation, Visual Context, Object Detection, Semantic Segmentation.
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1 INTRODUCTION

Convolutional neural networks (CNNs) are commonly
used for scene understanding tasks such as object detection
and semantic segmentation. One of the major challenge to
use such models is however to gather and annotate enough
training data. Various heuristics are typically used to pre-
vent overfitting such as DropOut [1], penalizing the norm
of the network parameters (also called weight decay), or
early stopping the optimization algorithm. Even though the
exact regularization effect of such approaches on learning is
not well understood from a theoretical point of view, these
heuristics have been found to be useful in practice.

Apart from the regularization methods related to the op-
timization procedure, reducing overfitting can be achieved
with data augmentation. For most vision problems, generic
input image transformations such as cropping, rescal-
ing, adding noise, or adjusting colors are usually helpful
and may substantially improve generalization. Developing
more elaborate augmentation strategies requires then prior
knowledge about the task. For example, all categories in the
Pascal VOC [2] or ImageNet [3] datasets are invariant to
horizontal flips (e.g. a flipped car is still a car). However,
flipping would be harmful for hand-written digits from the
MNIST dataset [4] (e.g., a flipped “5” is not a digit).

A more ambitious data augmentation technique consists
of leveraging segmentation annotations, either obtained
manually, or from an automatic segmentation system, and
create new images with objects placed at various positions
in existing scenes [5], [6], [7]. While not achieving perfect
photorealism, this strategy with random placements has
proven to be surprisingly effective for object instance de-
tection [5], which is a fine-grained detection task consist-
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ing of retrieving instances of a particular object from an
image collection; in contrast, object detection and semantic
segmentation focus on distinguishing between object cate-
gories rather than objects themselves and have to account
for rich intra-class variability. For these tasks, the random-
placement strategy simply does not work, as shown in the
experimental section. Placing training objects at unrealistic
positions probably forces the detector to become invariant to
contextual information and to focus instead on the object’s
appearance.

Along the same lines, the authors of [6] have proposed
to augment datasets for text recognition by adding text on
images in a realistic fashion. There, placing text with the
right geometrical context proves to be critical. Significant
improvements in accuracy are obtained by first estimat-
ing the geometry of the scene, before placing text on an
estimated plane. Also related, the work of [7] is using
successfully such a data augmentation technique for object
detection in indoor scene environments. Modeling context
has been found to be critical as well and has been achieved
by also estimating plane geometry and objects are typically
placed on detected tables or counters, which often occur in
indoor scenes.

In this paper, we consider more general tasks of scene
understanding such as object detection, semantic and in-
stance segmentation, which require more generic context
modeling than estimating planes and surfaces as done for
instance in [6], [7]. To this end, the first contribution of our
paper is methodological: we propose a context model based
on a convolutional neural network. The model estimates
the likelihood of a particular object category to be present
inside a box given its neighborhood, and then automatically
finds suitable locations on images to place new objects
and perform data augmentation. A brief illustration of the
output produced by this approach is presented in Figure 1.
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Fig. 1: Examples of data-augmented training examples produced by our approach. Images and objects are taken from the
VOC’12 dataset that contains segmentation annotations. We compare the output obtained by pasting the objects with our
context model vs. those obtained with random placements. Even though the results are not perfectly photorealistic and
display blending artefacts, the visual context surrounding objects is more often correct with the explicit context model.

The second contribution is experimental: We show with
extensive tests on the COCO [8] and VOC’12 benchmarks
using different network architectures that context modeling
is in fact a key to obtain good results for detection and
segmentation tasks and that substantial improvements over
non-data-augmented baselines may be achieved when few
labeled examples are available. We also show that having
expensive pixel-level annotations of objects is not necessary
for our method to work well and demonstrate improvement
in detection results when using only bounding-box annota-
tions to extract object masks automatically.

The present work is an extension of our preliminary
work published at the conference ECCV in 2018 [9]. The
main contributions of this long version are listed below:

• We show that our augmentation technique improves
detection performance even when training on large-
scale data by considering the COCO dataset for object
detection in addition to Pascal VOC.

• Whereas the original data augmentation method was
designed for object detection, we generalize it to se-
mantic segmentation and instance segmentation.

• We show how to reduce the need for instance segmenta-
tion annotations to perform data augmentation for ob-
ject detection. We employ weakly-supervised learning
in order to automatically generate instance masks.

• We demonstrate the benefits of the proposed augmen-
tation strategy for other object detectors than [10], by
evaluating our approach with Faster-RCNN [11] and
Mask-RCNN [12].

Our context model and the augmentation pipeline are made
available as an open-source software package (follow thoth.
inrialpes.fr/research/context aug).

2 RELATED WORK

In this section, we discuss related work for visual context
modeling, data augmentation for object detection and se-
mantic segmentation and methods suitable for automatic
object segmentation.

Modeling visual context for object detection. Rela-
tively early, visual context has been modeled by comput-
ing statistical correlation between low-level features of the
global scene and descriptors representing an object [13],
[14]. Later, the authors of [15] introduced a simple context
re-scoring approach operating on appearance-based detec-
tions. To encode more structure, graphical models were then
widely used in order to jointly model appearance, geome-
try, and contextual relations [16], [17]. Then, deep learning
approaches such as convolutional neural networks started
to be used [11], [18], [19]; as mentioned previously, their
features already contain implicitly contextual information.
Yet, the work of [20] explicitly incorporates higher-level con-
text clues and combines a conditional random field model
with detections obtained by Faster-RCNN. With a similar
goal, recurrent neural networks are used in [21] to model
spatial locations of discovered objects. Another comple-
mentary direction in context modeling with convolutional
neural networks use a deconvolution pipeline that increases
the field of view of neurons and fuse features at different
scales [10], [21], [22], showing better performance essentially
on small objects. The works of [23], [24] analyze different
types of contextual relationships, identifying the most useful
ones for detection, as well as various ways to leverage
them. However, despite these efforts, an improvement due
to purely contextual information has always been relatively
modest [25], [26].

Modeling visual context for semantic segmentation.

thoth.inrialpes.fr/research/context_aug
thoth.inrialpes.fr/research/context_aug
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While object detection operates on image’s rectangular re-
gions, in semantic segmentation the neighboring pixels with
similar values are usually organized together in so-called
superpixels [27]. This allows defining contextual relations
between such regions. The work of [28] introduces “context
clusters” that are discovered and learned from region fea-
tures. They are later used to define a specific class model
for each context cluster. In the work of [29] the authors tile
an image with superpixels at different scales and use this
representation to build global and local context descriptors.
The work of [30] computes texton features [31] for each pixel
of an image and defines shape filers on them. This enables
the authors to compute local and middle-range concurrence
statistics and enrich region features with context informa-
tion. Modern CNN-based methods on the contrary rarely
define an explicit context model and mostly rely on large re-
ceptive fields [32]. Moreover, by engineering the network’s
architecture one can explicitly require local pixel descriptors
used for classification to carry global image information too,
which enables reasoning with context. To achieve this goal
encoder-decoder architectures [10], [33] use deconvolutional
operations to propagate coarse semantic image-level infor-
mation to the final layers while refining details with local
information from earlier layers using skip-connections. As
an alternative, one can use dilated convolutions [34], [35]
that do not down-sample the representation but rather up-
sample the filters by introducing “wholes” in them. Doing
so is computationally efficient and allows to account for
global image statistics in pixel classification. Even though
visual context is implicitly present in the networks outputs,
it is possible to define an explicit context model [35], [36] on
top of them. This usually results in moderate improvement
in model’s accuracy.

Data augmentation for object detection and segmen-
tation. Data augmentation is a major tool to train deep
neural networks. It varies from trivial geometrical trans-
formations such as horizontal flipping, cropping with color
perturbations, and adding noise to an image [37], to syn-
thesizing new training images [38], [39]. Some recent ob-
ject detectors [10], [19], [40] benefit from standard data
augmentation techniques more than others [11], [18]. The
performance of Fast- and Faster-RCNN could be for instance
boosted by simply corrupting random parts of an image
in order to mimic occlusions [41]. The field of semantic
segmentation is enjoying a different trend—augmenting a
dataset with synthetic images. They could be generated
using extra annotations [42], come from a purely synthetic
dataset with dense annotations [43], [44] or a simulated
environment [45]. For object detection, recent works such
as [46], [47], [48] also build and train their models on
purely synthetic rendered 2d and 3d scenes. However, a
major difficulty for models trained on synthetic images is to
guarantee that they will generalize well to real data since the
synthesis process introduces significant changes of image
statistics [39]. This problem could be alleviated by using
transfer-learning techniques such as [49] or by improving
photo-realism of synthetic data [50], [51]. To address the
same issue, the authors of [6] adopt a different direction by
pasting real segmented object into natural images, which re-
duces the presence of rendering artefacts. For object instance
detection, the work [7] estimates scene geometry and spatial

layout, before synthetically placing objects in the image to
create realistic training examples. In [5], the authors propose
an even simpler solution to the same problem by pasting
images in random positions but modeling well occluded
and truncated objects, and making the training step robust
to boundary artifacts at pasted locations. In contrast to this
method, our approach does not choose pasted locations at
random but uses an explicit context model. We found this
crucial to improve general object detection.

Automatic Instance Segmentation The task of in-
stance segmentation is challenging and requires consid-
erable amount of annotated data [8] in order to achieve
good results. Segmentation annotations are the most labor-
demanding since they require pixel-level precision. The
need to distinguish between instances of one class makes
annotating “crowd scenes” extremely time-consuming. If
data for this problem comes without labels, tedious and
expensive process of annotation may suggests considering
other solutions that do not require full supervision. The
work of [52] uses various image statistics and hand-crafted
descriptors that do not require learning along with anno-
tated image tags, in order to build a segmentation proposal
system. With very little supervision, they learn to descrim-
inate between “good” and “bad” instance masks and as
a result are able to automatically discover good quality
instance segments within the dataset. As an alternative, one
can use weakly-supervised methods to estimate instance
masks. The authors of [53] use only category image-level
annotations in order to train an object segmentation system.
This is done by exploiting class-peak responses obtained
using pre-trained classification network and propagating
them spatially to cover meaningful image segments. It is
beneficial to use instance-level annotations, such as object
boxes and corresponding categories, if those are available,
in order to improve the system’s performance. The work
of [54] proposes a rather simple yet efficient framework for
doing so. By providing the network with extra information,
which is a rectangular region containing an object, a system
learns to discover instance masks automatically inside those
regions. Alternatively, the system could be trained to pro-
vide semantic segmentation masks in a weakly-supervised
fashion. Together with bounding boxes, one may use it to
approximate instance masks.

3 APPROACH

In this section, we present a simple experiment to motivate
our context-driven data augmentation, and present the full
pipeline in details. We start by describing a naive solution to
augmenting an object detection dataset, which is to perform
copy-paste data augmentation agnostic to context by placing
objects at random locations. Next, we explain why it fails for
our task and propose a natural solution based on explicit
context modeling by a CNN. We show how to apply the
context model to perform augmentation for detection and
segmentation tasks and how to blend the object into existing
scenes. The full pipeline is depicted in Figure. 2.
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Fig. 2: Illustration of our data augmentation approach. We select an image for augmentation and 1) generate 200 candidate
boxes that cover the image. Then, 2) for each box we find a neighborhood that contains the box entirely, crop this
neighborhood and mask all pixels falling inside the bounding box; this “neighborhood” with masked pixels is then fed to
the context neural network module and 3) object instances are matched to boxes that have high confidence scores for the
presence of an object category. 4) We select at most two instances that are rescaled and blended into the selected bounding
boxes. The resulting image is then used for training the object detector.

3.1 Copy-paste Data Augmentation with Random
Placement is not Effective for Object Detection

In [5], data augmentation is performed by positioning seg-
mented objects at random locations in new scenes. As men-
tioned previously, the strategy was shown to be effective
for object instance detection, as soon as an appropriate pro-
cedure is used for preventing the object detector to overfit
blending artefacts—that is, the main difficulty is to prevent
the detector to “detect artefacts” instead of detecting objects
of interest. This is achieved by using various blending strate-
gies to smooth object boundaries such as Poisson blend-
ing [55], and by adding “distractors” - objects that do not
belong to any of the dataset categories, but which are also
synthetically pasted on random backgrounds. With distrac-
tors, artefacts occur both in positive and negative examples,
for each of the categories, preventing the network to overfit
them. According to [5], this strategy can bring substantial
improvements for the object instance detection/retrieval
task, where modeling the fine-grain appearance of an object
instance seems to be more important than modeling visual
context as in the general category object detection task.

Unfortunately, the augmentation strategy described
above does not improve the results on the general object
detection task and may even hurt the performance as we
show in the experimental section. To justify the initial claim,
we follow [5] as close as possible and conduct the follow-
ing experiment on the PASCAL VOC12 dataset [2]. Using
provided instance segmentation masks we extract objects
from images and store them in a so-called instance-database.
They are used to augment existing images in the training
dataset by placing the instances at random locations. In

order to reduce blending artifacts we use one of the fol-
lowing strategies: smoothing the edges using Gaussian or
linear blur, applying Poisson blending [55] in the segmented
region, blurring the whole image by simulating a slight
camera motion or leaving the pasted object untouched. As
distractors, we used objects from the COCO dataset [8]
belonging to categories not present in PASCAL VOC 1.

For any combination of blending strategy, by using
distractors or not, the naive data augmentation approach
with random placement did not improve upon the baseline
without data augmentation for the classical object detection
task. A possible explanation may be that for instance object
detection, the detector does not need to learn intra-class
variability of object/scene representations and seems to con-
centrate only on appearance modeling of specific instances,
which is not the case for category-level object detection. This
experiment was the key motivation for proposing a context
model, which we now present.

3.2 Explicit Context Modeling by CNN
The core idea behind the proposed method is that it is
possible to some extent to guess the category of an object
just by looking at its visual surroundings. That is precisely
what we are modeling by a convolutional neural network,
which takes contextual neighborhood of an object as input
and is trained to predict the object’s class. Here, we describe
the training data and the learning procedure in more details.

Contextual data generation. In order to train the contextual
model we use a dataset that comes with bounding box and

1. Note that external data from COCO was used only in this prelimi-
nary experiment and not in the experiments reported later in Section 4.
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Fig. 3: Contextual images - examples of inputs to the con-
text model. A subimage bounded by a magenta box is used
as an input to the context model after masking-out the object
information inside a red box. The top row lists examples
of positive samples encoding real objects surrounded by
regular and predictable context. Positive training examples
with ambiguous or uninformative context are given in the
second row. The bottom row depicts negative examples
enclosing background. This figure shows that contextual
images could be ambiguous to classify correctly and the
task of predicting the category given only the context is
challenging.

object class annotations. Each ground-truth bounding box in
the dataset is able to generate positive “contextual images”
that are used as input to the system. As depicted in the
Figure 3, a “contextual image” is a sub-image of an original
training image, fully enclosing the selected bounding box,
whose content is masked out. Such a contextual image only
carries information about visual neighborhood that defines
middle-range context and no explicit information about the
deleted object. One box is able to generate multiple different
context images, as illustrated in Figure 4. Background “con-
textual images” are generated from bounding boxes that do
not contain an object and are formally defined in [9]. To
prevent distinguishing between positive and background
images only by looking at the box shape and to force true
visual context modeling, we estimate the shape distribution
of positive boxes and sample the background ones from
it. Precisely, we estimate the joint distribution of scale s
and aspect ratio a with a two-dimensional histogram, as
described in [9], and we draw a pair (s, a) from this dis-
tribution in order to construct a background box. Since in
natural images there is more background boxes than the
ones actually containing an object, we address the imbalance
by sampling more background boxes, following sampling
strategies in [9], [11].

Model training. Given the set of all contexts, gathered
from all training data, we train a convolutional neural
network to predict the presence of each object in the masked
bounding box. The input to the network are the “contextual
images” obtained during the data generation step. These
contextual images are resized to 300 × 300 pixels, and the
output of the network is a label in {0, 1, ..., C}, where C

Fig. 4: Different contextual images obtained from a single
bounding box. A single ground-truth bounding box (in
blue) is able to generate a set of different context images
(in green and orange) by varying the size of the initial box
and the context neighborhood. While the orange contextual
images may be recognized as a chair, the green ones make it
more clear that the person was masked out. This motivates
the need to evaluate several context images for one box
during the context estimation phase.

is the number of object categories. The 0-th class repre-
sents background and corresponds to a negative “context
image”. For such a multi-class image classification problem,
we use the classical ResNet50 network [56] pre-trained on
ImageNet, and change the last layer to be a softmax with
C + 1 activations (see experimental section for details).

3.3 Context-driven Data Augmentation
Once the context model is trained, we use it to provide
locations where to paste objects. In this section, we elaborate
on the context network inference and describe the pre-
cise procedure used for blending new objects into existing
scenes.

Selection of candidate locations for object placement. A loca-
tion for pasting an object is represented as a bounding box.
For a single image, we sample 200 boxes at random from the
shape distribution used in 3.2 and later select the successful
placement candidates among them. These boxes are used to
build corresponding contextual images, that we feed to the
context model as input. As output, the model provides a set
of scores in range between 0 and 1, representing the pres-
ence likelihood of each object category in a given bounding
box, by considering its visual surrounding. The top scoring
boxes are added to the final candidate set. Since the model
takes into account not only the visual surroundings but a
box’s geometry too, we need to consider all possible boxes
inside an image to maximize the recall. However this is too
costly and using 200 candidates was found to provide good
enough bounding boxes among the top scoring ones.
After analyzing the context model’s output we made the
following observation: if an object of category c is present
in an image it is a confident signal for the model to place
another object of this class nearby. The model ignores this
signal only if no box of appropriate shape was sampled in
the object’s neighborhood. This often happens when only
200 candidate locations are sampled; however, evaluating
more locations would introduce a computational overhead.
To fix this issue, we propose a simple heuristic, which
consists of drawing boxes in the neighborhood of this object
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Fig. 5: Data augmentation for different types of annotations. The first column contains samples from the training dataset
with corresponding semantic/instance segmentation and bounding box annotations. Columns 2-4 present the result of
applying context-driven augmentation to the initial sample with corresponding annotations.

and adding them to the final candidate set. The added boxes
have the same geometry (up to slight distortions) as the
neighboring object’s box.

Candidate scoring process. As noted before, we use the
context model to score the boxes by using its softmax
output. Since the process of generating a contextual image
is not deterministic, predictions on two contextual images
corresponding to the same box may differ substantially, as
illustrated in Figure 4. We alleviate this effect by sampling
3 contextual images for one location and average the pre-
dicted scores. After the estimation stage we retain the boxes
where an object category has score greater than 0.7; These
boxes together with the candidates added at the previous
step form the final candidate set that will be used for object
placement.

Blending objects in their environment. Whenever a bound-
ing box is selected by the previous procedure, we need to
blend an object at the corresponding location. This step
follows closely the findings of [5]. We consider different
types of blending techniques (Gaussian or linear blur, sim-
ple copy-pasting with no post-processing, or generating
blur on the whole image to imitate motion), and randomly
choose one of them in order to introduce a larger diversity
of blending artefacts. Figure 6 presents the blending tech-
niques mentioned above. We also do not consider Poisson
blending in our approach, which was considerably slowing
down the data generation procedure. Unlike [5] and unlike
our preliminary experiment described in Section 3.1, we do
not use distractors, which were found to be less important

for our task than in [5]. As a consequence, we do not need
to exploit external data to perform data augmentation.

Updating image annotation. Once an image is augmented
by blending in a new object, we need to modify the annota-
tion accordingly. In this work, we consider data augmention
for both object detection and semantic segmentation, as
illustrated in Figure 5. Once a new object is placed in the
scene, we generate a bounding box for object detection by
drawing the tightest box around that object. In case where
an initial object is too occluded by the blended one, i.e.
the IoU between their boxes is higher than 0.8, we delete
the bounding box of the original object from the annota-
tions. For semantic segmentation, we start by considering
augmentation on instance masks (Figure 5, column 4) and
then convert them to semantic masks (Figure 5, column
3). If a new instance occludes more than 80% of an object
already present in the scene, we discard annotations for all
pixels belonging to the latter instance. To obtain semantic
segmentation masks from instance segmentations, each in-
stance pixel is labeled with the corresponding objects class.

4 EXPERIMENTS

In this section, we use the proposed context model to
augment object detection and segmentation datasets. We
start by presenting experimental and implementation de-
tails in Sections 4.1 and 4.2 respectively. In Section 4.3
we present a preliminary experiment that motivates the
proposed solution. In Sections 4.4.1 and 4.4.2 we study the
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Fig. 6: Different kinds of blending used in experiments.
From left to right: linear smoothing of boundaries, Gaussian
smoothing, no processing, motion blur of the whole image,
Poisson blending [55].

effect of context-driven data augmentation when augment-
ing an object detection dataset. For this purpose we consider
the Pascal VOC12 dataset that has instance segmentation
annotations and we demonstrate the applicability of our
method to different families of object detectors. We study the
scalability of our approach in Section 4.5 by using the COCO
dataset for object detection and instance segmentation. We
show benefits of our method in Section 4.6 by augmenting
the VOC12 for semantic segmentation. In Section 4.7, we use
weakly-supervised learning for estimating object masks and
evaluate our approach on the Pascal VOC12 dataset using
only bounding box annotations. Finally, Section 4.8 studies
how the amount of data available for training the context
model influences the final detection performance.

4.1 Dataset, Tools, and Metrics

Datasets. In our experiments, we use the Pascal VOC’12 [2]
and COCO [8] datasets. In the VOC’12 dataset, we only
consider a subset that contains segmentation annotations.
The training set contains 1 464 images and is dubbed
VOC12train-seg later in the paper. Following standard
practice, we use the test set of VOC’07 to evaluate the de-
tection performance, which contains 4 952 images with the
same 20 object categories as VOC’12. We call this image set
VOC07-test. When evaluating segmentation performance,
we use the validation set of the VOC’12 annotated with
segmentation masks VOC12val-seg that contains 1 449
images.
The COCO dataset [8] is used for large-scale object
detection experiments. It includes 80 object categories
for detection and instance segmentation. For both tasks,
there are 118K images for training that we denote as
COCO-train2017 and 5K for validation and testing de-
noted as COCO-val2017.

Models. To test our data-augmentation strategy we chose
a single model capable of performing both object detection
and semantic segmentation. BlitzNet [10] is an encoder-
decoder architecture, which is able to solve either of the
tasks, or both simultaneously if trained with box and
segmentation annotations together. The open-source im-
plementation is available online. If used to solve the de-
tection task, BlitzNet achieves close to the state-of-the-
art results (79.1% mAP) on VOC07-test when trained
on the union of the full training and validation parts
of VOC’07 and VOC’12, namely VOC07-train+val and
VOC12train+val (see [10]); this network is similar to the
DSSD detector of [22] that was also used in the Focal Loss
paper [57]. When used as a segmentor, BlitzNet resembles

the classical U-Net architecture [58] and also achieves results
comparable to the state-of-the-art on VOC’12-test set (75.5%
mIoU). The advantage of such class of models is that it is
relatively fast (it may work in real time) and supports train-
ing with big batches of images without further modification.
To make the evaluation extensive, we also consider a differ-
ent region-based class of detectors. For that purpose we em-
ploy an open-source implementation of Faster-RCNN [59]
which uses ResNet50 [56] architecture as a feature extractor.
Finally, when tackling object detection and instance seg-
mentation on COCO, we use Mask-RCNN [12] that solves
both tasks simultaneously. For each region proposal the
network outputs estimated class probabilities, regressed box
offsets and a predicted instance mask. We run the official
implementation of [60] that uses ResNet50 as a backbone,
followed by an FPN [61] module. This setup corresponds to
the current state of the art in object detection and instance
segmentation.

Evaluation metric. In VOC’07, a bounding box is con-
sidered to be correct if its Intersection over Union (IoU)
with a ground truth box is higher than 0.5. The metric
for evaluating the quality of object detection and instance
segmentation for one object class is the average precision
(AP). Mean Average Precision (mAP) is used to report the
overall performance on the dataset. Mean Intersection Over
Union (mIoU) is used to measure performance on semantic
segmentation.

4.2 Implementation Details

Training the context model. After preparing the “contextual
images” as described in 3.2, we re-scale them to the standard
size 300 × 300 and stack them in batches of size 32. We
use ResNet50 [56] with ImageNet initialization to train a
contextual model in all our experiments. Since we have
access only to the training set at any stage of the pipeline
we define two strategies for training the context model.
When the amount of positive samples is scarce, we train and
apply the model on the same data. To prevent overfitting,
we use early stopping. In order to determine when to stop
the training procedure, we monitor both training error on
our training set and validation error on the validation set.
The moment when the loss curves start diverging noticeably
is used as a stopping point. We call this training setting
“small-data regime”. When the size of the training set is
moderate and we are in “normal-data regime”, we split it
in two parts ensuring that for each class, there is a similar
number of positive examples in both splits. The context
model is trained on one split and applied to another one.
We train the model with ADAM optimizer [62] starting with
learning rate 10−4 and decreasing it by the factor of 10 once
during the learning phase. The number of steps depends on
a dataset. We sample 3 times more background contextual
images, as noted in Section 3.2. Visual examples of aug-
mented images produced when using the context model are
presented in Figure 7. Overall, training the context model is
about 4-5 times faster than training the detector.

Training detection and segmentation models. In this work,
the BlitzNet model takes images of size 300 × 300 as an
input and produces a task-specific output. When used as
a detector, the output is a set of candidate object boxes
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with classification scores and in case of segmentation it is
an estimated semantic map of size 75 × 75; like our con-
text model, it uses ResNet50 [56] pre-trained on ImageNet
as a backbone. The models are trained by following [10],
with the ADAM optimizer [62] starting from learning rate
10−4 and decreasing it later during training by a factor
10 (see Sections 4.4 and 4.6 for number of epochs used
in each experiment). In addition to our data augmentation
approach obtained by copy-pasting objects, all experiments
also include classical data augmentation steps obtained by
random-cropping, flips, and color transformations, follow-
ing [10]. For the Faster-RCNN detector training, we con-
sider the classical model of [11] with ResNet50 backbone
and closely follow the instructions of [59]. On the Pascal
VOC12 dataset, training images are rescaled to have both
sides between 600 and 1000 pixels before being passed to
the network. The model is trained with the Momentum
optimizer for 9 epochs in total. The starting learning rate
is set to 10−2 and divided by 10 after first 8 epochs of
training. When training Mask-RCNN [12], the images are
rescaled to have a maximum size of 1333 pixel on one side
or a minimum one of 800 pixels and then grouped in a
batch of size 8. We set the starting learning rate to 2 · 10−2

which is decreased by a factor of 10 twice later during
training. For both Faster-RCNN and Mask-RCNN standard
data augmentation includes only horizontal flipping.

Selecting and blending objects. Since we widely use object
instances extracted from the training images in all our
experiments, we create a database of objects cut out from the
VOC12train-seg or COCO-train sets to quickly access
them during training. For a given candidate box, an instance
is considered as matching if after scaling it by a factor in
[0.5, 1.5] the re-scaled instance’s bounding box fits inside the
candidate’s one and takes at least 80% of its area. The scaling
factor is kept close to 1 not to introduce scaling artefacts.
When blending the objects into the new background, we
follow [5] and use randomly one of the following methods:
adding Gaussian or linear blur on the object boundaries,
generating blur on the whole image by imitating motion,
or just paste an image with no blending. By introducing
new instances in a scene we may also introduce heavy
occlusions of existing objects. The strategy for resolving this
issue depends on the task and is clarified in Sections 4.4 and
4.6.

4.3 Why is Random Placement not Working?

As we discovered in the Section 3.1, random copy-paste data
augmentation does not bring improvement when used to
augment object detection datasets. There are multiple possi-
ble reasons for observing this behavior, such as violation of
context constraints imposed by the dataset, objects looking
“out of the scene” due to different illumination conditions or
simply artifacts introduced due to blending techniques. To
investigate this phenomenon, we conduct a study, that aims
to better understand (i) the importance of visual context
for object detection, (ii) the role of illumination conditions
and (iii) the impact of blending artefacts. For simplicity, we
choose the first 5 categories of VOC’12, namely aeroplane,
bike, bird, boat, bottle, and train independent detectors per
category.

Method aero bike bird boat bottle average

Base-DA 58.8 64.3 48.8 47.8 33.9 48.7

Random-DA 60.2 66.5 55.1 41.9 29.7 48.3

Removing context 44.0 46.8 42.0 20.9 15.5 33.9

Enlarge + Reblend-DA 60.1 63.4 51.6 48.0 34.8 51.6

TABLE 1: Ablation study on the first five categories of
VOC’12. All models are learned independently. We com-
pare classical data augmentation techniques (Base-DA), ap-
proaches obtained by copy-pasting objects, either randomly
(Random-DA) or by preserving context (Enlarge+Reblend-
DA). The line “Removing context” corresponds to the first
experiment described in Section 4.3; Enlarge-Reblend corre-
sponds to the second experiment.

Baseline when no object is in context. To confirm the
negative influence of random placing, we consider one-
category detection, where only objects of one selected class
are annotated with bounding boxes and everything else
is considered as background. Images that do not contain
objects of the selected category become background images.
After training 5 independent detectors as a baseline, we
construct a similar experiment by learning on the same
number of instances, but considering as positive examples
only objects that have been synthetically placed in a random
context. This is achieved by removing from the training data
all the images that have an object from the category we
want to model, and replacing it by an instance of this object
placed on a background image. The main motivation for
such study is to consider the extreme case where (i) no object
is placed in the right context; (iii) all objects may suffer
from rendering artefacts. As shown in Table 1, the average
precision degrades significantly by about 14% compared to
the baseline. As a conclusion, either visual context is indeed
crucial for learning, or blending artefacts is also a critical
issue. The purpose of the next experiment is to clarify this
ambiguity.

Impact of blending when the context is right. In the previous
experiment, we have shown that the lack of visual context
and the presence of blending artefacts may explain the
performance drop observed in the third row of Table 1.
Here, we propose a simple experiment showing that neither
(iii) blending artefacts nor (ii) illumination difference are
critical when objects are placed in the right context: the
experiment consists of extracting each object instance from
the dataset, up-scale it by a random factor slightly greater
than one (in the interval [1.2, 1.5]), and blend it back at
the same location, such that it covers the original instance.
To mimic the illumination change we apply a slight color
transformation to the segmented object. As a result, the new
dataset benefits slightly from data augmentation (thanks
to object enlargement), but it also suffers from blending
artefacts for all object instances. As shown on the forth row
of Table 1, this approach improves over the baseline, which
suggests that the lack of visual context is probably the key
explaining the result observed before. The experiment also
confirms that the presence of difference in illumination and
blending artefacts is not critical for the object detection task.
Visual examples of such artefacts are presented in Figure 8.



9

Fig. 7: Examples of instance placement with context model guidance. The figure presents samples obtained by placing
a matched examples into the box predicted by the context model. The top row shows generated images that are visually
almost indistinguishable from the real ones. The middle row presents samples of good quality although with some visual
artifacts. For the two leftmost examples, the context module proposed an appropriate object class, but the pasted instances
do not look visually appealing. Sometimes, the scene does not look natural because of the segmentation artifacts as in the
two middle images. The two rightmost examples show examples where the category seems to be in the right environment,
but not perfectly placed. The bottom row presents some failure cases.

Fig. 8: Illustration of artifacts arising from enlargement augmentation. In the enlargement data augmentation, an instance
is cut out of the image, up-scaled by a small factor and placed back at the same location. This approach leads to blending
artefacts. Modified images are given in the top row. Zoomed parts of the images centered on blending artifacts are presented
in the bottom line.
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method aero bike bird boat bott. bus car cat chair cow table dog horse mbike pers. plant sheep sofa train tv avg.
Base-DA 58.8 64.3 48.8 47.8 33.9 66.5 69.7 68.0 40.4 59.0 61.0 56.2 72.1 64.2 66.7 36.6 54.5 53.0 73.4 63.6 58.0
Random-DA 60.2 66.5 55.1 41.9 29.7 66.5 70.0 70.1 37.4 57.4 45.3 56.7 68.3 66.1 67.0 37.0 49.9 55.8 72.1 62.6 56.9
Enlarge-DA 60.1 63.4 51.6 48.0 34.8 68.8 72.1 70.4 41.1 63.7 62.3 56.3 70.1 67.8 65.3 37.9 58.1 61.2 75.5 65.9 59.7
Context-DA 68.9 73.1 62.5 57.6 38.9 72.5 74.8 77.2 42.9 69.7 59.5 63.9 76.1 70.2 69.2 43.9 58.3 59.7 77.2 64.8 64.0
Impr. Cont. 10.1 8.7 13.7 9.2 5.0 6.0 5.1 9.2 2.5 10.7 1.5 7.5 4.0 6.0 2.5 7.3 3.8 6.7 4.2 1.2 5.8

TABLE 2: Comparison of detection accuracy on VOC07-test for the single-category experiment. The models are trained
independently for each category, by using the 1 464 images from VOC12train-seg. The first row represents the baseline
experiment that uses standard data augmentation techniques. The second row uses in addition copy-pasting of objects
with random placements. “Enlarge-DA” augmentation blends up-scaled instances back in their initial location, which is
given in row 3. The forth row presents the results achieved by our context-driven approach and the last row presents the
improvement it brings over the baseline. The numbers represent average precision per class in %. Large improvements
over the baseline (greater than 7%) are in bold. All numbers are averaged over 3 independent experiments.

model CDA aero bike bird boat bott. bus car cat chair cow table dog horse mbike pers. plant sheep sofa train tv avg.

BlitzNet300
63.6 73.3 63.2 57.0 31.5 76.0 71.5 79.9 40.0 71.6 61.4 74.6 80.9 70.4 67.9 36.5 64.9 63.0 79.3 64.7 64.6

X 69.9 73.8 63.9 62.6 35.3 78.3 73.5 80.6 42.8 73.8 62.7 74.5 81.1 73.2 68.9 38.1 67.8 64.3 79.3 66.1 66.5

F-RCNN
65.8 70.9 66.5 54.6 45.9 72.7 72.9 80.3 36.8 70.3 48.0 78.9 70.7 70.6 66.3 33.1 64.7 59.8 71.8 61.1 63.1

X 67.4 67.7 64.9 58.0 50.4 71.6 74.9 80.4 36.8 70.2 56.4 75.7 73.7 71.6 71.5 39.4 68.6 63.5 67.7 60.1 64.5

TABLE 3: Comparison of detection accuracy on VOC07-test for the multiple-category experiment. The model is trained on
all categories at the same time, by using the 1 464 images from VOC12train-seg. The first column specifies the detector
used in the experiment, the second column notes if Context-driven Data Augmentation (CDA) was used. The numbers
represent average precision per class in %.

4.4 Object Detection Augmentation on VOC PASCAL
In this subsection, we are conducting experiments on object
detection by augmenting the PASCAL VOC’12 dataset. In
order to measure the impact of the proposed technique
in a “small data regime”, we pick the single-category de-
tection scenario and also consider a more standard multi-
category setting. We test single-shot region-based families of
detectors—with BlitzNet and Faster-RCNN respectively—
and observe improved performance in both cases.

4.4.1 Single-category Object Detection
In this section, we conduct an experiment to better un-
derstand the effect of the proposed data augmentation
approach, dubbed “Context-DA” in the different tables,
when compared to a baseline with random object place-
ment “Random-DA”, and when compared to standard data
augmentation techniques called “Base-DA”. The study is
conducted in a single-category setting, where detectors are
trained independently for each object category, resulting
in a relatively small number of positive training examples
per class. This allows us to evaluate the importance of
context when few labeled samples are available and see if
conclusions drawn for a category easily generalize to other
ones.

The baseline with random object placements on ran-
dom backgrounds is conducted in a similar fashion as
our context-driven approach, by following the strategy
described in the previous section. For each category, we
treat all images with no object from this category as back-
ground images, and consider a collection of cut instances
as discussed in Section 4.1. During training, we augment a
negative (background) image with probability 0.5 by past-
ing up to two instances on it, either at randomly selected

locations (Random-DA), or using our context model in the
selected bounding boxes with top scores (Context-DA). The
instances are re-scaled by a random factor in [0.5, 1.5] and
blended into an image using a randomly selected blending
method mentioned in Section 4.1. For all models, we train
the object detection network for 6K iterations and decrease
the learning rate after 2K and 4K iterations by a factor 10
each time. The context model was trained in “small-data
regime” for 2K iterations and the learning rate was dropped
once after 1.5K steps. The results for this experiment are
presented in Table 2.

The conclusions are the following: random placement
indeed hurts the performance on average. Only the category
bird seems to benefit significantly from it, perhaps because
birds tend to appear in various contexts in this dataset and
some categories significantly suffer from random placement
such as boat, table, and sheep. Importantly, the visual con-
text model always improves upon the random placement
one, on average by 7%, and upon the baseline that uses only
classical data augmentation, on average by 6%. Interestingly,
we identify categories for which visual context is crucial
(aeroplane, bird, boat, bus, cat, cow, dog, plant), for which
context-driven data augmentation brings more than 7% im-
provement and some categories that display no significant
gain or losses (chair, table, persons, tv), where the difference
with the baseline is less noticeable (around 1-3%).

4.4.2 Multiple-Categories Object Detection

In this section, we conduct the same experiment as in
Section 4.4.1, but we train a single multiple-category object
detector instead of independent ones per category. Network
parameters are trained with more labeled data (on average
20 times more than for models learned in Table 2). When
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method aero bike bird boat bott. bus car cat chair cow table dog horse mbike pers. plant sheep sofa train tv avg.
Base-DA 79.0 43.7 65.8 57.9 53.8 83.8 77.9 76.7 19.2 56.6 46.6 67.6 59.0 73.1 77.9 46.8 69.4 37.8 73.7 70.3 63.3
Random-DA 78.1 47.1 75.4 57.8 57.2 83.5 76.2 76.6 20.5 57.0 43.1 69.2 57.5 71.5 78.2 40.0 63.3 42.0 74.5 64.1 63.1
Enlarge-DA 77.2 45.4 67.9 57.9 61.0 84.1 78.8 76.3 20.3 58.4 46.9 67.5 60.5 73.9 78.1 45.2 71.1 38.8 73.6 71.1 64.1
Context-DA 81.7 46.4 73.4 60.7 59.4 85.3 78.8 79.1 20.6 60.0 48.0 68.1 62.2 75.3 78.8 47.6 71.6 39.9 73.6 70.3 65.4
Impr. Cont. 2.7 2.7 7.6 2.8 4.6 1.5 1.1 2.3 1.4 3.4 1.4 0.5 3.2 2.3 2.2 0.9 0.8 2.1 -0.1 0 2.1

TABLE 4: Comparison of segmentation accuracy on VOC12val-seg. The model is trained on all 20 categories by
using the 1 464 images from VOC12train-seg. Base-DA represents the baseline experiment that uses standard data
augmentation techniques. Context-DA uses also our context-driven data augmentation. Random-DA is its context-agnostic
analogue. Enlarge-DA corresponds to randomly enlarging an instance and blending it back. The last row presents absolute
improvement over the baseline. The numbers represent IoU per class in %. Categories enjoying an improvement higher
than 2.5% are in bold. All numbers are averaged over 3 independent experiments.

Model CDA @0.5:0.95 @0.5 @0.75 S M L
Object Detection

BlitzNet300 27.3 46.0 28.1 10.7 26.8 46.0
BlitzNet300 X 28.0 46.7 28.9 10.7 27.8 47.0
Mask-RCNN 37.6 58.8 40.6 21.3 40.4 48.7
Mask-RCNN X 38.1 59.4 40.7 21.2 41.4 49.1

Instance Segmentation
Mask-RCNN 34.1 55.8 36.3 15.5 36.7 50.4
Mask-RCNN X 34.5 56.2 36.5 15.7 37.3 50.6

TABLE 5: Comparison of object detection and instance seg-
mentation accuracy on COCO-val2017 for the multiple-
category experiment. The model is trained on all cate-
gories at the same time, by using the 118 783 images from
COCO-train2017. The first column specifies a model used
to solve a task, the second column notes if Context-driven
Data Augmentation (CDA) was used. For different IoU
thresholds @0.5:0.95, @0.5 and @0.75) and for different object
size (S, M, L), the numbers represent mAP in %. Best results
are in bold.

training the context model, we follow the “normal-data
strategy” described in Section 4.2 and train the model for
8K iterations, decreasing the learning rate after 6K steps.
The results are presented in Table 3 and show a modest
average improvement of 2.1% for a single shot and 1.4% for
a region-based detector on average over the corresponding
baselines, which is relatively consistent across categories.
This confirms that data augmentation is crucial when few
labeled examples are available.

4.5 Object Detection and Instance Segmentation Aug-
mentation on COCO
In order to test our augmentation technique at large scale,
we use in this section the COCO dataset [8] whose train-
ing set size is by 2 orders of magnitude larger than
voc12train-seg, and consider both object detection and
instance segmentation tasks.

4.5.1 Object Detection with BlitzNet
By design, the experiment is identical to the one presented
in Section 4.4.2. However, for the COCO dataset we need
to train a new context model. This is done by training for
350K iterations (decay at 250K) as described in Section 4.2.

The non data-augmented baseline was trained according to
[10]; when using our augmentation pipeline, we train the
detector for 700K iterations and decrease the learning rate
by a factor of 10 after 500K and 600K iterations. Table 5
shows that we are able to achieve a modest improvement
of 0.7%, and that data augmentation still works and does
not degrade the performance regardless the large amount of
data available for training initially.

4.5.2 Detection and Segmentation with Mask-RCNN
For this experiment, we use Mask-RCNN [12] that jointly
solves object detection and instance segmentation. When
training the baseline model, the starting learning rate is set
to 2 · 10−2, and decreased at 120K and 160K iterations by
a factor of 10. We denote this learning schedule as 120-160-
180. In order to improve the performance of Mask-RCNN
for both tasks with context-driven data augmentation, we
follow a slightly different strategy from the one used in 4.4.
First, we train the model using only augmented samples,
i.e., we augment an image with probability 1, with 240-320-
360 learning schedule. After that we fine-tune the model
with 40-60-80 schedule using only real data and obtain the
final model. The comparison to the baseline is presented in
Table 5. Employing standard protocol for training with data
augmentation—training on a mixture of real and generated
images— did not improve the performance. We believe that
this is due to often non-realistic images and sometimes
missing instance annotations, arising when copy-pasting
nested instances. For example, coco-style instance mask of
a sofa with a dog on it can often include pixels of a dog
too, which is never the case for PASCAL VOC, causing some
confusion. However, pre-training on a larger corpus of noisy
but highly related data proved useful in this scenario, as was
shown in [63] for the classification task.

4.6 Semantic Segmentation Augmentation
In this section, we demonstrate the benefits of the proposed
data augmentation technique for the task of semantic seg-
mentation by using the VOC’12 dataset. First, we set up
the baseline by training the BlitzNet300 [10] architecture
for semantic segmentation. Standard augmentation tech-
niques such as flipping, cropping, color transformations and
adding random noise were applied during the training, as
described in the original paper. We use voc12train-seg
subset for learning the model parameters. Following the
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Aug. type aero bike bird boat bottle bus car cat chair cow table dog horse mbike pers. plant sheep sofa train tv avg.
Inst seg 68.9 73.1 62.5 57.6 38.9 72.5 74.8 77.2 42.9 69.7 59.5 63.9 76.1 70.2 69.2 43.9 58.3 59.7 77.2 64.8 64.0
Gt seg 67.8 70.3 61.5 56.6 38.2 71.2 74.7 75.7 41.6 68.3 59.0 63.2 75.6 71.0 68.7 42.6 59.5 59.1 78.4 65.3 63.4
Weak seg 68.9 71.3 59.0 54.2 37.3 71.9 74.5 75.2 40.8 67.6 59.8 62.8 76.4 71.3 68.4 43.8 59.9 57.2 76.6 64.4 63.0
No 58.8 64.3 48.8 47.8 33.9 66.5 69.7 68.0 40.4 59.0 61.0 56.2 72.1 64.2 66.7 36.6 54.5 53.0 73.4 63.6 58.0

TABLE 6: Comparison of detection accuracy on VOC07-test for the single-category experiment. The models are trained
independently on each category, by using the VOC12train-seg. The first column specifies the type of object mask used
for augmentation: ground-truth instance segmentations (Inst. Seg.), ground-truth semantic segmentation (GT Seg.), or
weakly-supervised semantic segmentations (Weak Seg.). Inst. seg. stands for the original instance segmentation ground
truth masks. The numbers represent AP per class in %. The best result for a category is in bold. All numbers are averaged
over 3 independent experiments.

Aug. type aero bike bird boat bott. bus car cat chair cow table dog horse mbike pers. plant sheep sofa train tv avg.
Inst. seg 69.9 73.8 63.9 62.6 35.3 78.3 73.5 80.6 42.8 73.8 62.7 74.5 81.1 73.2 68.9 38.1 67.8 64.3 79.3 66.1 66.5
GT Seg. 68.7 74.5 60.1 60.0 34.9 75.4 74.4 81.7 41.1 72.4 64.2 74.4 81.3 74.6 69.6 39.7 67.6 64.2 80.4 65.5 66.2
Weak Seg. 69.2 75.2 63.2 59.8 35.6 77.1 73.4 78.7 41.3 72.9 62.8 72.7 79.6 72.5 68.1 39.2 67.6 66.1 79.5 64.2 65.9
No 63.6 73.3 63.2 57.0 31.5 76.0 71.5 79.9 40.0 71.6 61.4 74.6 80.9 70.4 67.9 36.5 64.9 63.0 79.3 64.7 64.6

TABLE 7: Comparison of detection accuracy on VOC07-test for the multy-category experiment depending on the type
of object masks used for augmentation. The models are trained on all categories together, by using the 1 464 images
from VOC12train-seg. The first column specifies the type of object mask used for augmentation: ground-truth instance
segmentations (Inst. Seg.), ground-truth semantic segmentation (GT Seg.), or weakly-supervised semantic segmentations
(Weak Seg.). Inst. seg. stands for the original instance segmentation ground truth masks. The numbers represent AP per
class in %. The best result for a category is in bold. All numbers are averaged over 3 independent experiments.

training procedure described in Section 4.2, we train the
model for 12K iterations starting from the learning rate of
10−4 and decreasing it twice by the factor of 10, after 7K and
10K steps respectively. Next, we perform data augmentation
of the training set with the proposed context-driven strategy
and train the same model for 15K iterations, dropping the
learning rate at 8K and 12K steps. In order to blend new ob-
jects in and to augment the ground truth we follow routines
described in Section 3.3. We also carry out an experiment
where new instances are placed at random locations, which
represents a context-agnostic counterpart of our method. We
summarize the results of all 3 experiments in Table 4. As we
can see from the table, performing copy-paste augmentation
at random locations for semantic segmentation slightly de-
grades the model’s performance by 0.2%. However when
objects are placed in the right context, we achieve a boost of
2.1% in mean intersection over union. These results resem-
ble the case of object detection a lot and therefore highlight
the role of context in scene understanding. We further ana-
lyze the categories that benefit from our data augmentation
technique more than the others. If improvement for a class
AP over the baseline is higher than 2.5%, Table 4 marks
the result in bold. Again, we can notice correlation with the
detection results from Section 4.4.1 which demonstrates the
importance of context for the categories that benefit from
our augmentation strategy in both cases.

4.7 Reducing the need for pixel-wise object annotation
Our data augmentation technique requires instance-level
segmentations, which are not always available in realistic
scenarios. In this section, we relax the annotation require-
ments for our approach and show that it is possible to use
the method when only bounding boxes are available.

Bounding Boxes Semantic Segmentation + Bounding Boxes Instance Segmentation

Fig. 9: Possible types of instance-level annotation. The
left column presents an image annotated with object boxes.
Column 2 shows semantic segmentation annotations with
object boxes on top and approximate instance segmenta-
tions derived from it. The last column presents the original
instance segmentation annotations.

Semantic segmentation + bounding box annotations.
Instance segmentation masks provide annotations to each
pixel in an image and specify (i) an instance a pixel belongs
to and (ii) class of that instance. If these annotations are
not available, one may approximate them with semantic
segmentation and bounding box annotations. Figure 9 illus-
trates possible annotation types and the difference between
them. Semantic segmentation annotations are also pixel-
wise, however they annotate each pixel only with the object
category. Instance-specific information could be obtained
from object bounding boxes, however this type of anno-
tation is not pixel-wise and in some cases is not sufficient
to assign each pixel to the correct instance. As Figure 9
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suggests, as long as a pixel in semantic map is covered
by only one bounding box, it uniquely defines the object
it belongs to (row 1); otherwise, if more than one box covers
the pixel, it is not clear which object it comes from (row 2).
When deriving approximate instance masks from semantic
segmentation and bounding boxes (see Figure 9, column
2), we randomly order the boxes and assign pixels from
a semantic map to the corresponding instances. Whenever
a pixel could be assigned to multiple boxes we choose a
box that comes first in the ordering. Once the procedure
for obtaining object masks is established we are back to the
initial setting and follow the proposed data augmentation
routines described above. As could be seen in Tables 6 and 7
detection performance expiriences a slight drop of 0.6% in
single-category and 0.3% in multi-category settings respec-
tively, comparing to using instance segmentation masks.
These results are promising and encourage us to explore less
elaborate annotations for the purpose of data augmentation.

Bounding box annotations only. Since we have an es-
tablished procedure for performing data augmentation with
semantic segmentation and bounding boxes annotations,
the next step to reducing pixel-wise annotation is to approx-
imate segmentation masks. We employ weakly-supervised
learning to estimate segmentations from available bounding
boxes. The work of [54] proposes an effective solution to
this problem. When trained on the VOC12train dataset,
augmented with more training examples according to [17],
[54], it achieves 65.7% mIoU on the VOC12val-set. Unfor-
tunately, we have found that naively applying this solution
for estimating segmentation masks and using them for aug-
mentation results in worse performance. The reason for that
was low quality of estimated masks. First, inaccurate object
boundaries result in non-realistic instances and may intro-
duce biases in the augmented dataset. But more importantly,
confusion between classes may hampers the performance.
For example, augmenting a category “cow” with examples
of a “sheep” class may hurt the learning process. Hence, we
need a model with a more discriminative classifier. To this
end we propose the following modifications to the segmen-
tation method: we change the architecture from DeepLab v1
[64] to DeepLab v4 [35], perform multi-scale inference and
process the resulting masks with a conditional random field.
The later helps to refine the object edges, which was found
not necessary in the original work of [35], when learning
with full supervision. By training on the same data as the
original method of [54] but with the proposed modifica-
tions we achieve 75.8% mIoU, which is more than 10%
improvement to the initial pipeline. This accuracy seems
to be sufficient to use automatically-estimated segmentation
masks for augmentation purposes.

When the semantic maps are estimated, we follow the
augmentation routines of the previous section with only one
difference; specifically, an instance is kept if the bounding
box of its segmentation covers at least 40% of its correspond-
ing ground truth box. Otherwise, the instance mask is con-
sidered as missing and the object does not contribute to data
augmentation. The results of applying this strategy to the
single- and multy-category object detection are presented in
Table 6 and 7, respectively. Table 6 shows which categories
are unable to provide high-quality masks, even though the
quality seems to be sufficient to improve upon the non-

% of data used 0 5 10 25 50 75 100

Det. mAP 64.6 65.3 66.1 66.4 66.7 66.9 66.9

Seg. mIoU 63.3 64.6 65.1 65.3 65.5 65.9 66.0

TABLE 8: Object detection and semantic segmentation per-
formance depending on amount of data used for building
the context model. First row depicts the portion (in %) of
the VOC07trainval+VOC12trainval used for training
the context model. Second column corresponds to perfor-
mance of baseline models. The second row gives the fi-
nal detection mAP % evaluated on VOC07test, while the
third row lists segmentation mIou in % on VOC12val-seg.
For both tasks we used BlitzNet300 trained on augmented
VOC12train-seg.

augmented baseline. It is surprising that by using object
boxes instead of segmentation masks we lose only 0.6% of
mAP in the multi-class scenario while still outperforming
non-augmented training by 1.6%. These results show that
the method is widely applicable even in the absence of
segmentation annotations.

4.8 Studying the Importance of Context Modeling Qual-
ity for Scene Understanding

First, we make an assumption that the quality of a context
model is mainly influenced by the amount of data it has
received for training. Hence, to study this relation, we mine
a bigger dataset VOC07-trainval+VOC12-trainval
which results in 16551 images. Then, we proceed by taking
subsets of this dataset of increasing size and train the context
model on them. Finally, we use the obtained context models
to augment VOC12-trainval and train BlitzNet300 on it
for detection and segmentation. Table 8 summarizes the
object detection performance on VOC07-test and semantic
segmentation performance on VOC12val-seg. In the cur-
rent experiment, 10% of the full set (1655 images) is roughly
equal to the size of the VOC12train-seg (1464 images)
initially used for training the context model. As we increase
the data size used for context modeling, we can see how
both detection and segmentation improve; however, this
gain diminishes as the data size keeps growing. This proba-
bly mean that to improve scene understanding, the context
model has to get visual context “approximately right” and
further improvement is most likely limited by other factors
such as unrealistic generated scenes and limited number of
instances that are being copy-pasted. On the other hand, if
the context model did not receive sufficient amount of data
for training, as in the case of using only 5% of the full set, our
augmentation strategy tends to the random one and shows
little improvement.

5 CONCLUSION

In this paper, we introduce a data augmentation tech-
nique dedicated to scene understanding problems. From a
methodological point of view, we show that this approach
is effective and goes beyond traditional augmentation meth-
ods. One of the keys to obtain significant improvements in
terms of accuracy was to introduce an appropriate context
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model which allows us to automatically find realistic loca-
tions for objects, which can then be pasted and blended at in
the new scenes. While the role of explicit context modeling
has been unclear so far for detection and segmentation,
we show that it is in fact crucial when performing data
augmentation and learn with fewer labeled data, which is
one of the major issues deep learning models are facing
today.
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